Brain Rhythms. Objectives

Similar documents
Objectives. brain pacemaker circuits role of inhibition

Sleep-Wake Cycle I Brain Rhythms. Reading: BCP Chapter 19

Introduction to EEG del Campo. Introduction to EEG. J.C. Martin del Campo, MD, FRCP University Health Network Toronto, Canada

TNS Journal Club: Interneurons of the Hippocampus, Freund and Buzsaki

Embryological origin of thalamus

Enhancement of synaptic transmission by cyclic AMP modulation of presynaptic I h channels. Vahri Beaumont and Robert S. Zucker

Basics of Computational Neuroscience: Neurons and Synapses to Networks

CYTOARCHITECTURE OF CEREBRAL CORTEX

Informationsverarbeitung im zerebralen Cortex

Transitions between dierent synchronous ring modes using synaptic depression

STRUCTURAL ORGANIZATION OF THE NERVOUS SYSTEM

Dendritic Mechanisms of Phase Precession in Hippocampal CA1 Pyramidal Neurons

Introduction to Electrophysiology

Effects of Inhibitory Synaptic Current Parameters on Thalamocortical Oscillations

Resonant synchronization of heterogeneous inhibitory networks

Neurophysiology & EEG

STRUCTURAL ELEMENTS OF THE NERVOUS SYSTEM

Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR

EEG in the ICU: Part I

Sample Lab Report 1 from 1. Measuring and Manipulating Passive Membrane Properties

Modeling the Impact of Recurrent Collaterals In CA3 on Downstream CA1 Firing Frequency

Biomarkers in Schizophrenia

Physiology Unit 2 CONSCIOUSNESS, THE BRAIN AND BEHAVIOR

A Biophysical Model of Cortical Up and Down States: Excitatory-Inhibitory Balance and H-Current

Supplementary Figure 1. SDS-FRL localization of CB 1 in the distal CA3 area of the rat hippocampus. (a-d) Axon terminals (t) in stratum pyramidale

Oscillations: From Neuron to MEG

Supplementary Information Supplementary Table 1. Quantitative features of EC neuron dendrites

The control of spiking by synaptic input in striatal and pallidal neurons

Intro. Comp. NeuroSci. Ch. 9 October 4, The threshold and channel memory

Anxiolytic Drugs and Altered Hippocampal Theta Rhythms: The Quantitative Systems Pharmacological Approach

Chapter 4 Neuronal Physiology

states of brain activity sleep, brain waves DR. S. GOLABI PH.D. IN MEDICAL PHYSIOLOGY

Normal EEG of wakeful resting adults of years of age. Alpha rhythm. Alpha rhythm. Alpha rhythm. Normal EEG of the wakeful adult at rest

Introduction to Neurobiology

Na + K + pump. The beauty of the Na + K + pump. Cotransport. The setup Cotransport the result. Found along the plasma membrane of all cells.

The Nervous System. Neuron 01/12/2011. The Synapse: The Processor

Common EEG pattern in critical care

Modelling corticothalamic feedback and the gating of the thalamus by the cerebral cortex

Neuroscience: Exploring the Brain, 3e. Chapter 4: The action potential

Tuning properties of individual circuit components and stimulus-specificity of experience-driven changes.

Physiology of synapses and receptors

Antiepileptic agents

MOLECULAR AND CELLULAR NEUROSCIENCE

EEG and some applications (seizures and sleep)

Short- and long-lasting consequences of in vivo nicotine treatment

Cellular Bioelectricity

Implantable Microelectronic Devices

Computational cognitive neuroscience: 2. Neuron. Lubica Beňušková Centre for Cognitive Science, FMFI Comenius University in Bratislava

Brain and Cognition. Cognitive Neuroscience. If the brain were simple enough to understand, we would be too stupid to understand it

1) Drop off in the Bi 150 box outside Baxter 331 or to the head TA (jcolas).

Modeling Depolarization Induced Suppression of Inhibition in Pyramidal Neurons

Introduction to the EEG technique

Neural Communication. Central Nervous System Peripheral Nervous System. Communication in the Nervous System. 4 Common Components of a Neuron

Consequences of sequences: Studies on convergent and divergent elements of neocortical inhibitory microcircuits. Ph.D. thesis.

LESSON 3.3 WORKBOOK. Why does applying pressure relieve pain?

File name: Supplementary Information Description: Supplementary Figures, Supplementary Table and Supplementary References

Introduction to Computational Neuroscience

Nature Medicine: doi: /nm.4084

Subhairline EEG Part II - Encephalopathy

SYNAPTIC COMMUNICATION

Organization of the nervous system. [See Fig. 48.1]

Rhythms of the Brain 1 of 8

Intracranial Studies Of Human Epilepsy In A Surgical Setting

Anatomy of the Hippocampus

COGNITIVE SCIENCE 107A. Sensory Physiology and the Thalamus. Jaime A. Pineda, Ph.D.

Brain anatomy and artificial intelligence. L. Andrew Coward Australian National University, Canberra, ACT 0200, Australia

Chapter 2: Cellular Mechanisms and Cognition

Electroencephalography

Non epileptiform abnormality J U LY 2 7,

All questions below pertain to mandatory material: all slides, and mandatory homework (if any).

Dep. Control Time (min)

NEURAL MECHANISMS OF SLEEP (p.1) (Rev. 3/21/07)

The Brain & Homeostasis. The Brain & Technology. CAT, PET, and MRI Scans

GABAergic Contributions to Gating, Timing, and Phase Precession of Hippocampal Neuronal Activity During Theta Oscillations

Supplementary Materials for VAMP4 directs synaptic vesicles to a pool that selectively maintains asynchronous neurotransmission

Endocrine System Nervous System

Chapter 2. The Cellular and Molecular Basis of Cognition Cognitive Neuroscience: The Biology of the Mind, 2 nd Ed.,

Endocrine System Nervous System

Supplementary Appendix

SUPPLEMENTARY INFORMATION. Supplementary Figure 1

1) Drop off in the Bi 150 box outside Baxter 331 or to the head TA (jcolas).

Nervous System, Neuroanatomy, Neurotransmitters

Electrical Properties of Neurons. Steven McLoon Department of Neuroscience University of Minnesota

Correlated network activity in the developing hippocampus: role in synaptogenesis

EE 791 Lecture 2 Jan 19, 2015

Layer-Specific GABAergic Control of Distinct Gamma Oscillations in the CA1 Hippocampus

Synaptic Transmission: Ionic and Metabotropic

The Role of Mitral Cells in State Dependent Olfactory Responses. Trygve Bakken & Gunnar Poplawski

Anatomy Review. Graphics are used with permission of: Pearson Education Inc., publishing as Benjamin Cummings (

Chapter 7 Nerve Cells and Electrical Signaling

What Cell Make Up the Brain and Spinal Cord

Diverse Origins of Network Rhythms in Local Cortical Circuits

Neurons. Pyramidal neurons in mouse cerebral cortex expressing green fluorescent protein. The red staining indicates GABAergic interneurons.

Nature Neuroscience: doi: /nn Supplementary Figure 1

211MDS Pain theories

Memory Systems II How Stored: Engram and LTP. Reading: BCP Chapter 25

Dendritic Signal Integration

Synaptic Communication. Steven McLoon Department of Neuroscience University of Minnesota

Timing and the cerebellum (and the VOR) Neurophysiology of systems 2010

5-Nervous system II: Physiology of Neurons

Transcription:

Brain Rhythms Michael O. Poulter, Ph.D. Professor, Molecular Brain Research Group Robarts Research Institute Depts of Physiology & Pharmacology, Clinical Neurological Sciences Schulich School of Medicine & Dentistry University of Western Ontario London Ontario Canada Objectives Understand the basis of cellular rythmicity Describe the principles of intrinsic cellular resonance Describe how groups of neurons may synchronize their activity Understand the role of two ionic currents that synchronize brain activity brain pacemaker circuits role of inhibition

Disclosure In the last two years, I have had no financial interest/arrangement or affiliation with one or more organizations that could be perceived as a real or apparent conflict of interest in the context of the subject of this presentation. Brain Oscillations: correlate to differing behavioural states EEG ALPHA Alpha waves are those between 7.5 and thirteen(13) waves per second (Hz). Alpha is usually best seen in the posterior regions of the head on each side, being higher in amplitude on the dominant side. It is brought out by closing the eyes and by relaxation, and abolished by eye opening or alerting by any mechanism (thinking, calculating). It is the major rhythm seen in normal relaxed adults - it is present during most of life especially beyond the thirteenth year when it dominates the resting tracing Delta Delta activity is 3 Hz or below. It tends to be the highest in amplitude and the slowest waves. It is quite normal and is the dominant rhythm in infants up to one year and in stages 3 and 4 of sleep. It may occur focally with subcortical lesions and in general distribution with diffuse lesions, metabolic encephalopathy hydrocephalus or deep midline lesions. Beta Beta activity is 'fast' activity. It has a frequency of 14 and greater Hz. It is usually seen on both sides in symmetrical distribution and is most evident frontally. It is accentuated by sedative-hypnotic drugs especially the benzodiazepines and the barbiturates. It may be absent or reduced in areas of cortical damage. It is generally regarded as a normal rhythm. It is the dominant rhythm in patients who are alert or anxious or who have their eyes open. Theta Theta activity has a frequency of 3.5 to 7.5 Hz and is classed as "slow" activity. It is abnormal in awake adults but is perfectly normal in children upto 13 years and in sleep. It can be seen as a focal disturbance in focal subcortical lesions; it can be seen in generalized distribution in diffuse in diffuse disorder or metabolic encephalopathy or deep midline disorders or some instances of hydrocephalus Gamma Gamma activity 40-80 Hz is present inwaking individuals and is though to be the learning rhythm. Fixing one s attention on something typically illicit gamma rhythm in many area including cortex, hippocampus.

The Normal EEG EEG requires neural synchrony

How does synchrony arise? a conductor or well rehearsed ensemble Cellular and circuit properties that determine brain rhythms Cellular Basis of rythmicity Intrinsic rythmicity in single neurons What is neuronal resonance? Rhythmic Currents and synaptic connections I h pacemaker current Inhibitory neurotransmission so much more than action potential truncation

Action potential firing patterns are not constant and may vary tremendously These firing patterns are created by combining the activity of potassium and calcium channels which all are activated by voltage, in and in a time dependent manner Cells have natural oscillatory behaviour

Some rythmically burst due to constant stimulus Are neurons intrinsically rythmic? Fig. I. Frequency-dependent properties of electronic circuits and neurons: detection and analysis. The relationship between the current input (first column) and the voltage output (third column) of electrical circuits or neurons (second column) enables the calculation of the impedance as a function of frequency (fourth column). The use of a ZAP input function concentrates the analysis within a specific range of frequencies

Intrinsic Rythmicity is due to an interaction between passive and active electrical components Membrane Resonance in a real neuron Neurons of the inferior olive have an intrinsically determined frequency preference that is reflected in their network behaviour. (a) A whole-cell recording of an olivary neuron in vitro shows that it has a stable resting potential (left). The impedance profile of the same neuron (right) reveals a resonance at 4 Hz. The resonance is generated by the low-threshold Ca2+ current, IT. (b) In a different olivary neuron, the membrane potential (left) oscillates steadily at 4 Hz as shown by the power spectrum (lower right). The impedance of this neuron also exhibits a resonance with a peak at the same frequency as the oscillations (the large truncated peak centered on the top of the resonance is due to the spontaneous oscillations). Oscillations in these neurons are partly intrinsic and partly caused by electrical coupling with other olivary neurons. Although the existence of oscillation is controlled by the strength of coupling and other modulatory factors such as the leak conductance, the frequency of the oscillations is determined by the resonance in the individual cells.

Resonance tunes neurons to differing inputs I h Activated by hyperpolarization of the neuron Reverse potential is positive to RMP Slowly shuts off Modulated by drugs that increase camp Cloned called Hyperpolarizing camp Channel (HCN)- potential therapeutic target for control of epilepsy

Characteristics of I h behaviour Distribution of HCN transcripts is not uniform Differential distribution of mhcn1, mhcn2, and mhcn4 in the mouse cerebral and hippocampal cortex. A, Coronal section (bregma, +0.74) showing mhcn1 labeling in the motor cortex. B, Coronal section (bregma, 2.06) showing mhcn1 labeling in the hippocampus. C, mhcn2 labeling in the motor cortex. D, mhcn2 labeling in the hippocampus, lateral habenula, and dorsal lateral geniculate nucleus. E, mhcn4 labeling is absent in the motor cortex. F, mhcn4 labeling in the hippocampus, medial and lateral habenula, and dorsal lateral geniculate nucleus. ec, External capusle; mh, medial habenula; lh, lateral habenula; dlg, dorsal lateral geniculate nucleus; DG, dentate gyrus; CA 1, CA 3, cornus ammonis fields CA 1 and CA 3. Scale bars, 500 µm.

Differing HCN activate at different rates Distinct functional properties of I h currents generated by mhcn1 and mhcn2. A, Currents generated in response to hyperpolarizing voltage steps in Xenopus oocytes expressing mhcn1 (A1) or mhcn2 (A2), respectively. A1, mhcn1 currents shown during 3-sec-long hyperpolarizing voltage steps. A2a,b, mhcn2 currents shown during initial 3 sec (A2a) and entire 30 sec time course (A2b) in response to hyperpolarizing voltage steps. For both A1 and A2, membrane held at 30 mv and stepped from 35 to 105 mv in 10 mv increments (selected voltages indicated to right of current traces). B, Two exponential components are required to adequately fit activation time course of mhcn currents. Time and current scales as in corresponding panels in A. For B1 and B2, bottom traces show current during hyperpolarizing step to 105 mv with superimposed fit using two exponential components. The middle and top traces show the residuals of difference between the recorded current and the fitted single (top trace) or double (middle trace) exponential functions. Zero current is indicated by the arrowhead (labeled 0). The residuals from the single exponential fits are displaced from zero for clarity; zero current for these traces is indicated by the dashed line. To facilitate comparison between mhcn1 and mhcn2, the first 3 sec of the mhcn2 activation time course and fits to this are shown on an expanded time scale in B2a. HCN drive network Oscillations Inhibitory Input No I h - + With I h Excitatory Input Response

Synaptic connections create oscillatory behaviour Brain connectivity provides a way of promoting oscillatory behaviour

Summary of I h activity slow activation and inactivation provides prolonged rebound excitation that drives neural circuit synchrony modifiable by drug therapy, although it has not been done may be implicated in epilepsy, increased expression of HCN 1 in seizure circuits, block may be viable antiseizure compound GABA A Receptors in the CNS major inhibitory neurotransmitter (usually) chloride ion channels mediating fast synaptic inhibition

Clinical Uses 20% of the neuro drug market are GABAergics this includes: anxiolytics e.g.. zolipidem anesthesia induction and maintenance e.g.. propofol, halothane sleep disorders e.g.. pentobarbital acute treatment of seizures e.g. diazepam seizure prevention e.g. colbazam. Vigabitrim Are they modifiers of rythmicity? GABA A Receptor Structure Pentameric multi subunit complex ( ) Each subunit has 4 transmembrane spanning regions Cl - or Predominant subunit combination More regionalised expression of & Cl -

GABA A Receptor Structure/Function Seven families of subunits 6 : GABA and BDZ affinity, kinetics 4 : GABA binding site 4 (includes splice variant of g2): kinetics, conductance, BDZ modulation : modulatory as well : abolishes all pharmacological properties (??) : human only, unknown function : reduces affinity for GABA BDZ Neurosteroids?? a b GABA barbituates Distribution of the major GABA A receptor subunits in the rat brain Fritschy and Mohler J.Comp Neurol 359;154-194, 1995

Altering structure alters timing behaviour 1 mm GABA 1mM GABA = 2030 ms 1390 ms 153 ms ms 20 pa 10 ms Hass and Macdonald J.Physiol 514,27-45,1999 GABA A receptor mediated neural network synchronisation and oscillations Cobb et al Nature 378:75-78, 1995 Wand & Buzsaki J.Neurosci. 16;6402-6413, 1996

Fig. 1. Three types of pyramidal cell are accompanied by at least 21 classes of interneuron in the hippocampal CA1 area. T Klausberger, P Somogyi Science 2008;321:53-57 Published by AAAS The cell fired rhythmically on the descending phase of theta oscillations (filtered 3 6 Hz), and at high frequency at the troughs of sharp-wave-associated ripples (filtered 90 140 Hz). Scales: unit, 0.5 mv; unfiltered local field potential (LFP), 0.5 mv; theta, 0.3 mv, 300 ms; sharp wave, 0.2 mv, 50 ms. b, Reconstruction of the recorded and neurobiotinlabelled cell; soma and dendrites in red (complete). The axon in yellow, shown from only two sections of 65 m thickness, contacted mainly pyramidal cell somata and proximal dendrites. c, The soma (star; partly seen) was cut during sectioning of the brain and is parvalbuminimmunopositive together with the dendrites (arrows) in immunofluorescence. alv., alveus; st. lm., stratum lacunosummoleculare; st. or., stratum oriens; st. py., stratum pyramidale; st. ra., stratum radiatum. Scale bars: b, 100 m; c, 20 m.

a, The cell fired rhythmically just after the positive peak of theta oscillations, and at the beginning of a sharp-wave burst, but was silent subsequently. Scales: unit, 0.5 mv; theta, 0.2 mv, 300 ms; sharp wave, 0.1 mv, 50 ms. b, Reconstruction of the neurobiotinlabelled cell; soma and dendrites in red (complete); the axon (yellow) is restricted to the basal part of the stratum pyramidale and is shown from only one section of 65 m thickness. c, d, Immunofluorescence of parvalbumin in the axo-axonic (star) and in an unrecorded cell (arrow). e, Micrograph of the labelled cell. f, Electron micrograph showing a bouton (b) making a synapse (arrowhead) with an axon initial segment (AIS) characterized by membrane undercoating (small arrow). Abbreviations as in Fig. 1. Scale bars: b, 100 m, c e, 20 m; f, 0.2 m. G