Novel HLA Class I Alleles Associated with Indian Leprosy Patients

Similar documents
Serum beta-glucuronidase levels in children with leprosy

Increased level of urinary nitric oxide metabolites in leprosy patients during Type 2 reactions and decreased after antireactional therapy

Research Article Leprosy Reaction in Thai Population: A 20-Year Retrospective Study

HLA DRB1 and DQB1 Gene Diversity in Maratha Community from Mumbai India

HLA-A*26 and Susceptibility of Iranian Patients with Non-Hodgkin Lymphoma

Downloaded from:

Human Leukocyte Antigen B27 in 453 Asian Indian Patients with Seronegative Spondyloarthropathy

K Kakkad, T Padhi,K Pradhan, K C Agrawal

Immunogenetics of Episcleritis in Leprosy

Association of HLA-DRB alleles and pulmonary tuberculosis in North Chinese patients

Sylwia Mizia, 1 Dorota Dera-Joachimiak, 1 Malgorzata Polak, 1 Katarzyna Koscinska, 1 Mariola Sedzimirska, 1 and Andrzej Lange 1, 2. 1.

Completing the CIBMTR Confirmation of HLA Typing Form (Form 2005)

Antigen Presentation to T lymphocytes

Genotyping of HLA-class-I by PCR-SSP of Iraqi Breast Cancer Patients

Changing Trends of Leprosy in Post Elimination Era - A Study from an Endemic Area

Profiling HLA motifs by large scale peptide sequencing Agilent Innovators Tour David K. Crockett ARUP Laboratories February 10, 2009

Case Report Pulmonary Tuberculosis and Lepromatous Leprosy Coinfection

The Human Major Histocompatibility Complex

Relapse in Leprosy in Post-elimination Phase: Scenario from a Tertiary Care Center in South India

Research Article Postelimination Status of Childhood Leprosy: Report from a Tertiary-Care Hospital in South India

ASSESSMENT OF THE RISK FOR TYPE 1 DIABETES MELLITUS CONFERRED BY HLA CLASS II GENES. Irina Durbală

HLA haplotype A33-B58-Cw10 may modulate radiographic development of bamboo spine in Taiwanese patients with primary ankylosing spondylitis

Allele and Haplotype Frequencies of Human Leukocyte Antigen-A, -B, -C, -DRB1, and -DQB1 From Sequence- Based DNA Typing Data in Koreans

Clinico-epidemiological trends of leprosy in Himachal Pradesh : a five year study

Association of HLA DQB1*0602 in sarcoidosis patients with small fiber neuropathy

Clinico-Pathological Profile of Leprosy Cases in an Institutional Setting

Human Immunodeficiency Virus and Leprosy Co-infection from Pune, India

Current management of Leprosy

Human leukocyte antigen-b27 alleles in Xinjiang Uygur patients with ankylosing spondylitis

Correlation of clinical features, histopathology and demonstration of Lepra bacilli.

Major histocompatibility complex restriction in tuberculosis susceptibility

Correlation of clinical and histopathological classification of Leprosy in post elimination era

ORIGINAL RESEARCH ARTICLE. Access this Article Online. Website: Subject: Medical Sciences

Research Article Clinical Outcome of a Novel Anti-CD6 Biologic Itolizumab in Patients of Psoriasis with Comorbid Conditions

The Leonine Face of Leprosy: An International Exploration

HOST-PARASITE INTERPLAY

Accepted for publication 24 January Lepr Rev (2013) 84, 51 64

Research Article Application of a Simple In-House PCR-SSP Technique for HLA-B 27 Typing in Spondyloarthritis Patients

Lack of association of IL-2RA and IL-2RB polymorphisms with rheumatoid arthritis in a Han Chinese population

α chain β chain C N C N β 2 α 1 β 1 α 2

Leprosy and the Human Genome

Minimal Requirements for Histocompatibility & Immunogenetics Laboratory

Mesas Redondas / Round Tables

Family motivation card: An innovative tool for increasing case detection in a resource poor setting

ISPUB.COM. Clinico-Pathological Co-relation in Leprosy. B Mehta, N Desai, S Khar METHOD INTRODUCTION

Occurrence and management of leprosy reaction in China in 2005

Renal Pelvis Squamous Cell Carcinoma and Renal Cell Carcinoma in a Tuberculous Kidney

The role of nerve biopsies in the diagnosis and management of leprosy

FONS Nové sekvenační technologie vklinickédiagnostice?

A Clinico Histopathological Study of Childhood Leprosy

Histocompatibility Evaluations for HSCT at JHMI. M. Sue Leffell, PhD. Professor of Medicine Laboratory Director

Genetics and Genomics in Medicine Chapter 8 Questions

University Journal of Medicine and Medical Specialities

Research Article Photovoice: A Novel Approach to Improving Antituberculosis Treatment Adherence in Pune, India

An institution-based observational study to identify sensitive histopathological parameters in leprosy

HLA and more. Ilias I.N. Doxiadis. Geneva 03/04/2012.

IMMUNOLOGY. Elementary Knowledge of Major Histocompatibility Complex and HLA Typing

HCV INFECTION AND ITS ASSOCIATION WITH HLA ALLELES

Significance of the MHC

Case Report Diagnostic Challenges of Tuberculous Lymphadenitis Using Polymerase Chain Reaction Analysis: A Case Study

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol

International Journal of Infectious Diseases

Immunology. T-Lymphocytes. 16. Oktober 2014, Ruhr-Universität Bochum Karin Peters,

Research Article Optic Nerve and Spinal Cord Are the Major Lesions in Each Relapse of Japanese Multiple Sclerosis

Address for correspondence: Dr. PVS Prasad, 88 AUTA Nagar, Sivapuri Post, Annamalai Nagar , Tamil Nadu, India.

Autoimmune Studies and HLA Associations in SLE Patients from Mumbai

Case Report Evolution of Skin during Rehabilitation for Elephantiasis Using Intensive Treatment

Evaluation of the diagnostic value of immunocytochemistry and in situ hybridization in the pediatric leprosy

Evidence based practice in leprosy: where do we stand?

MHC class I MHC class II Structure of MHC antigens:

Leprosy. Dr Rodney Itaki Lecturer Anatomical Pathology Discipline

Clinico-histopathological Correlation of Leprosy in Western Region of Nepal - A Pilot Study

Research Article Decreasing Prevalence of Transfusion Transmitted Infection in Indian Scenario

Immunogenetics in SARS: a casecontrol

The association of and -related gastroduodenal diseases

Validation of the MIA FORA NGS FLEX Assay Using Buccal Swabs as the Sample Source

Genetics of host response in leprosy

ANALYSIS OF IL17 AND IL17RA POLYMORPHISMS IN SPANISH PSORIASIS PATIENTS: ASSOCIATION WITH RISK FOR DISEASE.

SCIENTIST PROFILE. Phone: FAX : E.Mail : i) ii)

Handling Immunogenetic Data Managing and Validating HLA Data

Rasdi Nawi. Department of Epidemiology, Faculty of Public Health, Hasanuddin University, Makassar, Indonesia

attomol HLA-B*27-Realtime LT 2 Assay for the detection of the human HLA-B*27-locus using LightCycler (Do not use for tissue typing!

CURRENT RESEARCH AND FUTURE DEVELOPMENT IN LEPROSY AND TUBERCULOSIS CONTROL

Indian Journal of Nephrology Indian J Nephrol 2001;11: 88-97

Table of Contents (continued)

Documentation of Changes to EFI Standards: v 5.6.1

Relationship Between HLA-DMA, DMB Alleles and Type 1 Diabetes in Chinese

Mesas Redondas / Round Tables

Human Leukocyte Antigen Class I and II Alleles and Overall Survival in Diffuse Large B-Cell Lymphoma and Follicular Lymphoma

10/18/2012. A primer in HLA: The who, what, how and why. What?

Childhood leprosy in the post-elimination phase: data from a tertiary health care Hospital in the Karnataka state of south India.

Genetic Modulation on the Phenotypic Diversity of Sickle Cell Disease

HLA TYPING AND EXPRESSION: POTENTIAL MARKER FOR IDENTIFYING EARLY DYSPLASIA AND STRATIFYING THE RISK FOR IBD-CANCER

HLA and antigen presentation. Department of Immunology Charles University, 2nd Medical School University Hospital Motol

JMSCR Vol 05 Issue 05 Page May 2017

1. INTRODUCTION. Profile of HLA-DQ allele in a sample of Iraqi Celiac disease Patients. ABSTRACT

Correspondence should be addressed to Alicia McMaster;

Case Report An Undescribed Monteggia Type 3 Equivalent Lesion: Lateral Dislocation of Radial Head with Both-Bone Forearm Fracture

Research Article WHO Multidrug Therapy for Leprosy: Epidemiology of Default in Treatment in Agra District, Uttar Pradesh, India

Helminth worm, Schistosomiasis Trypanosomes, sleeping sickness Pneumocystis carinii. Ringworm fungus HIV Influenza

Transcription:

Biomedicine and Biotechnology 2003:3 (2003) 208 211 PII. S1110724303210019 http://jbb.hindawi.com RESEARCH ARTICLE Novel HLA Class I Alleles Associated with Indian Leprosy Patients U. Shankarkumar, K. Ghosh, S. Badakere, and D. Mohanty HLA Department, Institute of Immunohaematology (ICMR), 13th Floor, KEM Hospital, Parel, Mumbai-400012, Maharastra, India Received 19 October 2002; revised 23 November 2002; accepted 6 December 2002 Convincing results on HLA Class II associations have been reported, however data on HLA class I association are limited and inconsistent from studies in Leprosy. We present here the HLA A, B, and C allele distribution by molecular high resolution PCR- SSOP technique in 32 leprosy patients compared with the 67 controls, from the same ethnic background. The significant results from the present study were a significant increase in frequency of HLA A 0206, A 1102, B 4016, B 5110, Cw 0407, and Cw 0703 was observed when compared to controls. A striking decrease in the frequency of HLA A 0101, Cw 04011, and Cw 0602 leprosy patients was observed when compared to the controls. Further haplotype A 1102-B 4006-Cw 1502 was significantly increased among the lepromatous leprosy patients when compared to the controls. It seems that HLA class I alleles play vital roles in disease association/pathogenesis with leprosy among Indians. INTRODUCTION Genetic predisposition to both disease susceptibility and host immune response has been postulated. Leprosy disease burden currently is concentrated mainly in six endemic countries; India, Brazil, Myanmar, Madagascar, Nepal, and Mozambique [1]. In India, about 64% of leprosy prevalence and 78% of new case detection of the worlds estimated 719330 cases occur [1]. StudiesonHumanshavesuggestedthathostgeneticsisimportant in disease pathogenesis and protection [2]. With the elucidation of genetics and structure of major histocompatibility complex (MHC), T-cell receptor (TCR), and peptide binding, the role of immune response (Ir) genes and TCR in immune response are generally accepted to be important in active adaptive immunity [3]. The MHC restriction phenomenon has been explained at the consensus motif level [4]. India is known for her endogamous, ethnically distinct caste groups, characterized by unique MHC haplotypes [5, 6]. Leprosy is a chronic infectious disease caused by M. leprae, which manifest as a clinical, pathological, and immunological spectrum with paucibacillary tuberculoid leprosy (TT) at one pole and the multibacillary disseminated lepromatous leprosy (LL) at the other extreme [7]. Epidemiological studies suggest that only a small percentage of people exposed to M. leprae get the disease, the majority are resistant and develop effective immunity which arrests the growth of the bacteria at a subclinical stage [8]. Since the first studies in 1848 by Daulelson and Beck, many investigators have attempted to establish a genetic factor that would explain the familial spread of the disease [9]. Studies from India have revealed the HLA-DR2 antigen associations in leprosy patients [10] whereas class I studies are limited. Earlier study from Mumbai in 1982 has shown HLA-B40 association in lepromatous leprosy patients [11]. The present study was undertaken in order to reveal the molecular subtype of the associations. MATERIALS AND METHODS Patients and controls Thirty-two leprosy patients attending the dermatology clinic, in various hospitals in Mumbai, Maharastra,werestudiedforHLAA,B,andCallelesandcompared with 67 unrelated healthy normal controls from the same endemic region. All the patients included in the study were HIV negative and were being treated with chemotherapy. The controls did not show any clinical symptoms of leprosy. The mean age of the controls was 40 years. HLA typing Genomic DNA was extracted by sodium acetate method [12] from 5 ml of EDTA blood. These Genomic DNA were genotyped for their A, B, and C allele subtypes by polymerase chain reaction reverse line strip sequence-specific oligonucleotide hybridization (PCR- RLS-SSOP) strips (Roche Molecular, Oakland, Calif, USA) [13]. Each strip for HLA A typing carried a total of 57 immobilized sequence-specific oligos (SSOs), while the B carried a total of 84 immobilized SSOs. Genomic DNA was amplified using HLA A or HLA B locus 2003

2003:3 (2003) HLA Class I Association in Indian Leprosy Patients 209 HLA Table 1. High risk HLA class I allele subtypes among the leprosy patients, Mumbai, India. Total Controls N = 32 N = 67 N+ PF N+ PF OR Ki2 EF Pr F P value A 0101 2 0.0625 15 0.2230 0.231 3.965 0.17 0.04 A 0203 5 0.1560 2 0.0298 6.018 5.265 0.13 0.02 A 0206 7 0.2187 0 0.0000 0.000007 A 1102 10 0.3120 1 0.0149 30.000 19.234 0.30 0.00001 B 1801 6 0.1870 2 0.0298 7.500 8.140 0.16 0.007 B 3520 7 0.2187 4 0.0597 4.410 5.546 0.16 0.01 B 5110 9 0.2812 0 0.0000 0.0000005 B 52011 6 0.1875 6 0.0890 2.346 1.950 0.10 0.16 Cw 03031 1 0.0300 10 0.1490 0.183 3.053 0.12 0.08 Cw 04011 1 0.0310 22 0.3280 0.065 10.718 0.30 0.001 Cw 0407 14 0.4375 0 0.0000 0.000000001 Cw 0602 4 0.1250 25 0.3730 0.240 6.437 0.28 0.01 Cw 0703 8 0.2500 0 0.0000 0.000001 N+ Positive number OR Odds ratio PF Phenotype frequency Pr F Preventive fraction EF Etiological fraction Significant P value Ki2 Chi square with Yates correction specific biotinylated primers and hybridized with the SSO strips. Streptavidin-conjugated alkaline phosphatase was used as a conjugate for positive color development using bromochloroindolyl phosphate/nitrobluetetrazolium (BICP/NBT) in dimethylformamide (DMF) as a substrate. The alleles were determined using the pattern interpretation software supplied along with the kit. Statistical analysis The phenotype frequencies, odds ratio, probability value, chi square with Yates correction, and aetiological and preventive fraction were estimated using our database and computer programs as described earlier [14]. Since each individual is tested for several HLA alleles and the same data used for comparing the frequency; it is possible that one of the alleles will by chance deviate significantly. To overcome this error, the P value is corrected by the use of Bonferroni inequality method [15], that is, by multiplying it with the number of alleles compared. RESULTS AND DISCUSSION Some significant findings can be concluded from this study. (1) HLA A 0101, Cw 04011, and Cw 0602 subtypes were found to be negatively associated with leprosy patients, when compared with controls (Table 1). (2) A 0206, A 1102, B 4016, B 5110, Cw 0407, and Cw 0703 alleles were associated with the leprosy patients when compared to controls. (Table 1). (3) Haplotype A 1102-B 4006-Cw 1502 was found to be associated with lepromatous leprosy patients significantly when compared to controls. Various epidemiological studies in the past have suggested that in prolonged contact with lepromatous leprosy patients only less than 2% of the contact develops Lepromatous leprosy. In the present study, A 1102-B 4006-Cw 1502 is correlated positively and strongly with lepromatous leprosy, and this haplotype constitutes less than 3% of the control population as expected. Further DRB1 gene typing by PCR- SSP typing revealed that 83% of these haplotypes were found to posses DRB1 1501 allele. Some of these associations and protection have not been previously described in the leprosy patients studied from India. HLA A 1102, B 1801, and B 3520 were significantly increased when compared to the controls. It was interesting to note that A 2413, B 0706, B 4016, Cw 0708, and Cw 1505 were significantly associated with the lepromatous leprosy patients while they were not associated with tuberculoid type of leprosy when compared to controls. HLA B 5110, Cw 0407, and Cw 0703 were significantly associated with leprosy patients while A 0206 was significantly associated with the tuberculoid leprosy patients when compared to the controls. The significant haplotypes associated with the leprosy patients when compared to the controls revealed that A 1102-B 4006-Cw 1502 was the significant haplotype associated with lepromatous leprosy (Table 2). Further haplotypes A 1102-B 4006- Cw 0407 and A 0203-B 4016-Cw 0703 were increased among both the lepromatous and tuberculoid type of leprosy patients when compared to controls.

210 U. Shankarkumar et al 2003:3 (2003) Table 2. Two Significant haplotypes associated with the leprosy patients, Mumbai, India. Haplotype Percentage frequency Control LL type OR P value BT type OR P value N = 67 N = 16 N = 16 A 11-B 40 7.46 50.00 12.40 0.0001 12.50 1.770 0.514 A 1102-B 4006-Cw 1502 2.98 31.25 12.51 0.000025 0.00 0.000 0.000 A 1102-B 4006-Cw 0407 1.49 12.50 9.44 0.0037 6.25 4.400 0.264 A 02-B 40 20.89 31.25 1.72 0.375 18.75 0.873 0.514 A 0203-B 4016-Cw 0703 1.49 12.50 9.43 0.034 6.25 4.400 0.264 OR Odds ratio Significant P value Differences in disease susceptibility can be seen at the level of individuals and populations. Genetic epidemiology data indicates that there might be major susceptibility genes that account for a significant proportion of genetic contribution to disease susceptibility. HLA loci evolve very fast, probably as a result of selective pressure from pathogens, and polymorphism in these loci has been associated with altered susceptibility to infectious diseases [16]. Nevertheless, convincing results have been obtained from studies on HLA class II associations with leprosy [10], however, data on HLA Class I associations is limited and inconsistent. In leprosy patients from Iran, HLA B35 was increased, while A1 was decreased in lepromatous leprosy patients [17]. Leprosy patients from Thailand showed HLA B18 and B40 associations in lepromatous leprosy [18]. Haplotypes A2-B40, A11-B40, and A24-B40 were frequent among South Indian leprosy patients [19]. HLA B40 was significantly associated with Mumbai lepromatous leprosy patients [11]. HLA A11 and A33 were increased among Korean leprosy patients [20]. HLA A11 was significantly increased with erythema nodosum leprosum (ENL) leprosy patients from North India [21]. Lepromatous Leprosy patients from North India showed increased frequencies of HLA B60, DR2, DR8, and DQw1 [22]. Increased frequencies of HLA A2, A11, B40, and DR2 were observed among the leprosy patients from South India [23]. Recently, HLA A9, A10, A32, B5, B21, Bw4, Bw6, Cw1, and Cw2 were found to be significantly more frequent among Turkish leprosy patients [24]. In all these earlier studies, the HLA were determined by conventional techniques that might have resulted in a lower resolution of HLA types. The development of DNA-based HLA typing methods has improved the validity of HLA typing. We have employed the high resolution PCR-RLS-SSOP typing to define the HLA class I alleles among the Mumbai leprosy patients. Hence, we have identified novel alleles associated with Mumbai leprosy patients. REFERENCES [1] WHO. Leprosy. global situation. Wkly Epidemiol Rec. 2002;77(1):1 8. [2] Hill AV. The immunogenetics of human infectious diseases. Annu Rev Immunol. 1998;16:593 617. [3] Ward ES, Qadri A. Biophysical and structural studies of TCRs and ligands: implications for T cell signaling. Curr Opin Immunol. 1997;9(1):97 106. [4] Zinkernagel RM, Doherty PC. The discovery of MHC restriction. Immunol Today. 1997;18(1):14 17. [5] Shankarkumar U, Ghosh K, Mohanty D. Defining the allelic variants of HLA A19 in the western indian population.hum Immunol. 2002;63(9):779 782. [6] Shankarkumar U, Ghosh K, Colah RB, Gorakshakar AC, Gupte SC, Mohanty D. HLA antigen distribution in selected caste groups from Mumbai, Maharastra, India. JHumEcol. 2002;13:209 215. [7] Ridley DS, Jopling WH. Classification of leprosy according to immunity. a five-group system. Int J Lepr Other Mycobact Dis. 1966;34(3):255 273. [8] Kaplan G, Cohen ZA. Regulation of cell-mediated immunity in lepromatous leprosy. Lep Rev. 1986;57: 199 202. [9] Cem Mat M, Yazici H, Ozbakir F, Tuzun Y. The HLA association of lepromatous leprosy and borderline lepromatous leprosy in Turkey. A preliminary study. Int J Dermatol. 1988;27(4):246 247. [10] Meyer CG, May J, Stark K. Human leukocyte antigens in tuberculosis and leprosy. Trends Microbiol. 1998;6(4):148 154. [11] Bale UM, Mehta MM, Contractor NM, Bhatia HM, Koticha KK. HLA antigens in leprosy patients. Tissue Antigens. 1982;20(2):141 143. [12] Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells.nucleic Acids Res. 1988;16(3):1215.

2003:3 (2003) HLA Class I Association in Indian Leprosy Patients 211 [13] Mack SJ, Geyer LN, Erlich HA. HLA class I reverse lineblot typing protocol Chapter 3. In IHWG Technical Manual Genomic Analysis of the Human MHC: DNA-Based Typing for HLA Alleles and Linked Polymorphisms. Tilanus MGJ, Hansen JH, and Hurley CKF, Ed. Seattle, Wash: 13th IHWG Publications, Hutchinson Cancer Research Centre; 2000. [14] Shankarkumar U, Devraj JP, Ghosh K, Mohanty D. Seronegative spondarthritis and human leucocyte antigen association. Br J Biomed Sci. 2002;59(1):38 41. [15] Dunn OJ. Multiple comparisons among means. JAm Statist Assoc. 1961;56:52 56. [16] Cooke GS, Hill AV. Genetics of susceptibility to human infectious disease. Nat Rev Genet. 2001;2(12):967 977. [17] Mohagheghpour N, Tabatabai H, Mohammad K, Ramanujam K, Modabber FZ. Histocompatibility antigens in patients with leprosy from Azarbaijan, Iran. Int J Lepr Other Mycobact Dis. 1979;47(4):597 600. [18] Chiewsilp P, Athkambhira S, Chirachariyavej T, Bhamarapravati N, Entwistle C. The HLA antigens and leprosy in Thailand. Tissue Antigens. 1979;13(3):186 188. [19] Wolf E, Fine PE, Pritchard J, et al. HLA-A, B and C antigens in south indian families with leprosy. Tissue Antigens. 1980;15(5):436 446. [20] Kim SJ, Choi IH, Dahlberg S, Nisperos B, Kim JD, Hansen JA. HLA and leprosy in koreans. Tissue Antigens. 1987;29(3):146 153. [21] Agrewala JN, Ghei SK, Sudhakar KS, Girdhar BK, Sengupta U. HLA antigens and erythema nodosum leprosum (ENL). Tissue Antigens. 1989;33(4):486 487. [22] Rani R, Zaheer SA, Mukherjee R. Do human leukocyte antigens have a role to play in differential manifestation of multibacillary leprosy: a study on multibacillary leprosy patients from North India. Tissue Antigens. 1992;40(3):124 127. [23] Shankarkumar U. Studies on the immunogenetic basis of selected diseases in South India. [Ph.D. thesis]. Madurai: Maduarai Kamaraj University;1994. [24] Kocak M, Balci M, Pence B, Kundakci N. Associations between human leukocyte antigens and leprosy in the Turkish population. Clin Exp Dermatol. 2002;27(3):235 239. Corresponding author. E-mail: director@iihicmr.org Fax: +91 22 4138521

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity