SUMMARY INTRODUCTION. Accepted for publication 11 May 2005

Similar documents
Review article: management of peptic ulcer bleeding the roles of proton pump inhibitors and Helicobacter pylori eradication

Effect of oral omeprazole in reducing re-bleeding in bleeding peptic ulcers: a prospective, double-blind, randomized, clinical trial

Proton pump inhibitor treatment initiated prior to endoscopic diagnosis in upper gastrointestinal bleeding (Review)

Proton pump inhibitor treatment initiated prior to endoscopic diagnosis in upper gastrointestinal bleeding (Review)

REVIEW ARTICLE. High-Dose vs Non High-Dose Proton Pump Inhibitors After Endoscopic Treatment in Patients With Bleeding Peptic Ulcer

Helicobacter pylori. Objectives. Upper Gastrointestinal Bleeding Peptic Ulcer Disease

Cite this article as: BMJ, doi: /bmj f (published 31 January 2005)

Scottish Medicines Consortium

Intermittent vs Continuous Proton Pump Inhibitor Therapy for High-Risk Bleeding Ulcers A Systematic Review and Meta-analysis

A bleeding ulcer: What can the GP do? Gastrointestinal bleeding is a relatively common. How is UGI bleeding manifested? Who is at risk?

Database of Abstracts of Reviews of Effects (DARE) Produced by the Centre for Reviews and Dissemination Copyright 2017 University of York.

Oral versus intravenous proton pump inhibitors in preventing re-bleeding for patients with peptic ulcer bleeding after successful endoscopic therapy

Intragastric ph With Oral vs Intravenous Bolus Plus Infusion Proton- Pump Inhibitor Therapy in Patients With Bleeding Ulcers

Setting The setting was primary and secondary care. The economic study was carried out in the UK.

Review article: pharmacology of esomeprazole and comparisons with omeprazole

On-Call Upper GI Bleeding. Upper Gastrointestinal Bleeding

Simon Everett. Consultant Gastroenterologist, SJUH, Leeds. if this is what greets you in the morning, you probably need to go see a doctor

Drug Class Review on Proton Pump Inhibitors

ACUTE UPPER GASTROINTESTINAL HEMORRHAGE: PHARMACOLOGIC MANAGEMENT

Pantoprazole infusion as adjuvant therapy to endoscopic treatment in patients with peptic ulcer bleeding: Prospective randomized controlled trial

Peptic ulcers remain the most common cause of upper

Clinical Study Effect of High-Dose Oral Rabeprazole on Recurrent Bleeding after Endoscopic Treatment of Bleeding Peptic Ulcers

Systematic reviews and meta-analyses of observational studies (MOOSE): Checklist.

James Irwin Gastroenterology Department Palmerston North Hospital. Acute Medicine Meeting Hutt Hospital. June 21, 2015

FARMACI E ALTE VIE DIGESTIVE NELL ANZIANO: UTILITÀ E LIMITI

The New England Journal of Medicine

Review article: gastric acidity ) comparison of esomeprazole with other proton pump inhibitors

ACG Clinical Guideline: Management of Patients with Ulcer Bleeding

Meta Analysis. David R Urbach MD MSc Outcomes Research Course December 4, 2014

Improved risk assessment in upper GI bleeding

British Journal of Clinical Pharmacology. Zhixiang Jian 1,HuiLi 2, Nicholas S. Race 3,TingtingMa 4,HaoshengJin 1 and Zi Yin 1

Peptic ulcer bleeding is a common cause of hospitalization, Article

Asia-Pacific Working Group consensus on non-variceal upper gastrointestinal bleeding

Guideline for the Management of Upper Gastrointestinal Bleeding in Children

Efficacy and Safety of Proton Pump Inhibitors (PPIs) Plus Rebamipide for Endoscopic Submucosal Dissection-induced Ulcers: A Meta-analysis

Review article: immediate-release proton-pump inhibitor therapy potential advantages

High Dose versus Low Dose Intravenous Pantoprazole in Bleeding Peptic Ulcer: A Randomized Clinical Trial

Evidence-Based Medicine and Publication Bias Desmond Thompson Merck & Co.

ORIGINAL INVESTIGATION

Study population The study population comprised hypothetical patients with gastric and duodenal ulcer.

Management of dyspepsia and of Helicobacter pylori infection

Original Policy Date

CYP2C19-Proton Pump Inhibitors

UGI BLEED. Dr. KPP Abhilash Associate Professor Department of Emergency Medicine Christian Medical College, Vellore

SELECTED ABSTRACTS. Figure. Risk Stratification Matrix A CLINICIAN S GUIDE TO THE SELECTION OF NSAID THERAPY

Appropriate Use of Proton Pump Inhibitors (PPIs) Anderson Mabour, Pharm.D., BCPS Clinical Pharmacy Specialist

Mitigating GI Risks Associated with the Use of NSAIDs

Toshihiro Nishizawa 1,2, Hidekazu Suzuki 2, Teppei Akimoto 1,3, Tadateru Maehata 1, Toshio Morizane 4, Takanori Kanai 2 and Naohisa Yahagi 1

Research Article Management of Peptic Ulcer Bleeding in Different Case Volume Workplaces: Results of a Nationwide Inquiry in Hungary

British Society of Gastroenterology. St. Elsewhere's Hospital. National Comparative Audit of Blood Transfusion

How to Conduct a Meta-Analysis

Number of studies. Endoscopic finding. Number of subjects. Pooled prevalence 95% CI

Anticoagulants are a contributing factor. Other causes are Mallory-Weiss tears, AV malformations, and malignancy and aorto-enteric fistula.

5-ASA for the treatment of Crohn s disease DR. STEPHEN HANAUER FEINBERG SCHOOL OF MEDICINE, NORTHWESTERN UNIVERSITY, CHICAGO, IL, USA

Outcome of endoscopic treatment for peptic ulcer bleeding: Is a second look necessary? A meta-analysis

Stressed Out: Evaluating the Need for Stress Ulcer Prophylaxis in the ICU

Developing Evidence-Based Best Practices for the Prescribing and Use of Proton Pump Inhibitors in Canada

POLICY PRODUCT VARIATIONS DESCRIPTION/BACKGROUND RATIONALE DEFINITIONS BENEFIT VARIATIONS DISCLAIMER CODING INFORMATION REFERENCES POLICY HISTORY

Bleeds in Cardiovascular Disease

Proton Pump Inhibitors- Questions & Controversies. Farah Kablaoui, PharmD, BCPS, BCCCP

Systematic review of proton pump inhibitors for the acute treatment of re ux oesophagitis

Peptic ulcer bleeding remains the most common cause of hospitalization

Data extraction. Specific interventions included in the review Dressings and topical agents in relation to wound healing.

COMPARISON OF ONCE-A-DAY VERSUS TWICE-A-DAY CLARITHROMYCIN IN TRIPLE THERAPY FOR HELICOBACTER PYLORI ERADICATION

SYSTEMATIC REVIEW: AN APPROACH FOR TRANSPARENT RESEARCH SYNTHESIS

New Techniques. Incidence of Peptic Ulcer. Changing. Contents - with an emphasis on peptic ulcer bleeding. Cause of death in peptic ulcer bleeding

Committee Approval Date: October 14, 2014 Next Review Date: October 2015

Turning off the tap: Endoscopy Blood & Guts: Transfusion and bleeding in the medical patient

Eugenia Lauret, Jesús Herrero, Lorena Blanco, Olegario Castaño, Maria Rodriguez, Isabel Pérez, Verónica Alvarez, Adolfo Suárez, and Luis Rodrigo

Pre-endoscopic erythromycin administration in upper gastrointestinal bleeding: an updated meta-analysis and systematic review

Supplementary Online Content

Emergency Surgery Board Department of General Surgery Rambam Health Care Campus

Upper GI Bleeding. HH Tsai MD FRCP FECG Consultant Gastroenterologist

Early Management of the Patient with Acute GI Bleeding

Upper gastrointestinal bleeding in children. Nguyễn Diệu Vinh, MD Department of Gastroenterology

Critical Appraisal of a Meta-Analysis: Rosiglitazone and CV Death. Debra Moy Faculty of Pharmacy University of Toronto

Chapter 34. Prevention of Clinically Significant Gastrointestinal Bleeding in Intensive Care Unit Patients

Proton Pump Inhibitor Treatment Decreases the Incidence of Upper Gastrointestinal Disorders in Elderly Japanese Patients Treated with NSAIDs

PEPTIC ULCER DISEASE JOHN R SALTZMAN, MD. Director of Endoscopy Brigham and Women s Hospital Professor of Medicine Harvard Medical School

PROTON PUMP INHIBITOR AND CLOPIDOGREL INTERACTION: Am J Gastroenterol Jan;105(1): Epub 2009 Nov 10.

PROSPERO International prospective register of systematic reviews

Sangrado Gastrointestinal Alto Upper GI Bleeding

PROSPERO International prospective register of systematic reviews

ACG Clinical Guideline: Treatment of Helicobacter pylori Infection

Heartburn is a common symptom among adults in

Systematic Review of the Predictors of Recurrent Hemorrhage After Endoscopic Hemostatic Therapy for Bleeding Peptic Ulcers

What is the status of Sequential Therapy Versus Standard Triple- Drug Therapy in peptic ulcer disease in eradicating H pylori?

Survey on repeat prescribing for acid suppression drugs in primary care in Cornwall and the Isles of Scilly

Upper gastrointestinal (GI) bleeding represents a substantial

High Recurrence Rate of Idiopathic Peptic Ulcers in Long-Term Follow-up

Esomeprazole versus omeprazole for the eradication of Helicobacter pylori infection

THE AMERICAN JOURNAL OF GASTROENTEROLOGY Vol. 98, No. 12, by Am. Coll. of Gastroenterology ISSN /03/$30.00

Drain versus no-drain after gastrectomy for patients with advanced gastric cancer Student EBM presentations

GASTROINTESTINAL AND ANTIEMETIC DRUGS. Submitted by: Shaema M. Ali

Comparison of adrenaline injection and bipolar electrocoagulation for the arrest of peptic ulcer bleeding

Review article: similarities and differences among delayed-release proton-pump inhibitor formulations

Inappropriate Use of Intravenous Pantoprazole: Extent of the Problem and Successful Solutions

High use of maintenance therapy after triple therapy regimes in Ireland

Digestive and Liver Disease

Transcription:

Aliment Pharmacol Ther 2005; 22: 169 174. doi: 10.1111/j.1365-2036.2005.02546.x Systematic review and meta-analysis: proton-pump inhibitor treatment for ulcer bleeding reduces transfusion requirements and hospital stay results from the Cochrane Collaboration G. I. LEONTIADIS*, V. K. SHARMA &C.W.HOWDENà *Division of Gastroenterology, First Department of Medicine, University of Thessaloniki School of Medicine, AHEPA Hospital, Thessaloniki, Greece; Division of Gastroenterology, Mayo Clinic, Scottsdale, AZ, USA; àdivision of Gastroenterology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA Accepted for publication 11 May 2005 SUMMARY Background: Proton-pump inhibitors reduce re-bleeding and surgical intervention, but not mortality, after ulcer bleeding. Aim: To examine the effects of proton-pump inhibitor treatment on transfusion requirements and length of hospital stay in patients with ulcer bleeding. Methods: For the Cochrane Collaboration meta-analysis of randomized-controlled trials of proton-pump inhibitor therapy for ulcer bleeding, outcomes of transfusion requirements and hospital stay were summarized, respectively, as mean (±s.d.) units transfused and hospital days. We calculated weighted mean difference with 95% confidence interval. We also performed subgroup analyses according to geographical origin of the randomized-controlled trials. Results: There was significant heterogeneity among randomized-controlled trials for either outcome. Overall, proton-pump inhibitor treatment marginally reduced transfusion requirements (WMD ¼ )0.6 units; 95% CI: )1.1 to 0; P ¼ 0.05) and length of hospitalization (WMD ¼ )1.1 days; 95% CI: )1.5 to )0.7; P < 0.0001). Most of the randomized-controlled trials did not state precise criteria for administering blood transfusion and discharging patients, thereby limiting the strength of conclusions on the pooled effects. Conclusions: Proton-pump inhibitor treatment for ulcer bleeding produces small, but potentially important, reductions in transfusion requirements and length of hospitalization. INTRODUCTION Peptic ulcer is the most frequent cause of acute upper gastrointestinal tract bleeding resulting in hospitalization. 1 There is a substantive clinical and economic burden associated with the management of patients with ulcer bleeding. Proton-pump inhibitors (PPIs) are frequently used as part of initial management. The Correspondence to: Dr C. W. Howden, Division of Gastroenterology, Northwestern University, Feinberg School of Medicine, 676 N. St Clair Street, Suite 1400, Chicago, IL 60611, USA. E-mail: c-howden@northwestern.edu Cochrane Collaboration systematic review and metaanalysis of randomized-controlled trials (RCTs) of PPI treatment for ulcer bleeding found no significant effect on 30-day all-cause mortality, which was the predetermined primary end-point. 2, 3 PPI treatment did significantly reduce rates of ulcer re-bleeding and surgical intervention, which were predefined secondary endpoints. Some RCTs also provided information on other clinically relevant end-points including blood transfusion requirements and length of hospital stay. Analyses of those end-points were not included in our original publication, 3 and are now reported here. Ó 2005 Blackwell Publishing Ltd 169

170 G. I. LEONTIADIS et al. MATERIALS AND METHODS The search strategy and methods used for the Cochrane Collaboration systematic review and meta-analysis of RCTs comparing PPI treatment with placebo or an histamine-2 receptor antagonist (H 2 RA) for bleeding ulcer are available on-line from the Cochrane library (http://www.cochrane.org/reviews). 2 Details about the design of individual RCTs are available on-line 2 and in our initial publication. 3 Briefly, we performed computerized searches of MEDLINE, EMBASE and the Cochrane Collaboration s trials register for RCTs that compared a PPI (either orally or i.v.) with placebo or an H 2 RA for endoscopically confirmed bleeding peptic ulcer. We supplemented that with a hand search of conference proceedings and by requesting any unpublished information from relevant pharmaceutical companies. Two assessors independently reviewed each identified RCT and extracted relevant data onto a purpose-designed form. Any disagreements were resolved by consensus. For inclusion, an RCT had to have confirmed the diagnosis of ulcer bleeding by endoscopy and randomized patients to either the PPI or control treatment. Any other treatment intervention, including endoscopic haemostatic treatment had to have been applied to patients in each arm. RCTs had to have reported at least one of the outcomes of all-cause mortality, re-bleeding and surgical intervention. We also extracted all available information on blood transfusion requirements and length of hospital stay. Where available, the specific criteria used to determine indications for transfusion and discharge from hospital were recorded. Transfusion requirements were reported as mean (±s.d.) units of blood transfused. Length of hospital stay was recorded as mean (±s.d.) days in hospital. We performed meta-analysis of outcomes by combining trials by inverse variance methods. The software used was the Cochrane Collaboration s revman (version 4.2.2). Statistical heterogeneity was evaluated; P-values of <0.1 were considered statistically significant. We planned to use a fixed effect model unless we found significant heterogeneity, in which case we planned to use a random effects model. Outcomes were summarized as a weighted mean difference (WMD) with its 95% confidence interval (CI). We explored the robustness of the pooled effect estimates for each outcome by sensitivity analysis. In a post hoc analysis of the Cochrane Collaboration meta-analysis, we reported that RCTs performed in Asia had found quantitatively greater effects of PPI treatment on re-bleeding and surgical intervention than those performed in Europe or elsewhere. 4 Furthermore, the only evidence for a reduction in all-cause mortality with PPI treatment for ulcer bleeding came from a pooled subgroup analysis confined to the Asian RCTs. 4 We therefore also performed subgroup analyses of RCTs for the end-points of transfusion requirements and length of hospital stay according to geographical origin. RESULTS Blood transfusion requirements Eight RCTs provided information on transfusion requirements. 5 12 In four of these, PPI treatment had been compared with placebo; 6 8, 10 the remainder 5, 9, 11, 12 compared PPI treatment with an H 2 RA. Together, these eight RCTs comprised 1197 patients with 595 randomized to PPI treatment and 602 to control. There was statistically significant heterogeneity among these RCTs (P < 0.00001). PPI treatment reduced transfusion requirements (WMD ¼ )0.6 units; 95% CI: )1.1 to 0; P ¼ 0.05; Figure 1). This result was not robust to the exclusion of individual trials; by sensitivity analysis, the effect became non-significant when any one of five RCTs 6, 7, 9 11 was excluded. We sought to investigate the causes of the heterogeneity among the eight RCTs reporting transfusion requirements. Observation of the forest plot (Figure 1) suggested that the heterogeneity was due to a possible outlier effect of one trial. 8 By sensitivity analysis, the remaining trials became non-heterogeneous (P ¼ 0.67) when that trial, but not when any of the others, was excluded. Furthermore, the exclusion of that trial increased the statistical significance of the pooled difference in transfusion requirements in favour of PPI treatment (WMD ¼)0.3; 95% CI: )0.6 to )0.1; P ¼ 0.01). A funnel plot (Figure 2) was clearly asymmetrical but did not suggest a preponderance of missing small trials with negative results. 7, 8, 10 Three of the trials had been conducted in Asia and five in Europe. 5, 6, 9, 11, 12 The three Asian trials comprised 609 patients and there was significant heterogeneity among them for transfusion requirements (P ¼ 0.0005). The pooled WMD was )1.01 units (95% CI: )2.0 to )0.2; P ¼ 0.02). The five European

SYSTEMATIC REVIEW: PPIS FOR ULCER BLEEDING 171 Outcome: Transfusion requirements Trial PPI Control WMD (random) WMD (random) N Mean (SD) N Mean (SD) 95% CI 95% CI Perez Flores 1994 38 1.00(1.60) 43 1.30(2.00) -0.30 [-1.08, 0.48] Lanas 1995 28 2.30(2.60) 23 2.90(2.60) -0.60 [-2.03, 0.83] Villanueva 1995 45 2.40(2.20) 41 2.20(2.10) 0.20 [-0.71, 1.11] Hasselgren 1997 159 1.40(1.60) 163 1.60(2.30) -0.20 [-0.63, 0.23] Khuroo 1997 110 2.30(1.00) 110 4.10(2.10) -1.80 [-2.23, -1.37] Corragio 1998 24 2.20(2.90) 24 2.10(2.90) 0.10 [-1.54, 1.74] Lau 2000 120 2.70(2.50) 120 3.50(3.80) -0.80 [-1.61, 0.01] Kaviani 2003 71 1.14(1.36) 78 1.68(1.68) -0.54 [-1.03, -0.05] Total (95% CI) 595 602 0.56 [ 1.12, 0.00] Test for heterogeneity: χ² = 35.86, df = 7 (P < 0.00001), I ² = 80.5% Test for overall effect: Z = 1.95 (P = 0.05) 4 2 0 2 4 Favours PPI Favours control Figure 1. Forest plot of weighted mean differences (WMD) and 95% confidence intervals (CI) concerning transfusion requirements (in units of blood transfused) for individual randomized-controlled trials (RCTs) and pooled data. SE of weighted mean difference Outcome: Transfusion requirements 0.0 0.2 0.4 0.6 0.8 4 2 0 2 Weighted mean difference Figure 2. Funnel plot of included trials for transfusion requirements. trials comprised 588 patients and there was no significant heterogeneity among them (P ¼ 0.88). The pooled WMD was )0.2 units (95% CI: )0.5 to 0.2; P ¼ 0.31). In the above analysis all three trials that had been conducted in Asia had used placebo as a comparator while only one 6 of the five European trials had done so. Prompted by this observation, we performed a post hoc subgroup analysis of the above trials according to the comparator treatment. For the four European trials that compared PPI with H 2 RA, 5, 9, 11, 12 WMD was )0.1 (95% CI: )0.7 to 0.4). For the one European 6 and three Asian 7, 8, 10 trials that compared PPI with placebo, WMD was )0.8 (95% CI: )1.6 to 0.05). Length of hospital stay Seven trials reported length of hospital stay as mean (±s.d.) days in hospital. 5, 7 9, 11 13 Three compared PPI treatment with placebo; 7, 8, 13 the remaining four compared it with an H 2 RA. 5, 9, 11, 12 These seven trials included a total of 801 patients with 398 randomized to PPI treatment and 403 to control. There was statistically significant heterogeneity among them (P ¼ 0.07). Figure 3 shows that WMD for each RCT was in favour of PPI treatment, although statistical significance was only reached in three trials; 7, 8, 13 the pooled WMD for length of hospital stay was )1.1 days (95% CI: )1.5 to )0.7; P < 0.0001). By sensitivity analysis, this result remained statistically significant when any single trial was excluded. A funnel plot showed no asymmetry, suggesting no publication bias (Figure 4). In investigating possible sources of heterogeneity among these trials, inspection of the forest plot (Figure 3) suggested 7, 13 that this was due to results of two of the trials. Although both of these trials demonstrated a statistically significant reduction in length of hospital stay with PPI treatment, the effect was more pronounced in the trial by Javid et al. 13 than in that by Kavianni et al. 7 with no overlapping of their respective 95% CI for WMD (Figure 3). These trials had similar design characteristics including discharge criteria. Kavianni et al. 7 included only patients with active bleeding or non-bleeding visible vessel, while Javid et al. 13 also included patients with adherent clot. Javid et al. 13 also included relatively fewer patients with gastric ulcer (15 of 166 vs. 37 of 112; P ¼ 0.0002). The different outcomes on hospital stay are not adequately explained by these differences. If either trial was excluded, the remaining trials became non-heterogeneous, while the pooled effect of the

172 G. I. LEONTIADIS et al. Outcome: Length of hospital stay Trial PPI Control WMD (random) WMD (random) N Mean (SD) N Mean (SD) 95% CI 95% CI Perez Flores 1994 38 6.60(3.10) 43 7.70(3.80) -1.10 [-2.60, 0.40] Lanas 1995 28 8.30(8.80) 23 9.50(5.40) -1.20 [-5.14, 2.74] Villanueva 1995 45 14.00(13.00) 41 15.00(14.00) -1.00 [-6.73, 4.73] Khuroo 1997 110 5.50(2.10) 110 6.90(2.10) -1.40 [-1.95, -0.85] Corragio 1998 24 13.00(4.00) 24 14.00(3.00) -1.00 [-3.00, 1.00] Javid 2001 82 4.60(1.10) 84 6.00(0.70) -1.40 [-1.68, -1.12] Kaviani 2003 71 2.60(1.20) 78 3.10(1.60) -0.50 [-0.95, -0.05] Total (95% CI) 398 403 1.10 [ 1.54, -0.67] Test for heterogeneity: χ² = 11.71, df = 6 (P = 0.07), I ² = 48.7% Test for overall effect: Z = 5.03 (P < 0.00001) 10 5 0 5 10 Favours PPI Favours control Figure 3. Forest plot of weighted mean differences (WMD) and 95% confidence intervals (CI) concerning length of hospital stay (in days) for individual randomized-controlled trials (RCTs) and pooled data. SE of weighted mean difference Outcome: Length of hospital stay 0 1 2 3 4 10 5 0 5 Weighted mean difference Figure 4. Funnel plot of included trials for length of hospital stay. Europe. 5, 9, 11, 12 The three Asian trials comprised 535 patients, and there was significant heterogeneity among them for length of hospital stay (P ¼ 0.003). The pooled WMD was )1.1 days (95% CI: )1.7 to )0.5; P ¼ 0.0002). The four European trials comprised a total of 166 patients with no significant heterogeneity among them (P ¼ 1.00). The pooled WMD was )1.1 days (95% CI: )2.2 to 0.1; P ¼ 0.06). In the above analysis all three Asian trials had compared PPI against placebo, while all four European trials had compared PPI against H 2 RA. Thus, the post hoc analysis of the above trials according to comparator treatment produced numerically identical results: the reduction in hospital stay was statistically significant only in the trials that used placebo as comparator treatment. DISCUSSION analysis remained statistically significant in favour of PPI treatment. With the exclusion of the trial by Javid et al., 13 there was no significant heterogeneity (P ¼ 0.29), and the pooled WMD was )0.9 days (95% CI: )1.4 to )0.5). With the exclusion of the trial by Kaviani et al., 7 there was no significant heterogeneity (P ¼ 1.00), and the pooled WMD was )1.4 days (95% CI: )1.6 to )1.1). As the effect of treatment would be expected to be attenuated in patients with in-hospital onset of bleeding, we also performed a sensitivity analysis by excluding the two RCTs that included such patients; 6, 12 the pooled result was unaffected (WMD ¼ )1.1 days; 95% CI: )1.6 to )0.6). Of the seven RCTs included in the above analysis, three were conducted in Asia 7, 8, 13 and the remaining four in Analysis of these tertiary end-points, which are of potential clinical relevance, indicates that PPI treatment for ulcer bleeding reduces transfusion requirements and length of hospital stay. The magnitude of the benefit was greater in Asian than European trials. In the subgroup analyses, these outcomes only achieved statistical significance among the Asian RCTs although there was a clear trend towards significance among the European RCTs for improvement in hospital stay. We have previously reported 4 that PPI treatment for ulcer bleeding appears to be more efficacious in Asia than elsewhere regarding mortality, re-bleeding and surgical intervention rates, due possibly to an enhanced pharmacodynamic effect of PPIs among Asian patients. Possible reasons for such an effect might include a lower parietal cell mass, 14 higher prevalence of Helicobacter

SYSTEMATIC REVIEW: PPIS FOR ULCER BLEEDING 173 pylori infection 15 and higher prevalence of the slow metabolizer phenotype through genetic polymorphism for cytochrome P450 2C19, 16, 17 as previously discussed elsewhere. 4 On the contrary, the observed difference in efficacy regarding transfusion requirements and length of hospital stay could be related to the fact that all Asian trials used in these two analyses had been placebo-controlled, while all European trials (all but one in the analysis of length of hospitalization) had used an H 2 RA as the comparator treatment. However, this explanation is less likely because it contradicts the results of our main meta-analysis that found no difference in the corresponding subgroup analysis examining primary and secondary end-points. Finally, the observed differences between Asian and European patients for these tertiary end-points may be due to chance given the relatively small number of patients for whom data were obtainable. The true clinical significance of the observed effects of PPI treatment on transfusion requirements and length of hospital stay are undetermined. Although they are of small magnitude, they may be relevant financially given the frequency of hospitalization for ulcer bleeding. Consideration of these effects should be made during future cost-effectiveness analyses of PPI therapy for ulcer bleeding in health care systems of different countries. There was significant heterogeneity among the trials for transfusion requirements. It is important to try and identify any possible reasons for heterogeneity in a meta-analysis. The trial by Khuroo et al. 8 appeared to be an outlier (Figure 1), and its exclusion in a sensitivity analysis resolved the heterogeneity. This trial had found the largest difference in transfusion requirements in favour of PPI treatment. It differed from the others in that it was the only one to have included patients with spurting bleeding without using prerandomization endoscopic haemostatic treatment. Such patients would be expected to have high transfusion requirements because of ongoing bleeding and more severe episodes of re-bleeding. As a result, and assuming that PPI treatment was effective, this might have enhanced the difference in transfusion requirements between the two treatment arms. The precise criteria for administering blood transfusion were not given for that trial and two others. 5, 11 We acknowledge that differences among RCTs for the precise criteria for deciding to administer blood transfusion limit the strength of conclusions on the pooled effects. We considered whether mortality could have influenced the reporting of transfusion requirements, because those requirements would logically be lower among patients who died shortly after an episode of ulcer bleeding. Had this been the case, PPI treatment should have affected these two outcomes in opposite directions. For example, if there had been increased mortality among the PPI-treated patients, then there should have been a corresponding reduction in transfusion requirements. However, with the exception of one trial, 6 this was not the pattern of outcomes observed: PPI treatment otherwise affected mortality and transfusion requirements in the same direction. Mortality could also have influenced reporting of length of hospitalization; none of the trials distinguished length of hospital stay determined by death as opposed to hospital discharge. If mortality had influenced length of hospital stay, these should have been in opposite directions. For instance, if PPI treatment had decreased mortality, it should have increased the average length of hospital stay. None of the seven trials found a significant effect on mortality although two 5, 12 reported nonsignificant increases in mortality and shorter lengths of stay with PPI treatment. The remaining five trials reported non-significant reductions in mortality and shorter lengths of stay on PPI treatment. Thus, there is insufficient evidence to accept or refute the possibility that mortality may have significantly biased reporting of length of hospital stay. Nevertheless, the strength of the above conclusion is limited by the fact that hospital stay could have been affected by possible variability among RCTs regarding discharge criteria, which were reported only in two RCTs, 7, 13 and comorbidity, which could not be reliably quantified in the present meta-analysis. In conclusion, these planned analyses of predetermined tertiary end-points found small but potentially important reductions in transfusion requirements and length of hospital stay with PPI treatment for ulcer bleeding. Effects of PPI treatment on such clinically relevant outcomes should be part of any future costeffectiveness analyses in different health care delivery models. ACKNOWLEDGEMENTS Authors thank Ms Iris Gordon, Trial Search Coordinator, Cochrane Collaboration, Upper Gastrointestinal and Pancreatic Diseases Group, University of Leeds, UK for her help with the electronic literature search. Also

174 G. I. LEONTIADIS et al. grateful to Dr Linda McIntyre for assistance with designing the protocol for this review and subsequent data extraction. REFERENCES 1 Barkun A, Sabbah S, Enns R, et al. The Canadian Registry on Nonvariceal Upper Gastrointestinal Bleeding and Endoscopy (RUGBE): endoscopic hemostasis and proton pump inhibition are associated with improved outcomes in a real-life setting. Am J Gastroenterol 2004; 99: 1238 46. 2 Leontiadis GI, McIntyre L, Sharma VK, Howden CW. Proton pump inhibitor treatment for acute peptic ulcer bleeding. Cochrane Database Syst Rev 2004, issue 3. Article no: CD002094, pub2 (DOI: 10.1002/14651858.CD002094. pub2). 3 Leontiadis GI, Sharma VK, Howden CW. Systematic review and meta-analysis of proton pump inhibitor therapy in peptic ulcer bleeding. Br Med J 2005; 330: 568 70. 4 Leontiadis GI, Sharma VK, Howden CW. Enhanced efficacy of proton pump inhibitor therapy for peptic ulcer bleeding in Asia: a post hoc analysis from the Cochrane Collaboration systematic review and meta-analysis. Aliment Pharmacol Ther 2005; 21: 1055 61. 5 Coraggio F, Rotondano G, Marmo R, et al. Somatostatin in the prevention of recurrent bleeding after endoscopic haemostasis of peptic ulcer haemorrhage: a preliminary report. Eur J Gastroenterol Hepatol 1998; 10: 673 6. 6 Hasselgren G, Lind T, Lundell L, et al. Continuous intravenous infusion of omeprazole in elderly patients with peptic ulcer bleeding. Results of a placebo-controlled multicenter study. Scand J Gastroenterol 1997; 32: 328 33. 7 Kaviani MJ, Hashemi MR, Kazemifar AR, et al. Effect of oral omeprazole in reducing re-bleeding in bleeding peptic ulcers: a prospective, double-blind, randomized, clinical trial. Aliment Pharmacol Ther 2003; 17: 211 6. 8 Khuroo MS, Yattoo GN, Javid G, et al. A comparison of omeprazole and placebo for bleeding peptic ulcer. N Engl J Med 1997; 336: 1054 8. 9 Lanas A, Artal A, Blas JM, Arroyo MT, Lopez-Zaborras J, Sainz R. Effect of parenteral omeprazole and ranitidine on gastric ph and the outcome of bleeding peptic ulcer. J Clin Gastroenterol 1995; 21: 103 6. 10 Lau JY, Sung JJ, Lee KK, et al. Effect of intravenous omeprazole on recurrent bleeding after endoscopic treatment of bleeding peptic ulcers. N Engl J Med 2000; 343: 310 6. 11 Pérez Flores R, García Molinero MJ, Herrero Quirós C, et al. Tratamiento de la hemorragia digestive alta de origen péptico: ranitidina intravenosa versus omeprazol intravenoso. Rev Esp Enferm Dig 1994; 86: 637 41. 12 Villanueva C, Balanzo J, Torras X, et al. Omeprazole versus ranitidine as adjunct therapy to endoscopic injection in actively bleeding ulcers: a prospective and randomized study. Endoscopy 1995; 27: 308 12. 13 Javid G, Masoodi I, Zargar SA, et al. Omeprazole as adjuvant therapy to endoscopic combination injection sclerotherapy for treating bleeding peptic ulcer. Am J Med 2001; 111: 280 4. 14 Lam SK, Hasan M, Sircus W, Wong J, Ong GB, Prescott RJ. Comparison of maximal acid output and gastrin response to meals in Chinese and Scottish normal and duodenal ulcer subjects. Gut 1980; 21: 324 8. 15 van Herwaarden MA, Samson M, van Nispen CHM, Mulder PGH, Smout AJPM. The effect of Helicobacter pylori eradication on intragastric ph during dosing with lansoprazole or ranitidine. Aliment Pharmacol Ther 1999; 13: 731 40. 16 Caraco Y, Lagerstrom PO, Wood AJJ. Ethnic and genetic determinants of omeprazole disposition and effect. Clin Pharmacol Ther 1996; 60: 157 67. 17 Caraco Y, Wilkinson GR, Wood AJJ. Differences between white subjects and Chinese subjects in the in vivo inhibition of cytochrome P450s 2C19, 2D6, and 3A by omeprazole. Clin Pharmacol Ther 1996; 60: 396 404.