Impaired insulin sensitivity with compensatory hyperinsulinemia

Similar documents
Human satellite cell cultures display numerous

Decreased Non Insulin-Dependent Glucose Clearance Contributes to the Rise in Fasting Plasma Glucose in the Nondiabetic Range

28 Regulation of Fasting and Post-

^Ia^^^etO^Ogla Springer-Verlag 1994

Decreased Non-Insulin Dependent Glucose Clearance Contributes to the Rise in FPG in the Non-Diabetic Range.

Abstract. Methods. Introduction

Human Primary Myoblast Cell Cultures from Non-Diabetic Insulin Resistant Subjects Retain Defects in Insulin Action

Role of fatty acids in the development of insulin resistance and type 2 diabetes mellitus

Cellular mechanisms of insulin resistance

A Thiazolidinedione Improves In Vivo Insulin

Nature Medicine: doi: /nm.3891

Diabetes Care 24:89 94, 2000

Insulin resistance and insulin secretory dysfunction as precursors of non- insulin-dependent diabetes mellitus: Prospective studies of Pima Indians

2-Deoxyglucose Assay Kit (Colorimetric)

Effects of Intense and Prolonged Exercise on Insulin Sensitivity and Glycogen Metabolism in Hypertensive Subjects

Amajor metabolic consequence of insulin action is

Diabetes Publish Ahead of Print, published online April 16, 2008

Supplementary Table 1. Criteria for selection of normal control individuals among healthy volunteers

Technical Information Guide

Glucose Uptake-Glo Assay

Department of Endocrinology, Odense University Hospital, DK-5000 Odense, Denmark

20X Buffer (Tube1) 96-well microplate (12 strips) 1

About 100 million people in the world suffer

EFFECTS OF VANADATE ON OLEIC ACID INDUCED INSULIN RESISTANCE IN CULTURED RAT HEPATOCYTES

Hypoinsulinemia is strongly associated with coronary artery calcification (CAC) assessed by multislice computed tomography

Metabolic Syndrome. DOPE amines COGS 163

Glucose Uptake Colorimetric Assay Kit

UNIVERSITY OF PNG SCHOOL OF MEDICINE AND HEALTH SCIENCES DIVISION OF BASIC MEDICAL SCIENCES DISCIPLINE OF BIOCHEMISTRY AND MOLECULAR BIOLOGY

The oral meal or oral glucose tolerance test. Original Article Two-Hour Seven-Sample Oral Glucose Tolerance Test and Meal Protocol

ab Adipogenesis Assay Kit (Cell-Based)

Modulating Glucose Uptake in Skeletal Myotubes: Insulin Induction with Bioluminescent Glucose Uptake Analysis

Diabetologia 9 Springer-Verlag 1995

Assessment of glomerular filtration rate in healthy subjects and normoalbuminuric diabetic patients: validity of a new (MDRD) prediction equation

Total Phosphatidic Acid Assay Kit

Supplementary Table 2. Conserved regulatory elements in the promoters of CD36.

Alternative insulin delivery systems: how demanding should the patient be?

Evidence for Decreased Splanchnic Glucose Uptake after Oral Glucose Administration in Non Insulin-dependent Diabetes Mellitus

patient-oriented and epidemiological research

Metabolic integration and Regulation

Cross-Matches for Bioequivalence Evaluation Division using Needle Free Jet Injector (Comfort-In) and conventional Pen type syringe.

ab Glucose Uptake Assay Kit (colorimetric) 1

Glucagon secretion in relation to insulin sensitivity in healthy subjects

The CARI Guidelines Caring for Australians with Renal Impairment. Specific effects of calcium channel blockers in diabetic nephropathy GUIDELINES

Effect of Muscle Glycogen Depletion on

Mechanism of Free Fatty Acid induced Insulin Resistance in Humans

PFK Activity Assay Kit (Colorimetric)

EXERCISE AND INSULIN SENSITIVITY

Nephrology Dialysis Transplantation

human skeletal muscle

Body Mass Index Chart = overweight; = obese; >40= extreme obesity

Insulin inhibition of endogenous glucose output (EGO)

Date... Name... Group... Urine sample (Tube No 2)

The New England Journal of Medicine

SUPPLEMENTARY INFORMATION

Exenatide Treatment for 6 Months Improves Insulin Sensitivity in Adults With Type 1 Diabetes

egfr > 50 (n = 13,916)

GLYCOGEN BEFORE THE LAB YOU HAVE TO READ ABOUT:

Validation of a novel index to assess insulin resistance of adipose tissue lipolytic activity in. obese subjects

Dysglycaemia and Hypertension. Dr E M Manuthu Physician Kitale

Glutathione S-Transferase Assay Kit

The concentration of glucose residues stored as glycogen in liver is ~0.4M, Whereas, glycogen concentration is only 10 nm.

Insulin plays a key role in glucose homeostasis by

Ascorbic Acid Assay Kit

Metformin should be considered in all patients with type 2 diabetes unless contra-indicated

Insulin Resistance. Biol 405 Molecular Medicine

Impact of Exercise on Patients with Diabetes Mellitus

Regulation of Metabolism

Mitochondrial Trifunctional Protein (TFP) Protein Quantity Microplate Assay Kit

Nicolucci C. (1), Rossi S. (2), Catapane M. (1), Introduction:

NEW METHODS FOR ASSESSING SUBSTRATE UTILIZATION IN HORSES DURING EXERCISE

Increased glucose production (GP) is the major

Glutathione Peroxidase Assay Kit

NAFLD AND TYPE 2 DIABETES

2-Deoxyglucose (2DG) Uptake Measurement kit

Product # R8132 (Explorer Kit) R8133 (Bulk Kit)

Acute Effects of Different Intensities of Exercise in Normoalbuminuric/ Normotensive Patients With Type 1 Diabetes

Glucose Uptake Assay Kit (Red Fluorescence)

Characterization of Cellular Defects of Insulin Action

MEK1 Assay Kit 1 Catalog # Lot # 16875

Glycogen Metabolism. BCH 340 lecture 9

Chapter 5 Effect of tender coconut water on carbohydrate metabolism in rats fed high fructose diet

RECENT experimental studies have shown that cigarette

SUPPLEMENTARY DATA. Supplementary Table S1. Clinical characteristics of the study subjects.*

The second meal phenomenon in type 2 diabetes

Glycogen synthesis represents a major pathway of

Supplementary Appendix

Notch Signaling Pathway Notch CSL Reporter HEK293 Cell line Catalog #: 60652

Management of Hypertension. M Misra MD MRCP (UK) Division of Nephrology University of Missouri School of Medicine

Lipid (Oil Red O) staining Kit

INSULIN RESISTANCE, POLYCYSTIC OVARIAN SYNDROME An Overview

AECOM, Bronx, NY; 2 Incyte Corporation, Wilmington, DE; 3 dgd Research, San Antonio, TX; 4 Profil Institute, San Diego, CA

Lecture 3: Phosphorylase (parts of Chapter 15 + Buchbinder et al. 2001) Discussion of paper and talk assignments.

Supplementary Information

Disclosures. Diabetes and Cardiovascular Risk Management. Learning Objectives. Atherosclerotic Cardiovascular Disease

3/20/2011. Body Mass Index (kg/[m 2 ]) Age at Issue (*BMI > 30, or ~ 30 lbs overweight for 5 4 woman) Mokdad A.H.

Decreased basal hepatic glucose uptake in impaired fasting glucose

INSULIN IS A key regulator of glucose homeostasis. Insulin

Feedback inhibition of insulin secretion and insulin resistance in polycystic ovarian syndrome with and without obesity

Validation & Assay Performance Summary

Last updated Glycogen synthesis, glycogenolysis, and gluconeogenesis in primary mouse hepatocytes

Transcription:

A Defect in Glycogen Synthesis Characterizes Insulin Resistance in Hypertensive Patients With Type 2 Diabetes Anna Solini, Francesco Di Virgilio, Paola Chiozzi, Paola Fioretto, Angela Passaro, Renato Fellin Abstract A subgroup of patients with type 2 diabetes shows a clustering of abnormalities such as peripheral insulin resistance, hypertension, and microalbuminuria. To evaluate whether these traits reflect intrinsic disorders of cell function rather than in vivo environmental effects, we studied a group of 7 nondiabetic hypertensive subjects with an altered albumin excretion rate (AER) (HyMA ) and 3 groups of patients with type 2 diabetes: 7 with normal blood pressure and normal AER (DH MA ), 7 with high blood pressure and normal AER (DH MA ), and 7 with both high blood pressure and altered AER (DH MA ). Glucose disposal was measured during an hyperinsulinemic clamp (40 mu m 2 1 min 1 ) with primed deuterated [6.6 2 H 2 ] glucose infusion. In the same subjects, a skin biopsy was performed and the following parameters were investigated: glucose transport (as determined by [ 3 H]2-deoxyglucose uptake); glycogen synthase activity (as determined by [ 14 C] glucose incorporation from UDP-[U- 14 C] glucose into glycogen); glycogen phosphorylase activity (as measured by the incorporation of [U- 14 C]glucose 1-phosphate into glycogen); and total glycogen content. In vivo glucose disposal was significantly reduced in DH MA and DH MA, with respect to DH MA, HyMA, and controls. Insulin-stimulated glucose transport was similar in the 3 groups of patients with diabetes. A significant reduction of intracellular glycogen content was observed in DH MA and DH MA compared with DH MA in both basal and insulin-stimulated conditions, probably because of a major impairment of glycogen synthase activity. Glycogen phosphorylase activity did not show differences between the groups. These results suggest that (1) the combination of type 2 diabetes with hypertension and altered AER is associated with impaired insulin sensitivity, and (2) intrinsic, possibly genetic, factors may account for increased peripheral insulin resistance in hypertensive microalbuminuric patients with type 2 diabetes, pointing to the reduction of glycogen synthase activity as a shared common defect. (Hypertension. 2001;37:1492-1496.) Key Words: blood pressure diabetes insulin resistance glycogen synthase fibroblasts Impaired insulin sensitivity with compensatory hyperinsulinemia may be a common pathogenetic factor in the development of both hypertension and type 2 diabetes. 1 In these conditions, the main site of insulin resistance is represented by skeletal muscle, 1 of the major sites for glucose consumption. 2,3 Glycogen synthesis is a major pathway of glucose disposal in skeletal muscle and is regulated by the insulin-sensitive and rate-limiting enzyme glycogen synthase. Defects in this enzyme can significantly alter the intracellular routing and metabolism of glucose and contribute to insulin resistance in muscle tissue. Skeletal muscle glycogen synthase has been shown to be stimulated little by insulin in both white subjects with type 2 diabetes and Pima Indians, 4,5 as well as in relatives of patients with diabetes. 6 A decreased insulin responsiveness of glycogen synthesis in fibroblasts of patients with type 2 diabetes has also been described 7 ; this suggests that a genetically determined defect controls this pathway in different tissues. Some authors have shown that the association of hypertension, altered albumin excretion rate (AER), or both confers a higher degree of insulin resistance to patients with type 2 diabetes 8,9 ; however, little is known on the intracellular glucose metabolism of this particular subgroup of patients. Consequently, the aim of this study was to investigate whether the presence of hypertension and AER could affect the degree of insulin sensitivity at the cellular level in patients with type 2 diabetes and to try to identify the site of the possible prevalent defect. Methods We studied 4 groups of patients: 7 nondiabetic patients with high blood pressure values and altered AER (HyMA ); 7 patients with type 2 diabetes with normal blood pressure and normal AER (DH MA ); 7 patients with diabetes with high blood pressure values and normal AER (DH MA ); and 7 patients with diabetes with both high blood pressure values and increased AER (DH MA ). Seven nondiabetic subjects with normal blood pressure and matched for age, gender, and body mass index (BMI) served as controls. Received July 10, 2000; first decision July 28, 2000; revision accepted December 6, 2000. From the Department of Clinical and Experimental Medicine (A.S., A.P., R.F.) and Section of General Pathology (F.D.V., P.C.), University of Ferrara, Ferrara, Italy; and Department of Internal Medicine (P.F.), University of Padova, Padova, Italy. Correspondence to Anna Solini, MD, PhD, Department of Clinical and Experimental Medicine, Section of Internal Medicine II, Via Savonarola, 9, I-44100 Ferrara, Italy. E-mail sli@dns.unife.it 2001 American Heart Association, Inc. Hypertension is available at http://www.hypertensionaha.org 1492

Solini et al Impaired Glycogen Synthesis in Diabetes and Hypertension 1493 TABLE 1. Clinical Characteristics of the Study Subjects Characteristics Controls HyMA DH MA DH MA DH MA Age, y 54 6 53 4 50 4 52 6 53 6 Gender, n (M/F) 4/3 4/3 3/4 4/3 5/2 BMI, kg/m 2 27.2 3.1 28.1 2.5 27.1 2.7 28.3 2.8 28.7 3.0 Estimated lean body mass, kg 57.1 4.5 54.4 6.5 54.3 4.5 53.6 7.1 53.9 6.7 Diabetes duration, y 4 1 4 2 5 1 HbA1 c, % 4.5 0.8 4.7 0.6 7.3 1.2* 7.5 1.4* 8.2 1.3* Systolic blood pressure, mm Hg 120 3 160 6*# 123 5 158 7*# 160 10*# Diastolic blood pressure, mm Hg 76 4 89 4*# 73 6 88 5*# 90 6*# AER, g/min 10 (2 18) 53 (39 71)*# 12 (3 17) 13 (3 16) 48 (22 120)*# Fasting plasma glucose, mmol/l 4.4 0.6 4.6 0.4 7.5 0.8* 7.4 0.7* 7.7 0.8* Fasting plasma insulin, pmol/l 38 12 37 6 42 8 40 10 43 8 Data are expressed as mean SD or median (range). *P 0.001 vs controls; P 0.001 vs HyMA ; #P 0.001 vs DH MA ; P 0.001 vs DH MA ; and P 0.001 vs DH MA. All diabetic patients were treated either with diet or with sulfonylureas. The diagnosis of arterial hypertension was made in agreement with the Working Group on Hypertension in Diabetes. 10 Among patients with hypertension, 8 of 21 had the diagnosis at the time of the study, starting pharmacological treatment after protocol completion; the other patients were treated with calcium channel blockers (8 patients), diuretics (4 patients), and beta-blockers (1 patient). Patients on angiotensin-converting enzyme inhibitors were excluded from the study. Before enrollment, blood was drawn for determination of fasting plasma glucose, HbA 1c, BUN, creatinine, and lipid profiles. Three 24-hour urine collections were obtained in the 3 months preceding the study for evaluation of AER. Estimated fat-free mass was calculated by the Hume formula. 11 In vivo insulin sensitivity was assessed by an euglycemic hyperinsulinemic glucose clamp. Subjects were admitted to the Clinical Research Center of the Department of Internal Medicine at the University of Padova in the morning after a 12-hour overnight fast. A primed continuous infusion of regular insulin was begun to acutely raise and maintain plasma insulin at the desired level. The rate of insulin infusion was 40 mu m 2 1 min 1. After a 2-hour equilibration period, a variable infusion of 20% glucose was adjusted to maintain glycemia at the fasting level. Whole-body glucose disposal and endogenous glucose output were assessed by an isotope dilution technique with [6.6 2 H 2 ] glucose (98.6% 2 H 2 ) (Tracer Technologies) administered as primed continuous infusion for the entire duration of the study. Tracer administration was continuously adjusted, clamping circulating values of tracer glucose enrichment. The rates of glucose turnover were calculated from the isotopic data with a 2-compartment model for non steadystate glucose kinetics. 12 Within 48 hours after the clamp study, all subjects underwent a skin biopsy from the anterior surface of the left forearm. Fibroblasts were cultured in DMEM with 5.5 mmol/l glucose concentration supplemented with 10% FCS. After the 4th passage, cells were harvested and stored in liquid nitrogen. For each experiment, fibroblasts were thawed and grown as described above. All experiments were performed between the 6th and the 10th passage. Glucose transport and phosphorylation were measured by determining the uptake of [ 3 H]2-deoxyglucose (DOG). For these studies, fibroblasts were grown to confluence in 10% FCS-DMEM and then treated with 10 mol/l [ 3 H]2-DOG (4 Ci/mL) for 5 minutes. Because transport of tracer amounts of [ 3 H]2-DOG is linear between 2 to 30 minutes in vascular smooth muscle cells, 13 glucose transport was assessed after 10 minutes. For the glucose uptake assay, cells were washed 3 times with ice-cold 0.95% saline solution and then solubilized with 0.5 N NaOH and neutralized with 0.5 N HCl. Radioactivity was determined by scintillation counting. Non carriermediated glucose transport, evaluated by cytochalasin B, was subtracted from total 2-DOG uptake. All experiments were performed in triplicate. Glycogen synthase activity was determined by measuring incorporation of [ 14 C] glucose from UDP-[U- 14 C] glucose into glycogen. 14 For standard activity assays, soluble or pellet fractions (30 L) were incubated 15 minutes at 30 C with a 60- L assay mixture that contained 50 mmol/l Tris/HCl, ph 7.8, 25 mmol/l KF, 20 mmol/l EDTA, 1% glycogen, 10.8 mmol/l glucose-6-p, and 6.67 mmol/l UDP-[U- 14 C] glucose (specific activity 200 cpm/nmol). The activity was expressed as nanomoles of UDP-glucose incorporated into glycogen mg protein 1 min 1. Total cellular protein was determined by the Bradford method 15 with BSA as a standard. Glycogen phosphorylase activity was determined by the incorporation of [U- 14 C]glucose 1-phosphate into glycogen in the absence or presence of the allosteric activator AMP (5 mmol/l). Total glycogen content was measured as follows: cells were rinsed twice with cold PBS and solubilized by incubating with 0.1 mol/l NaOH at 55 C for 30 minutes. After neutralization with 1.0 N HCl, 0.2 ml of cell suspension, 0.8 ml H 2 O, and 2.0 ml anthrone reagent (0.2 g anthrone/100 ml 95% H 2 SO 4 ) were mixed on ice, incubated at 100 C for 10 minutes, and placed on ice. Absorbance was measured with a spectrophotometer at a wavelength of 620 nm and compared with a standard curve. 16 Results are expressed as milligrams of glycogen per milligram of protein. All experiments were performed under basal conditions and subsequently repeated after 1-hour preincubation with 5 mol/l insulin. Data are expressed as mean SD. Differences between groups were tested by ANOVA, ANCOVA, Tukey test, and multivariate analysis for multiple comparisons. P 0.05 was considered statistically significant. Results Clinical parameters of the 5 groups of patients are shown in Table 1. Diabetic patients were superimposable for age, gender, BMI, duration of disease, and degree of metabolic control. Serum creatinine and albumin concentrations were normal in all subjects (data not shown). Blood pressure values and AER were higher in HyMA, DH MA, and DH MA, by selection criteria. Plasma glucose and insulin concentrations did not differ in all groups of patients, both in the basal state and during clamp. Figure 1A depicts whole-body glucose uptake in the 4 study groups and in the control group. Glucose utilization was significantly reduced in DH MA and DH MA com-

1494 Hypertension June 2001 Figure 3. Intracellular glycogen content (mg glycogen/mg protein) in the basal (gray bars) and insulin-stimulated (hatched bars) conditions in the 5 study groups. Data are analyzed by ANCOVA, adjusting for age, BMI, and HbA 1c.*P 0.01 with respect to controls and HyMA in both basal and insulinstimulated conditions; P 0.01 with respect to DH MA in both basal and insulin-stimulated conditions Figure 1. Insulin-stimulated whole-body glucose uptake (A) and hepatic glucose output (B) during euglycemic hyperinsulinemic clamp in the 5 study groups. Data are analyzed by ANCOVA, adjusting for age, BMI, and fasting plasma glucose. *P 0.01 with respect to controls and HyMA, P 0.01 with respect to DH MA. pared with HyMA, DH MA, and controls. The hepatic glucose production, reported in Figure 1B, did not significantly differ between the groups in the basal state; insulinmediated suppression of hepatic glucose output was uniformly impaired in hypertensive and diabetic patients with respect to normal subjects, even after adjustment for age, BMI, and fasting plasma glucose. Basal glucose transport and phosphorylation were uniformly reduced in the 3 diabetic groups, showing a reduction with respect to nondiabetic subjects. After insulin stimulation, there was a trend for a further more pronounced reduction in DH MA and DH MA with respect to DH MA, but statistical significance was not reached (Figure 2). In Figure 3, the rate of fibroblast glycogen synthesis is shown. Interestingly, we found the same trend observed in vivo: intracellular glycogen content was reduced in all diabetic patients compared with nondiabetic subjects in both basal and insulin-stimulated conditions. However, a significant impairment was observed in DH MA and DH MA compared with DH MA. To further clarify the rate-limiting step in glycogen synthesis, we evaluated glycogen synthase and glycogen phosphorylase activities and observed a reduction in glycogen synthase activity in DH MA and DH MA compared with DH MA, HyMA, and controls (Figure 4). Glycogen phosphorylase activity did not show significant differences between the 4 groups of patients (48 6 mu/mg protein in control, 41 10 mu/mg in HyMA, 35 8 mu/mg in DH MA,33 9 mu/mg in DH MA, and 29 7 mu/mg in DH MA, P not significant). Figure 2. Rate of 2-DOG uptake in the basal (gray bars) and insulin-stimulated (hatched bars) conditions in the 5 study groups. Data are analyzed by ANCOVA, adjusting for age, BMI, and HbA 1c.*P 0.01 with respect to controls and HyMA. Figure 4. Dose-response curve of glycogen synthesis activity (nmol min 1 mg protein 1 ) in the 5 study groups. Data are analyzed by ANCOVA, adjusting for age, BMI, and HbA 1c. *P 0.05 with respect to controls; P 0.01 with respect to DH MA.

Solini et al Impaired Glycogen Synthesis in Diabetes and Hypertension 1495 TABLE 2. Multivariate Analysis of the Relationships Between Some In Vivo and In Vitro Parameters of Glucose Metabolism (Dependent Variables) and Possible Influencing Parameters Whole Body Glucose Uptake (Model A) Hepatic Glucose Output (Model B) Intracellular Glycogen Content (Model C) 2-DOG Uptake (Model D) Independent Variables Coefficient P Coefficient P Coefficient P Coefficient P HbA1 c 0.515 0.0001 0.480 0.0001 0.706 0.0001 0.713 0.0001 Systolic blood pressure 0.580 0.0001 0.436 0.002 0.412 0.002 0.325 0.03 AER 0.067 0.544 0.225 0.072 0.228 0.065 0.131 0.324 Age 0.048 0.595 0.018 0.861 0.025 0.800 0.034 0.756 Gender 0.154 0.086 0.283 0.006 0.007 0.944 0.049 0.642 BMI 0.144 0.116 0.155 0.124 0.079 0.420 0.086 0.422 AER is entered as log-transformed value. Model A indicates R 2 0.793; P 0.000; Model B, R 2 0.748, P 0.000; Model C, R 2 0.755, P 0.000; and Model D, R 2 0.705, P 0.000. Finally, in a multivariate analysis (Table 2), we evaluated the potential effect of age, gender, and BMI and of the presence of diabetes, hypertension, and microalbuminuria on the main indexes of insulin-stimulated glucose metabolism, both in vivo and in vitro. Interestingly, diabetes and hypertension were the only common determinants of metabolic parameters measured during the clamp as well as those obtained at the cellular level. Discussion We, as well as other authors, have previously described a phenotypic link between type 2 diabetes, altered AER, and hypertension on the one hand and a marked impairment of peripheral insulin sensitivity on the other hand. 8,9 In these subjects, skeletal muscle is presumably the main site of insulin resistance, with a relevant impairment of muscle glycogen synthesis. This condition could be either due to a proximal abnormality (ie, impaired glucose transport), to a more distal abnormality (ie, phosphorylation), or to a defective glycogen synthase activity. The novel finding of the present work is the documentation of a link between a cluster of in vivo metabolic alterations and a cellular defect in hypertensive patients with type 2 diabetes. Moreover, we provide new information on the possible main site of the defect; we demonstrate a reduction of glycogen content in these cells that is mainly attributable to an impairment of enzymatic activity of glycogen synthase. This key enzyme, strongly activated by insulin, is regulated both allosterically, by binding of glucose 6-phosphate, and covalently, by the phosphorylation of multiple serine residues, 17,18 and represents a potential site of inherited or acquired insulin resistance. Its basal and insulin-stimulated activity is usually reduced by 35% to 50% in skeletal muscle cells from patients with type 2 diabetes with respect to controls. 19 Primary cell cultures provide a useful model for the identification of intrinsic metabolic defects that are expressed independent of the host environment. Several authors have provided evidence that muscle cultures reflect the metabolic behavior of intact skeletal muscle 20,21 and, particularly, the rates of glucose and lipid metabolism in vivo. 22 In the patients described in this study, skeletal muscle samples were not collected because of ethical reasons. Fibroblasts, however, are a good model to study intracellular glucose metabolism in vitro because they express glucose transporters and all the key enzymes of glucose metabolism. Moreover, even though their insulin sensitivity is lower than that of adipocytes, it is not dissimilar to that estimated in human muscle in vitro. To the best of our knowledge, no studies to date have evaluated the influence of high insulin levels per se on human fibroblasts of patients with type 2 diabetes and different degrees of insulin sensitivity correlated to different phenotypic characteristics. Our experiments add new information to the few available studies that concern the role of insulin receptors or postreceptorial alterations, respectively, in determining insulin resistance during hypertension and they also suggest that the glycogen synthase defect is not tissue specific. Because cell cultures are grown at normal glucose concentrations and undergo multiple cell doublings before experimental procedures, it is conceivable that any acquired component of defective enzymatic activity would be reversed under such circumstances; alternatively, we cannot exclude, however, that an irreversible acquired defect could persist in culture. In regard to glucose transport, our experimental model did not reveal significant differences either in the transmembrane glucose transport or in the phosphorylation between hypertensive diabetic and normotensive diabetic patients. The discrepancy between these results and a more pronounced impairment of whole-body glucose uptake in the first group is, to our opinion, mainly because in vivo measurement is largely accounted for by glucose disposal in insulindependent tissues, primarily skeletal muscle. In muscle, the ability of the cells to build up glycogen is the result of activation of the glycogen synthetic pathway as well as the increase in glucose transport, which occurs mainly via the glucose transporter 4 translocation. A fibroblast is a non insulin-dependent cell that mainly expresses the non insulininducible glucose transporter 1; it is likely that in this kind of cell, the insulin effect could be more pronounced on glycogen synthesis than on transport, resulting in a much lower glycogen content. Moreover, this model cannot either exclude the coexistence of a defective hexokinase activity or allow the identification, at the level of the complex activation pathway of glycogen synthase, of the defect. For example, we do not have any information concerning the camp-dependent pro-

1496 Hypertension June 2001 tein kinase that could either phosphorylate glycogen synthase or activate an inhibitor of phosphatase, inducing a blockage of protein phosphatase-1, an increased glycogen synthase phosphorylation, and a reduced glycogen synthase activity. 17 Our results may perhaps offer a contribution in identifying the independent role of hypertension and increased urinary albumin excretion in influencing insulin resistance in humans. In patients with essential hypertension and microalbuminuria, Bianchi et al have already described a 35% reduction in insulin-mediated glucose disposal compared with their normoalbuminuric counterparts 23 ; in these patients, the change was entirely due to impaired nonoxidative glucose disposal, whereas the ability of insulin to stimulate glucose oxidation was unaltered. Unfortunately, we were not able to evaluate patients with type 2 diabetes with normal blood pressure values and microalbuminuria, but the degree of insulin sensitivity of hypertensive microalbuminuric subjects does not seem to differ from that of control subjects matched for age and BMI. On the other hand, the coexistence of hypertension with diabetes, with or without microalbuminuria, sets the stage for a further reduction of whole-body glucose uptake, whereas the presence of a clear defect at the level of skin fibroblasts in the same patients suggests a potential role of inherited factors in influencing the degree of insulin sensitivity, with the same abnormality probably present in different tissues. A multivariate analysis that recognizes HbA 1c and systolic blood pressure as the only 2 factors independently affecting all the metabolic parameters considered supports this view. With regard to this possibility, it is also of great interest that a polymorphism in the glycogen synthase gene has been reported in association with insulin resistance in diabetic patients with current hypertension and a family history of hypertension, 24 even if the glycogen synthase content was similar in specimens from patients with or without the mutation. Nevertheless, the significance of the association between insulin resistance and microalbuminuria in our patients remains uncertain, and our results do not allow us to state whether the development of altered albumin excretion either precedes or follows the development of an insulin-resistant state. Three main hypotheses can be formulated: first, microalbuminuria and reduced insulin sensitivity could be both genetically determined and cosegregate with the hypertensive status; alternatively, insulin resistance could be causally related to microalbuminuria; and finally, both insulin resistance and altered albumin excretion could be the consequence of hypertension. Further prospective studies are requested to clarify whether a progressive increment of blood pressure values and urinary albumin loss keep up with an increasing tissue insulin resistance. Acknowledgments This study was supported by Italian National Research Council (CNR) grant no. 910048 and by 1997 to 1998 grants from the University of Ferrara (ex 60% contributions). References 1. DeFronzo RA, Ferrannini E. Insulin resistance: a multifaceted syndrome responsible for NIDDM, obesity, hypertension, dyslipidemia, and atherosclerotic cardiovascular disease. Diabetes Care. 1991;14:173 194. 2. Natali A, Santoro D, Palombo C, Cerri M, Ghione S, Ferrannini E. Impaired insulin action on skeletal muscle metabolism in essential hypertension. Hypertension. 1991;17:170 178. 3. DeFronzo RA. Lilly lecture: the triumvirate: B-cell, muscle, liver: a collusion responsible for NIDDM. Diabetes. 1988;37:667 687. 4. Bak JK, Moller N, Schmitz O, Saaek A, Pedersen O. In vivo insulin action and muscle glycogen synthase activity in type II (non-insulindependent) diabetes mellitus: effects of diet treatment. Diabetologia. 1992;35:777 784. 5. Bogardus C, Lillioja S, Mott D, Reaven GR, Kashiwagi A, Foley J. Relationship between obesity and maximal insulin-stimulated glucose uptake in vivo and in vitro in Pima indians. J Clin Invest. 1984;73:800 805. 6. Vaag A, Henriksen JE, Beck-Nielsen H. Decreased insulin activation of glycogen synthase in skeletal muscles in young nonobese Caucasian first degree relatives of patients with non-insulin dependent diabetes mellitus. J Clin Invest. 1992;89:782 788. 7. Wells AM, Sutcliffe IC, Johnson AB, Taylor R. Abnormal activation of glycogen synthesis in fibroblasts from NIDDM subjects: evidence for an abnormality specific to glucose metabolism. Diabetes. 1993;42:583 589. 8. Nosadini R, Solini A, Velussi M, Muollo B, Frigato F, Sambataro M, Cipollina MR, De Riva F, Brocco E, Crepaldi G. Impaired insulininduced glucose uptake by extrahepatic tissue is hallmark of NIDDM patients who have or will develop hypertension and microalbuminuria. Diabetes. 1994;43:491 499. 9. Groop L, Ekstrand A, Forsblom C, Widen E, Groop P-H, Teppo A-M, Eriksson J. Insulin resistance, hypertension and microalbuminuria in patients with type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia. 1993;36:642 647. 10. The Working Group on Hypertension in Diabetes. Statement on hypertension in diabetes mellitus. Arch Intern Med. 1987;147:830 842. 11. Hume R. Prediction of lean body mass from height and weight. J Clin Pathol. 1996;19:389 391. 12. Finegood DI, Bergmann RN, Vranic M. Estimation of endogenous glucose production during hyperinsulinemic euglycemic glucose clamp. Diabetes. 1987;36:914 924. 13. Standley PR, Rose KA, Sowers JR. Increased basal arterial smooth muscle glucose transport in the Zucker rat. Am J Hypertens. 1995;8:48 52. 14. Thomas JA, Schlender KK, Larner J. A rapid filter paper assay for UDP-glucose-glycogen glucosyltransferase, including an improved biosynthesis of UDP- 14 C-glucose. Anal Biochem. 1968;25:486 489. 15. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976;71:248 254. 16. Hassid WZ, Abraham S. Chemical procedures for analysis of polysaccharides. Methods Enzymol. 1957;3:34 50. 17. Lawrence JC, Roach PJ. New insights into the role and mechanism of glycogen synthase activation by insulin. Diabetes. 1997;46:541 547. 18. Shulman RG, Rothman DL. Enzymatic phosphorylation of muscle glycogen synthase: a mechanism for maintenance of metabolic homeostasis. Proc Natl Acad Sci U S A. 1996;93:7491 7495. 19. Henry RR, Ciaraldi TP, Abrams-Carter L, Mudaliar S, Park KS, Nikoulina SE. Glycogen synthase activity is reduced in cultured skeletal muscle cells of NIDDM subjects: biochemical and molecular mechanisms. J Clin Invest. 1996;98:1231 1236. 20. Vestergaard H, Lund S, Larsen FS, Bjerrum OJ, Pedersen O. Glycogen synthase and phosphofructokinase protein and mrna levels in skeletal muscle from insulin-resistant patients with non-insulin dependent diabetes mellitus. J Clin Invest. 1993;91:2342 2350. 21. Thorburn AW, Gumbiner B, Bucalan F, Brechtel G, Henry RR. Multiple defects in muscle glycogen synthase activity contribute to reduced glycogen synthesis in non-insulin dependent diabetes mellitus. J Clin Invest. 1991;87:489 495. 22. Mott DM, Pratley RE, Bogardus C. Postabsorptive respiratory quotient and insulin-stimulated glucose storage rate in nondiabetic Pima Indians are related to glycogen synthase fractional activity in cultured myoblasts. J Clin Invest. 1998;101:2251 2256. 23. Bianchi S, Bigazzi R, Quiñones Galvan A, Muscelli E, Baldari G, Pecori N, Ciociaro D, Ferrannini E, Natali A. Insulin resistance in microalbuminuric hypertension sites and mechanisms. Hypertension. 1995;26: 789 795. 24. Groop L, Kankuri M, Schalin-Jantti C, Kestrand K, Nikula-Ijas P, Widen E, Kuismanen E, Eriksson J, Franssisla-Kallunki A, Saloranta C, Koskimies S. Association between polymorphism of glycogen synthase gene and non-insulin dependent diabetes mellitus. N Engl J Med. 1993; 328:10 14.