Saliva Versus Plasma Bioequivalence of Azithromycin in Humans: Validation of Class I Drugs of the Salivary Excretion Classification System

Similar documents
Saliva Versus Plasma Bioequivalence of Rusovastatin in Humans: Validation of Class III Drugs of the Salivary Excretion Classification System

The use of Saliva instead of Plasma as a Surrogate in Drug Bioavailability and Bioequivalence Studies in Humans

Ph D. Synopsis 4. WORK PLAN AND METHODOLOGY

Pharmacokinetics and bioavailability derived from various body fluids. Saliva samples instead of plasma samples

5.1 Summary. Summary & Conclusions

GSK Medicine: Study Number: Title: Rationale: Phase: Study Period: Study Design: Centres: Indication: Treatment:

Determination of propranolol in dog plasma by HPLC method

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

Enhancement of oral bioavailability of insulin in humans

Bioequivalence Studies of Two Formulations of Famciclovir Tablets by HPLC Method

Johnson & Johnson Pharmaceutical Research & Development, L.L.C.

Dr. M.Mothilal Assistant professor

TCP Transl Clin Pharmacol

International Journal of Pharma and Bio Sciences

The clinical trial information provided in this public disclosure synopsis is supplied for informational purposes only.

Determination and pharmacokinetics of manidipine in human plasma by HPLC/ESIMS

Francis Micheal et al /J. Pharm. Sci. & Res. Vol.3(7), 2011,

Determination of Clarithromycin in Human Plasma by LC-EI Tandem Mass Spectrometry: Application to Bioequivalence Study

Lack of pharmacokinetic interaction between the oral anti-influenza neuraminidase inhibitor prodrug oseltamivir and antacids

Determination of Pharmaceutical Residues in Bovine Milk via LC MS/MS Following Solid Phase Extraction

HPLC method for Pharmacokinetics of cis and trans isomer of cefprozil diastereomers in human plasma

High Performance Liquid Chromatographic Determination of Cyclooxygenase II Inhibitor Rofecoxib in Rat and Human Plasma

2. Experimental. Glipizide (>98% purity) and tolbutamide as the internal

Clinical Study Synopsis for Public Disclosure

Ronald Goldwater 1 Azra Hussaini

Hyderabad, India. Department of Pharmaceutical Chemistry, Glocal University, Saharanpur, India.

Bioequivalence of Two Brands of Metformin 850 mg Coated Tablets in 12 Healthy Algerian Volunteers: A Pilot Study

Detection of Low Level of Chloramphenicol in Milk and Honey with MIP SPE and LC-MS-MS

EASI-EXTRACT MULTI-VIT B (LGE) Product Code: P183 / P183B

Clinical Study Synopsis for Public Disclosure

Clinical Study Synopsis for Public Disclosure

Comparative bioavailability study of two salbutamol tablets in healthy adult volunteers

DETERMINATION OF CANNABINOIDS, THC AND THC-COOH, IN ORAL FLUID USING AN AGILENT 6490 TRIPLE QUADRUPOLE LC/MS

Section 5.2: Pharmacokinetic properties

Department of Pharmaceutical Analysis, Amrutvahini College of Pharmacy, Tal: Sangamner, Dist: Ahmednagar, Maharashtra, India 2.

Jieon Lee 1, AnHye Kim 1, Kyung-Sang Yu 1, Jae-Yong Chung 2, Sung-Vin Yim 3 and Bo-Hyung Kim 3 * 1 ORIGINAL ARTICLE

Bioequivalence study of two different formulations of 300 mg gabapentin capsule in Thai healthy volunteers

Comprehensive Study of SLE as a Sample. Preparation Tool for Bioanalysis

Determination of 6-Chloropicolinic Acid (6-CPA) in Crops by Liquid Chromatography with Tandem Mass Spectrometry Detection. EPL-BAS Method No.

COMPARISON OF PLASMA AND SALIVA LEVELS OF METOPROLOL AND OXPRENOLOL

SINGLE-DOSE AND STEADY-STATE PHARMACOKINETICS OF MOXDUO, A DUAL-OPIOID FORMULATION CONTAINING A FIXED RATIO OF MORPHINE AND OXYCODONE

Bioequivalence of indinavir capsules in healthy volunteers

Real-time PK Measurement of the Chemotherapeutic Drug Melphalan in Whole Blood by a Novel PaperSpray Mass Spectrometry

Institute of Toxicology Clinical Toxicology and Pharmacology Berliner Betrieb für Zentrale Gesundheitliche Aufgaben, Berlin

Clinical Study Synopsis

Public Assessment Report Scientific discussion. Ibuprofen Idifarma 4 mg/ml solution for infusion. Ibuprofeno ES/H/0256/001/DC

Relative Measurement of Zeaxanthin Stereoisomers by Chiral HPLC

PUBLIC ASSESSMENT REPORT Scientific Discussion

Iodine HPLC Assay. Catalog Number: IOD34-H Tests For Research Use Only. Not for use in diagnostic procedures.

METHOD DEVELOPMENT AND VALIDATION BY RP-HPLC FOR ESTIMATION OF ZOLPIDEM TARTARATE

Clinical Trials A Practical Guide to Design, Analysis, and Reporting

Determination of β2-agonists in Pork Using Agilent SampliQ SCX Solid-Phase Extraction Cartridges and Liquid Chromatography-Tandem Mass Spectrometry

Determination of Bath Salts (Pyrovalerone Analogs) in Biological Samples

Noncompartmental Analysis (NCA) in PK, PK-based Design

Oral Soluble Film Products for Epilepsy: Clobazam (COSF) and Diazepam (DBSF)

Public Assessment Report Scientific discussion. Anastrozole Bluefish 1 mg film-coated tablets (anastrozole) SE/H/781/01/DC

The clinical trial information provided in this public disclosure synopsis is supplied for informational purposes only.

Assessment of the correlations of lacosamide concentrations in saliva and serum in patients with epilepsy

Bioequivalence Study of Sildenafil 20 mg Tablets in Healthy Thai Male Volunteers

Bioequivalence study of diacerein 50 mg capsules in healthy Vietnamese volunteers

This clinical study synopsis is provided in line with Boehringer Ingelheim s Policy on Transparency and Publication of Clinical Study Data.

OMICS Group is an amalgamation of Open Access Publications and worldwide international science conferences and events. Established in the year 2007

Development of Canagliflozin: Mechanistic Absorption Modeling During Late-Stage Formulation and Process Optimization

Bioequivalence of Two Brands of Valsartan 80 mg Coated Breakable Tablets in 15 Healthy Algerian Volunteers: A Pilot Study

Effect of Septilin A Herbal Preparation on Pharmacokinetics of Carbamazepine in Rabbits

TCP Transl Clin Pharmacol

EXPERIMENT 13: Isolation and Characterization of Erythrocyte

A Bioequivalence Study of an Albendazole Oral Suspension Produced in Iran and a Reference Product in Sheep

Public Assessment Report. Scientific discussion. Tevalukast Chewable tablets 4 mg and 5 mg. Montelukast sodium DK/H/1331/ /DC

Screening by immunoassay and confirmation & quantitation by GC-MS of buprenorphine and norbuprenorphine in urine, whole blood and serum

BIOPHARMACEUTICS and CLINICAL PHARMACY

S. George* and R.A. Braithwaite Regional Laboratory for Toxicology, City Hospital NHS Trust, Dudley Road, Birmingham, England, B 18 7QH.

Intra Subject Variability of Progesterone 200 mg Soft Capsules in Indian Healthy Adult Postmenopausal Female Subjects under Fasting Conditions

EASI-EXTRACT BIOTIN Product Code: P82 / P82B

A Pharmacokinetic Study to Compare Two Simultaneous 400 µg Doses with a Single 800 µg Dose of Oral Transmucosal Fentanyl Citrate

A Robustness Study for the Agilent 6470 LC-MS/MS Mass Spectrometer

Journal of Pharmaceutical and Bioanalytical Science

A Novel Solution for Vitamin K₁ and K₂ Analysis in Human Plasma by LC-MS/MS

Comparative bioavailability of two different quetiapine doses (50 and 200 mg) in healthy volunteers by using LC/MS method

Evaluation of the Pharmacokinetic Profiles of the New Testosterone Topical Gel Formulation, Testim TM, Compared to AndroGel 1

Determination of Tetracyclines in Chicken by Solid-Phase Extraction and High-Performance Liquid Chromatography

UPLC-MS/MS Analysis of Azole Antifungals in Serum for Clinical Research

Clinical Trial Results Summary Study EN

A RAPID AND SENSITIVE ANALYSIS METHOD OF SUDAN RED I, II, III & IV IN TOMATO SAUCE USING ULTRA PERFORMANCE LC MS/MS

Protein Precipitation for Biological Fluid Samples Using Agilent Captiva EMR Lipid 96-Well Plates

VITAMINES A / E IN PLASMA BY UV - FAST CODE Z18610

Public Assessment Report. Scientific discussion. Metoprololsuccinat Actavis. Prolonged release tablets 25 mg, 50 mg, 100 mg and 200 mg

BASIC PHARMACOKINETICS

Preliminary Investigation of Beagle Dog as Substitute for Humans in Bioequivalence Studies

BIOEQUIVALENCE STUDY OF DULOXETINE HYDROCHLORIDE 60 MG EC CAPSULES IN FASTING AND FED STATE IN HEALTHY THAI MALE VOLUNTEERS

Clinical Study Synopsis for Public Disclosure

Evaluation of a Scenario in Which Estimates of Bioequivalence Are Biased and a Proposed Solution: t last (Common)

Final Report (Amendment 1) April 11, 2006 Page 4 of 50

Comparison of Omadacycline and Tigecycline Pharmacodynamics in the Plasma, Epithelial Lining Fluid, and Alveolar Macrophages in Healthy Subjects

Journal of Chemical and Pharmaceutical Research

Simultaneous Determination and Pharmacokinetic Study of Metformin and Rosiglitazone in Human Plasma by HPLC ESI-MS

Renal Clearance and Urinary Excretion of Roxithromycin in Healthy Adult Female Subjects

CoQ10(Coenzyme Q10) ELISA Kit

Sponsor: Sanofi Drug substance(s): SAR342434

Transcription:

Drugs R D DOI 10.1007/s40268-016-0170-8 ORIGINAL RESEARCH ARTICLE Saliva Versus Plasma Bioequivalence of Azithromycin in Humans: Validation of Class I Drugs of the Salivary Excretion Classification System Nasir Idkaidek 1 Tawfiq Arafat 1 Hazim Hamadi 1 Salim Hamadi 1 Ibrahim Al-Adham 1 The Author(s) 2017. This article is published with open access at Springerlink.com Abstract Aim The aim of this study was to compare human pharmacokinetics and bioequivalence metrics in saliva versus plasma for azithromycin as a model class I drug of the Salivary Excretion Classification System (SECS). Methods A pilot, open-label, two-way crossover bioequivalence study was done, and involved a single 500-mg oral dose of azithromycin given to eight healthy subjects under fasting conditions, followed by a 3-week washout period. Blood and unstimulated saliva samples were collected over 72 h and deep frozen until analysis by a validated liquid chromatography with mass spectroscopy method. The pharmacokinetic parameters and bioequivalence metrics of azithromycin were calculated by noncompartment analysis using WinNonlin V5.2. Descriptive statistics and dimensional analysis of the pharmacokinetic parameters of azithromycin were performed using Microsoft Excel. PK-Sim V5.6 was used to estimate the effective intestinal permeability of azithromycin. Results and Discussion No statistical differences were shown in area under the concentration curves to 72 h (AUC 0 72 ), maximum measured concentration (C max ) and time to maximum concentration (T max ) between test and reference azithromycin products (P [ 0.05) in the saliva matrix and in the plasma matrix. Due to the high intra-subject variability and low sample size of this pilot study, the 90% confidence intervals of AUC 0 72 and C max did not fall within the acceptance range (80 125%). However, saliva levels were higher than that of plasma, with a longer salivary T max. The mean saliva/plasma concentration of test and reference & Nasir Idkaidek nidkaidek@uop.edu.jo 1 Faculty of Pharmacy, Petra University, Amman, Jordan were 2.29 and 2.33, respectively. The mean ± standard deviation ratios of saliva/plasma of AUC 0 72, C max and T max for test were 2.65 ± 1.59, 1.51 ± 0.49 and 1.85 ± 1.4, while for the reference product they were 3.37 ± 2.20, 1.57 ± 0.77 and 2.6 ± 1.27, respectively. A good correlation of R = 0.87 between plasma and saliva concentrations for both test and reference products was also observed. Azithromycin is considered a class I drug based on the SECS, since it has a high permeability and high fraction unbound, and saliva sampling could be used as an alternative to plasma sampling to characterize its pharmacokinetics and bioequivalence in humans when adequate sample size is used. Key Points Saliva sampling offers an easy and non-invasive method as compared with plasma sampling. Azithromycin pharmacokinetics and bioequivalence metrics in saliva were compared with plasma, and a good correlation was demonstrated. Azithromycin is considered a class I drug based on the Salivary Excretion Classification System (SECS), and saliva sampling could be used as an alternative to plasma sampling to characterize the drug s pharmacokinetics and bioequivalence in humans. 1 Introduction Salivary excretion of some drugs has been reported previously as a good indicator for drug bioavailability, therapeutic drug monitoring [1 6], pharmacokinetics [7 11] and also drug abuse [12]. Saliva sampling offers a simple, non-

N. Idkaidek et al. invasive and cheap method as compared [13 16] with plasma sampling, yet needs special attention so that no drug residue is left in the mouth after dosing. According to the Salivary Excretion Classification System (SECS), class I drugs of high intestinal permeability and low protein binding, such as paracetamol, are subjected to salivary excretion. Class II drugs of low permeability and low protein binding, such as metformin, are subjected to salivary excretion since low permeability is counterbalanced by low protein binding. Class III drugs of high intestinal permeability and high protein binding, such as cinacalcet, are subjected to salivary excretion since high protein binding is counterbalanced by high permeability. Class IV drugs of low intestinal permeability and high protein binding, such as montelukast, are not subjected to salivary excretion [1]. In addition, drug analysis in the clean saliva matrix is simple and can be done using the same method of analysis as plasma matrix. Azithromycin is a semi-synthetic 15-member azalide antibiotic derived from erythromycin. It is characterized by better acid stability associated with more reliable and greater oral bioavailability, more extensive tissue penetration, and significantly longer elimination half-life compared with erythromycin. Azithromycin is effective against Gram-positive and Gramnegative pathogens. Azithromycin is commonly used for the treatment and prophylaxis of respiratory tract infection, skin and soft tissue infection, and sexually transmitted diseases [17, 18]. 2 Objectives The aim of this study was to compare human pharmacokinetics and bioequivalence metrics in saliva versus plasma for azithromycin as a model class I drug of the SECS. 3 Experimental 3.1 Design Plasma pharmacokinetics under fasted state conditions were compared with saliva pharmacokinetics in a two-way cross-over truncated design study. The pilot bioequivalence study was conducted on in eight healthy human volunteers at Al-Hilal Hospital as per the International Council for Harmonization, Good Clinical Practice, and Helsinki declaration guidelines, after Jordan Food and Drug Administration approvals. Oral dosing of 500 mg azithromycin test formula (Azox tablet, batch #150912, expiry date 09/2018) or reference formula (Zithromax tablet, batch #315704, expiry date 03/2018) with 240 ml of water was given after 10 h overnight fasting without dietary restrictions. Plasma and resting unstimulated saliva samples were collected at 0, 0.33, 0.66, 1.00, 1.50, 2.00, 2.5, 3.00, 3.50, 4.00, 4.50, 5.00, 6.00, 8.00, 10.00, 12.00, 24.00 and 48.00 and truncated at 72.00 h during each study phase. Mouth checking and thorough rinsing of the mouth was done prior to first saliva sampling to avoid contamination of saliva samples by any drug residues. All samples were deep frozen until assayed by the validated liquid chromatography with mass spectroscopy (LC-MS) assay method (detailed below). Medical history, vital signs, physical examination and laboratory safety test results showed no evidence of clinically significant deviation from normal medical condition as evaluated by the clinical investigator. 3.2 Assay Methodology Plasma and saliva samples were deep frozen until assayed by validated LC-MS assay method. A Hypersil BDS C18 column at 30 C was used with roxithromycin as the internal standard. The mobile phase was 45% 0.01 M ammonium acetate plus 0.1% acetic acid and 55% methanol. The flow rate was 0.5 ml/min, with an ambient auto-sampler temperature. The extraction procedure was as follows: Pipette 300 ll of spiked/blank plasma sample into a previously labeled test tube. Add 50 ll of internal standard (400 ng roxithromycin/ ml), and vortex for 15 s. Add 150 ll of extraction buffer for plasma samples only (0.1 M sodium carbonate), and vortex for 30 s. Add 5 ml of extraction solvent (MTBE), and vortex for 2 min. Centrifuge the sample for 2 min at 4400 rpm. Freeze the sample for about 30 min then decant the supernatant in a clean evaporating glass tube. Evaporate the extraction solvent by compressed air in water bath at 40 C (this step should be conducted in the fume hood), reconstitute the residue with 250 ll of reconstitution solution (50 MeOH:50 water) plus 0.1% acetic acid, and vortex for 1 min. Transfer the sample into a flat bottom inserts vial, and inject into the instrument. Intra-day coefficient of variation was 3%, inter-day accuracy range was 93.228 105.140%, inter-day precision range was 6.65 13.204% and linear range was 5 450 ng/ml. 3.3 Data Analysis 3.3.1 Pharmacokinetic Analysis Individual pharmacokinetic parameters for drug concentration in both saliva and plasma samples were calculated

Saliva versus Plasma Bioequivalence of Azithromycin in Humans by non-compartmental analysis using WinNonlin V5.2. Pharmacokinetic parameters were area under the concentration curve to 72 h (AUC 0 72 ), maximum measured concentration (C max ) and time to maximum concentration (T max ). The elimination phase was not clear enough in the truncated design to calculate elimination parameters such as half-life and elimination rate constant. 3.3.2 Dimensional and Correlation Analysis The following dimensionless saliva/plasma ratios were calculated in Microsoft Excel: AUC * = saliva AUC t /plasma AUC t T max * = saliva T max /plasma T max C max * = saliva C max /plasma C max C * = saliva concentration/plasma concentration = C s / C p Correlation analysis was performed using Excel to correlate average C s versus average C p values up to median T max of the reference product. 3.3.3 Bioequivalence and Statistical Analysis Analysis of variance, 90% confidence intervals, and intrasubject variability estimates for primary pharmacokinetic parameters for test and reference products after logarithmic transformation were calculated by WinNonlin V5.2. Statistical comparisons were also done using parametric t tests for AUC and C max, and the non-parametric Wicoxon test for T max. 3.3.4 Absorption Kinetics The Nelder Mead algorithm of the Parameter Estimation module, using the PK-Sim program V5.6, was used to calculate azithromycin intestinal permeability (P eff ) by searching for the best parameter values that produced a plasma concentration that matched the actual plasma concentration at the same time. The objective function is the weighted sum of squared differences of the observed and model predicted values. 4 Results and Discussion Azithromycin plasma and saliva mean concentrations are shown in Fig. 1. It is noticed that saliva concentrations are much higher than plasma concentrations. However, saliva profiles in test and reference products are closely related to those in plasma. The correlation coefficients and coefficients of determination of 0.84 0.87 and 0.71 0.76 between saliva and plasma concentrations up to median T max values of plasma profiles are shown in Fig. 2. This is in agreement with the good correlation shown previously for other drugs [1]. Pharmacokinetic parameters of AUC0 72, T max and C max in saliva and plasma are summarized in Tables 1 and 2. No statistical differences were seen for AUC 0 72, C max and T max between test and reference azithromycin products (P [ 0.05) in saliva matrix and in plasma matrix. Moreover, bioequivalence metrics and statistical comparisons for primary pharmacokinetic parameters were calculated for both saliva and plasma. The 90% confidence intervals for AUC0 72 and C max were 45.32 117.51 and 63.20 113.64, and 65.56 117.58 and 52.05 134.33% in saliva and plasma, respectively. However, geometric mean ratios of AUC0 72 and C max in saliva were 84 and 73, and 88 and 83% in plasma. Confidence intervals did not pass in both saliva and plasma because of the low sample size of this pilot study. This is reflected in a high intra-subject variability of 52% and a minimum low study power of 19% in both saliva and plasma. Figure 3 shows observed versus PK-Sim-predicted concentration profiles, indicating good fit. The optimized effective permeability coefficient was 0.0006 cm/s. Fig. 1 Plasma and saliva of azithromycin mean concentrations (conc). R reference, T test

N. Idkaidek et al. Fig. 2 Correlation of saliva and plasma azithromycin mean concentrations in test and reference Table 1 Pharmacokinetic parameters of azithromycin test and reference formulations in plasma Parameter Test Reference P value; paired t test AUC 0 72 (ng/ml h) 2419.47 2517.0 0.44 C max (ng/ml) 291.30 328.3 0.47 T max (h) 3.38 3.2 0.67* * Wilcoxon test is done for T max Table 2 Pharmacokinetic parameters of azithromycin of test and reference formulations in saliva Parameter Test Reference P value; paired t test AUC 0 72 (ng/ml h) 6992.05 8560.74 0.35 C max (ng/ml) 453.33 496.69 0.30 T max (h) 5.25 8.44 0.15* * Wilcoxon test is done for T max Azithromycin falls into class I, consistent with published results [1], with high permeability (Fa = 0.99) and high fraction unbound (fu = 0.71), with good salivary excretion. Moreover, the dimensional analysis presented in Table 3 shows that saliva to plasma ratios are higher than unity. This is consistent with the higher concentrations and parameter values in saliva as compared to plasma, which makes it easier to measure and trace azithromycin concentrations in saliva. It is well known that for most antibiotics, serum levels serve as a good surrogate of levels at the site of infection, but for certain classes of antibiotics (e.g., azithromycin, clarithromycin), there is a large difference between serum drug level and level at infection site (10- to 20-fold). Therefore, using the pharmacokinetic data alone is not enough to describe the antimicrobial activity of the drug, and pharmacodynamic parameters should integrate with pharmacokinetic parameters. Integrating the pharmacokinetic parameters with the minimum inhibitory concentration (MIC) gives us three pharmacokinetic/ pharmacodynamic parameters that quantify the activity of an antibiotic: the peak/mic ratio, the T [ MIC, and the 24 h-auc/mic ratio. It was found that azithromycin killing activity is best described by 24 h-auc/mic calculation [19, 20]. Since the AUC of azithromycin in saliva is Fig. 3 Observed vs. PK-Sim-predicted plasma concentrations (a, b)

Saliva versus Plasma Bioequivalence of Azithromycin in Humans Table 3 Saliva/plasma dimensional analysis of test and reference Parameter Test Reference AUC* 2.65 3.37 C max * 1.51 1.57 T max * 1.85 2.86 C* 2.29 2.33 AUC area under the concentration curve, AUC* saliva AUC t /plasma AUC t, C max maximum measured concentration, C max * saliva C max /- plasma C max, T max time to C max, T max * saliva T max /plasma T max, C* saliva concentration/plasma concentration much higher than that of plasma, saliva AUC may be used to calculate the killing activity of azithromycin. 5 Conclusions Azithromycin saliva sampling could be used as an alternative to plasma sampling to characterize the drug s pharmacokinetics and bioequivalence in humans when adequate sample size is used. Further work is needed to fully characterize the salivary excretion of azithromycin following its oral administration using larger sample size and extended sampling time. Indeed, it was not our goal to establish bioequivalence, but rather to confirm a concept and to show suitability and validity of saliva instead of plasma in such studies. Saliva sampling has the advantages of being easier to collect and painless compared with plasma sampling. Moreover, saliva sampling can be done at home by patients, in the case of therapeutic drug monitoring, or in a controlled study in hospitals. NASA has conducted several clinical trials in space shuttles using saliva sampling because of its validity and suitability [21]. The main disadvantage of saliva samples can be the high intra- and inter-subject variability. However, this can also be accounted for by enrolling a larger number of subjects in the clinical study. Acknowledgements This work was done in partial fulfillment of Master of Science requirements at the University of Petra. We thank all staff at Al-Hilal Hospital and the Jordan Center of Pharmaceutical Research. Compliance with Ethical Standards Conflicts of interest Nasir Idkaidek, Tawfiq Arafat, Hazim Hamadi, Salim Hamadi and Ibrahim Al-Adham have no conflicts of interest to declare. Funding No funding was received for the preparation of this manuscript. This research was funded by Petra University. WinNonlin was used under an academic license from Pharsight Inc., USA. The PK-Sim program was used under an academic license from BAYER Ltd, Germany. Open Access This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits any noncommercial use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. References 1. Idkaidek N, Arafat T. Saliva versus plasma pharmacokinetics: theory and application of a salivary excretion classification system. Mol Pharm. 2012;9:2358 63. 2. Baumann RJ. Salivary monitoring of antiepileptic drugs. J Pharm Pract. 2007;20:147 57. 3. Danhof M, Breimer D. Therapeutic drug monitoring in saliva. Clin Pharmacokinet. 1978;3:39 57. 4. Drobitch RK, Svensson CK. Therapeutic drug monitoring in saliva. Clin Pharmacokinet. 1992;23:365 79. 5. Liu H, Delgado MR. Therapeutic drug concentration monitoring using saliva samples. Clin Pharmacokinet. 1999;36:453 70. 6. Mucklow JC. The use of saliva in therapeutic drug monitoring. Ther Drug Monit. 1982;4:229 48. 7. Adithan C, Thangam J. A comparative study of saliva and serum paracetamol levels using a simple spectrophotometric method. Br J Clin Pharmacol. 1982;14:107 9. 8. Baldo M, Hunzicker G, Altamirano J, Murguía M, Hein G. Saliva as a noninvasive biological sample to compare bioavailability of phenytoin formulations by LC MS/MS. Int J Pharm Sci Res. 2015;6:3752. 9. Cawello W, Bökens H, Nickel B, Andreas JO, Halabi A. Tolerability, pharmacokinetics, and bioequivalence of the tablet and syrup formulations of lacosamide in plasma, saliva, and urine: saliva as a surrogate of pharmacokinetics in the central compartment. Epilepsia. 2013;54:81 8. 10. Koks C, Meenhorst P, Hillebrand M, Bult A, Beijnen J. Pharmacokinetics of fluconazole in saliva and plasma after administration of an oral suspension and capsules. Antimicrob Agents Chemother. 1996;40:1935 7. 11. Suryawati S, Santoso B. Pharmacokinetics of metronidazole in saliva. Int J Clin Pharmacol Ther Toxicol. 1991;29:474 8. 12. Guinan T, Ronci M, Kobus H, Voelcker NH. Rapid detection of illicit drugs in neat saliva using desorption/ionization on porous silicon. Talanta. 2012;99:791 8. 13. Nunes LAS, Brenzikofer R, Macedo DV. Reference intervals for saliva analytes collected by a standardized method in a physically active population. Clin Biochem. 2011;44:1440 4. 14. Nunes S, Alessandro L, Mussavira S, Sukumaran Bindhu O. Clinical and diagnostic utility of saliva as a non-invasive diagnostic fluid: a systematic review. Biochemia Medica. 2015;25:177 92. 15. Pfaffe T, Cooper-White J, Beyerlein P, Kostner K, Punyadeera C. Diagnostic potential of saliva: current state and future applications. Clin Chem. 2011;57:675 87. 16. Javaid MA, Ahmed AS, Durand R, Tran SD. Saliva as a diagnostic tool for oral and systemic diseases. J Oral Biol Craniofac Res. 2015;6:67 76. 17. Drew RH, Gallis HA. Azithromycin spectrum of activity, pharmacokinetics, and clinical applications. Pharmacother: J Hum Pharmacol Drug Ther. 1992;12:161 73. 18. Ballow CH, Amsden GW. Azithromycin: the first azalide antibiotic. Ann Pharmacother. 1992;26:1253 61.

N. Idkaidek et al. 19. Levison ME, Levison JH. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin North Am. 2009;23:791 815. 20. van Bambeke F, Tulkens PM. Macrolides: pharmacokinetics and pharmacodynamics. Int J Antimicrob Agents. 2001;18:17 23. 21. Rhie J. The pellet gastric emptying (PGE) test: development of a non-invasive method to assess gastric emptying. Ph.D. Dissertation, University of Michigan. 1996.