Bis2A 5.3 Glycolysis: Beginning Principles of Energy and Carbon Flow *

Similar documents
SS Lecture 6 readings *

Derived copy of Bis2A 07.1 Glycolysis *

Portal module: m Glycolysis. First Last. 1 First Half of Glycolysis (Energy-Requiring Steps)

Glycolysis. Degradation of Glucose to yield pyruvate

GLYCOLYSIS Generation of ATP from Metabolic Fuels

Chapter 15 Glycolysis and The Pentose Phosphate Pathway

CHAPTER 16. Glycolysis

Cellular Respiration: Harvesting Chemical Energy

Carbohydrate Metabolism I

Cellular Respiration Stage 1: Glycolysis (Ch. 6)

MBioS 303 Recitation Introductory Biochemistry, Summer 2008 Practice Problem Set #7: General Metabolism Concepts, Glycolysis and the TCA Cycle

Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration Stage 1: (Glycolysis) AP Biology

Glycolysis. BCH 340 lecture 3 Chapter 8 in Lippincott 5 th edition

3.2 Aerobic Respiration

Biochemistry: A Short Course

Fate of glucose in living systems. Glycolysis: Derived from Greek words; Glucose + 6O 2 = 6CO 2 + 6H 2 O δg o = kj/mol

OVERVIEW OF THE GLYCOLYTIC PATHWAY Glycolysis is considered one of the core metabolic pathways in nature for three primary reasons:

Glucose is the only source of energy in red blood cells. Under starvation conditions ketone bodies become a source of energy for the brain

Chapter 9: Cellular Respiration Overview: Life Is Work. Living cells. Require transfusions of energy from outside sources to perform their many tasks

Chapter 13 Carbohydrate Metabolism

Biochemistry. Glycolysis. Metabolism of Carbohydrates. Dr.S.K.Khare, Professor IIT Delhi. Principal Investigator.

ATP ATP. Cellular Respiration Harvesting Chemical Energy. The point is to make ATP!

This is an example outline of 3 lectures in BSC (Thanks to Dr. Ellington for sharing this information.)

Chemical Energy. Valencia College

Chem Lecture 8 Carbohydrate Metabolism Part I: Glycolysis

Chapter 9. Cellular Respiration and Fermentation

BCH 4054 Chapter 19 Lecture Notes

Glycolysis. Glycolysis Expectations. Glycolysis 10/20/2015. Chapter 16, Stryer Short Course. Memorize/learn Figure 16.1

Glycolysis. Color index: Doctors slides Notes and explanations Extra information Highlights. Biochemistry Team 437

CHEM121 Unit 2: Carbohydrate Metabolism

Ch. 9 Cellular Respira,on BIOL 222

Metabolism. Metabolic pathways. BIO 5099: Molecular Biology for Computer Scientists (et al) Lecture 11: Metabolic Pathways

Cellular Respiration and Fermentation

Cellular Respiration: Harvesting Chemical Energy Chapter 9

Yield of energy from glucose

Respiration. Organisms can be classified based on how they obtain energy: Autotrophs

Cellular Respiration and Fermentation

7 Cellular Respiration and Fermentation

Dr. DerVartanian is ill and will likely not be able to give lectures this week.

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

CHE 242 Exam 3 Practice Questions

ATP. And how do we do that? Cellular Respiration Stage 1: Glycolysis. The point is to make ATP! What s the point? ATP synthase.

7 Cellular Respiration and Fermentation

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Reece Urry Cain Wasserman Minorsky Jackson

7 Cellular Respiration and Fermentation

Chapter 10. Cellular Respiration Pearson Education Ltd

CELLULAR METABOLISM. Metabolic pathways can be linear, branched, cyclic or spiral

Course: PGPathshala-Biophysics Paper 3: THERMODYNAMICS OF LIVING SYSTEMS AND BIOENERGETICS Module 13: ENERGY GENERATION: GLYCOLYSIS

7 Pathways That Harvest Chemical Energy

Cellular Respiration. Overview of Cellular Respiration. Lecture 8 Fall Overview of Cellular Respiration. Overview of Cellular Respiration

ATP. Principles of Energy Harvest. Chapter 9~ The point is to make ATP! Cellular Respiration: Harvesting Chemical Energy. What s the point?

Cellular Respiration Stage 1: Glycolysis

In glycolysis, glucose is converted to pyruvate. If the pyruvate is reduced to lactate, the pathway does not require O 2 and is called anaerobic

Cellular Respiration and Fermentation

Ch. 9 Cellular Respira,on BIOL 222

Carbohydrate Metabolism

Cellular Respiration: Harvesting Chemical Energy

Reading Assignments. A. Energy and Energy Conversions. Lecture Series 9 Cellular Pathways That Harvest Chemical Energy. gasoline) or elevated mass.

Campbell Biology 9. Chapter 9 Cellular Respiration and Fermentation. Chul-Su Yang, Ph.D., Lecture on General Biology 1

7 Cellular Respiration and Fermentation

Biology 638 Biochemistry II Exam-1

Energy Transformation: Cellular Respiration Outline 1. Sources of cellular ATP 2. Turning chemical energy of covalent bonds between C-C into energy

0.40. Biochemistry of Carbohydrates

Cellular Respiration: Harvesting Chemical Energy

Glycolysis, Citric Acid Cycle, Oxidative Phosphorylation *

BIOCHEMISTRY #12 BY: AMMAR AL-HABAHBEH فيصل الخطيب. October 11, 2012

METABOLISM Biosynthetic Pathways

A cell has enough ATP to last for about three seconds.

Aerobic vs Anaerobic Respiration. 1. Glycolysis 2. Oxidation of Pyruvate and Krebs Cycle

Aerobic Respiration. The four stages in the breakdown of glucose

Review of Carbohydrate Digestion

Cellular Respiration Harvesting Chemical Energy ATP

Coupled, interconnecting reactions

Metabolism Energy Pathways Biosynthesis. Catabolism Anabolism Enzymes

Chapter 9: Cellular Respiration: Harvesting Chemical Energy

Cellular Respiration and Fermentation

Pathway overview. Glucose + 2NAD + + 2ADP +2Pi 2NADH + 2pyruvate + 2ATP + 2H 2 O + 4H +

Cellular Pathways That Harvest Chemical Energy. Cellular Pathways That Harvest Chemical Energy. Cellular Pathways In General

Cell Energy: Glycolysis *

CH 7: Cell Respiration and Fermentation Overview. Concept 7.1: Catabolic pathways yield energy by oxidizing organic fuels

ATP: Adenosine Triphosphate

Transport. Oxidation. Electron. which the en the ETC and. of NADH an. nd FADH 2 by ation. Both, Phosphorylation. Glycolysis Glucose.

Cellular Respiration: Harvesting Chemical Energy CHAPTER 9

BIOLOGY. Cellular Respiration and Fermentation CAMPBELL. Photosynthesis in chloroplasts. Light energy ECOSYSTEM. Organic molecules CO 2 + H 2 O

number Done by Corrected by Doctor Nayef Karadsheh

Chapter 5 Microbial Metabolism: The Chemical Crossroads of Life

Photosynthesis in chloroplasts. Cellular respiration in mitochondria ATP. ATP powers most cellular work

BIOLOGY. Cellular Respiration and Fermentation. Concept 9.1: Catabolic pathways yield energy by oxidizing organic fuels

III. 6. Test. Respiració cel lular

Cellular Respiration

Metabolic engineering some basic considerations. Lecture 9

Independent Study Guide Metabolism I. Principles of metabolism (section 6.1) a. Cells must: (figure 6.1) i. Synthesize new components

Cellular Respiration and Fermentation

Foundations in Microbiology Seventh Edition

Chapter 8. Metabolism. Topics in lectures 15 and 16. Chemical foundations Catabolism Biosynthesis

7/5/2014. Microbial. Metabolism. Basic Chemical Reactions Underlying. Metabolism. Metabolism: Overview

What is Glycolysis? Breaking down glucose: glyco lysis (splitting sugar)

10/25/2010 CHAPTER 9 CELLULAR RESPIRATION. Life is Work. Types of cellular respiration. Catabolic pathways = oxidizing fuels

Transcription:

OpenStax-CNX module: m59692 1 Bis2A 5.3 Glycolysis: Beginning Principles of Energy and Carbon Flow * The BIS2A Team This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 Abstract This module will discuss the metabolic process of glycolysis focusing on key biochemical reactions that illustrate some core ideas involved in energy transfer and the beginning of a discussion on carbon ow. Section Summary Organisms, whether unicellular or multicellular, need to nd ways of getting at least two key things from their environment: (1) matter or raw materials for maintaining a cell and building new cells and (2) energy to help with the work of staying alive and reproducing. Energy and the raw materials may come from dierent places (for instance organisms that primarily harvest energy from sunlight will get raw materials for building biomolecules from other sources like CO 2. Some organisms rely on redox reactions with small molecules and/or reduced metals for energy and get their raw materials for building biomolecules from compounds unconnected to the energy source. Meanwhile, some organisms (including ourselves), have evolved to get energy AND the raw materials for building and cellular maintenance from sometimes associated sources. Glycolysis is the rst metabolic pathway discussed in BIS2A - a metabolic pathway is a series of linked biochemical reactions. Because of its ubiquity in biology, it is hypothesized that glycolysis was probably one of the earliest metabolic pathways to evolve (more on this later). Glycolysis is a 10 step metabolic pathway that is centered on the processing of glucose for both energy extraction from chemical fuel and for the processing of the carbons in glucose into various other biomolecules (some of which are key precursors of many much more complicated biomolecules). Our study of glycolysis should and therefore will be examined using the precepts outlined in the energy challenge rubric that ask us to formally consider what happens to BOTH matter and energy in this multistep process. 1 Glycolysis: an overview The Energy Story and Design Challenge Our investigation of glycolysis is a good opportunity to examine a biological process using both the energy story and the design challenge rubrics and perspectives. * Version 1.1: Jan 20, 2016 7:29 pm -0600 http://creativecommons.org/licenses/by/4.0/

OpenStax-CNX module: m59692 2 In this case the design challenge rubric will try to get you to think in both broad and specic scenarios what problem or problem(s) are "solved" by glycolysis. The idea is to prompt you to actively think about why we are studying this pathway - what is so important about it? You will see that Nature has actually evolved alternate ways of solving some of the problems that the glycolytic pathway alone might solve and some that it can cause and you will be prompted to think about these as potential alternate solutions to a problem and to assess the pros and cons against criteria for success. Later we will examine a hypothesis for how this pathway - and other linked pathways - may have actually evolved and thinking about alternative strategies for satisfying various constrains will come in handy then too. In the context of the energy story, we will ask you to think about glycolysis as a process from which something can be learned by analyzing what happens to both matter and energy. That is, even though it is a 10 step biochemical pathway, we propose that some insight can be learned by carefully examining the process as a set of matter and energy and inputs and outputs, a process with a beginning and and end. So what is glycolysis? Let's start to nd out. Figure 1: The 10 biochemical reactions of glycolysis. Enzymes are designated by numbers above the arrows - each of these enzymes have a name that can be referenced in Table 1. The structure of each core sugar-derived substrate is depicted as a molecular model - other reactants and products may be abbreviated (e.g. ATP, NAD+ etc.). Source: Bis2ATeam

OpenStax-CNX module: m59692 3 Glycolytic Enzymes Enzyme Step G/(kJ/mol) G '/(kj/mol) Hexokinase 1-34 -16.7 Phosphoglucose isomerase 2-2.9 1.67 Phosphofructokinase 3-19 -14.2 Fructose bisphosphate aldose 4-0.23 23.9 Triose phosphate isomerase 5 2.4 7.56 Glyceraldehyde 3-phosphate dehydrogenase 6-1.29 6.30 Phosphoglycerate kinase 7 0.09-18.9 Phosphoglycerate mutase 8 0.83 4.4 Enolase 9 1.1 1.8 Pyruvate kinase 10-23.0-31.7 Table 1: The measurements of the energy at standard state ( G '/(kj/mol)) compared with measurements taken from a living cell ( G/(kJ/mol)). Under conditions of constant temperature and pressure ( G '/(kj/mol)), reactions will occur in the direction that leads to a decrease in the value of the Gibbs free energy. Cellular measurements of G can be dramatically dierent than G ' measurements due to cellular conditions, such as concentrations of relevant metabolites etc. There are three large negative G drops in the cell in the process of glycolysis. These reactions are considered irreversible and are often subject to regulation. Overall, the glycolytic pathway consists of 10 enzyme catalyzed steps. The primary input into this pathway is a single molecule of glucose, though we will discover that molecules may feed in and out of this pathway at various steps. We will focus our attention on (1) consequences of the overall process (2) several key reactions that highlight important types of biochemistry and biochemical principles we will want to carry forward to other contexts and (3) alternative fates of the intermediates and products of this pathway. Note for reference that glycolysis is an anaerobic process, there is no requirement for molecular oxygen in glycolysis (oxygen gas is not a reactant in any of the chemical reactions in glycolysis). Glycolysis occurs in the cytosol or cytoplasm of cells. For a short (3 minute) overview YouTube video of glycolysis click here 1. 2 First half of Glycolysis: Energy Investment Phase The rst few steps of glycolysis are typically referred to as an "energy investment phase" of the pathway. This, however, doesn't make much intuitive sense (in the framework of a design challenge, it's not clear what problem this energy investment solves) if one only looks at glycolysis as an "energy producing" pathway and until these steps of glycolysis are put into a broader metabolic context. We'll try to build that story as we go, so for now just recall that we mentioned that some of the rst steps are often associated with energy investment and ideas like "trapping" and "commitment" that are noted in the gure below. Step 1 of glycolysis: The rst step in glycolysis shown below, is catalyzed by hexokinase (enzyme 1 in Figure 2), an enzyme with broad specicity that catalyzes the phosphorylation of six-carbon sugars. Hexokinase catalyzes the phosphorylation of glucose, where glucose and ATP are substrates for the reaction, producing a molecule glucose-6-phosphate and ADP as products. 1 https://www.youtube.com/watch?v=8kn6bvgqkd8

OpenStax-CNX module: m59692 4 Figure 2: The rst half of glycolysis is called the energy investment phase. In this phase, the cell expends two ATP into the reactions, producing two ADP and a more energetic (less stable) carbon compound. Source: Bis2ATeam note: The paragraph above states that the enzyme hexokinase has "broad specicity". This means that it can catalyze reactions with dierent sugars - not just glucose. From a molecular perspective, can you explain why this might be the case? Does this challenge your conception of enzyme specicity? If you Google the term "enzyme promiscuity" (don't worry it's safe for work) does this give you a broader appreciation for enzyme selectivity and activity? The conversion of glucose to the negatively charged glucose-6-phosphate signicantly reduces the likelihood that the phosphorylated glucose leaves the cell by diusion across the hydrophobic interior of the plasma membrane. It also "marks" the glucose in a way that eectively tags it for several dierent possible fates (see gure below).

OpenStax-CNX module: m59692 5 Some possible fates of glucose-6-phosphate Figure 3: Note that this gure indicates that glucose-6-phosphate can, depending on cellular conditions, be directed to multiple fates. While it is a component of the glycolytic pathway it is not only involved in glycolysis but also in the storage of energy as glycogen (CYAN) and in the building of various other molecules like nucleotides (RED). Source: Marc T. Facciotti (original work) As the gure above indicates, glycolysis is but one possible fate for glucose-6-phosphate (G6P). Depending on cellular conditions, G6P may be diverted to the biosynthesis of glycogen (an form of energy storage) or it may be diverted into the pentose phosphate pathway for the biosynthesis of various biomolecules, including nucleotides. This means that G6P, while involved in the glycolytic pathway is not solely tagged for oxidation at this phase. Perhaps, showing the broader context that this molecule is involved in (in addition to the rationale that tagging glucose with a phosphate decreases the likelihood that it will leave the cell) helps to explain the seemingly contradictory (if you only consider glycolysis as an "energy producing" process) reason for transferring energy from ATP onto glucose if it is only to be oxidized later - that is, glucose is not only used by the cell for harvesting energy and several other metabolic pathways depend on the transfer of the phosphate group. Step 2 of glycolysis: In the second step of glycolysis, an isomerase catalyzes the conversion of glucose- 6-phosphate into one of its isomers, fructose-6-phosphate. An isomerase is an enzyme that catalyzes the conversion of a molecule into one of its isomers. Step 3 of glycolysis: The third step of glycolysis is the phosphorylation of fructose-6-phosphate, catalyzed by the enzyme phosphofructokinase. A second ATP molecule donates a phosphate to fructose-6-phosphate, producing fructose-1,6-bisphosphate and ADP as products. In this pathway, phosphofructokinase is a ratelimiting enzyme and its activity is tightly regulated. It is allosterically activated by AMP when concentration

OpenStax-CNX module: m59692 6 of AMP are high and moderately allosterically inhibited by ATP at the same site. Citrate - a compound we'll discuss soon - also acts as a negative allosteric regulator of this enzyme. In this way, phosphofructokinase monitors or senses molecular indicators of the energy status of the cells and can in response act as a switch that turns on or o the ow of substrate through the rest of the metabolic pathway depending on whether there is sucient ATP relative in the system. The conversion of fructose-6-phosphate into fructose 1,6- bisphosphate is sometimes referred to as a commitment step by the cell to the oxidation of the molecule in the rest of the glycolytic pathway by creating a substrate for and helping to energetically drive the next highly endergonic (under standard conditions) step of the pathway. note: We discussed allosteric regulation of an enzyme in earlier modules but did so in a context where the enzyme was "alone". Now let's consider the enzyme in the context of an extended metabolic pathway(s). Can you now express why allosteric regulation is functionally important and how it can be used to regulate the ow of compounds through a pathway? Try to express yourself. Step 4 of glycolysis: In the fourth step in glycolysis an enzyme, aldolase, cleaves 1,6-bisphosphate into two three-carbon isomers: dihydroxyacetone-phosphate and glyceraldehyde-3-phosphate. Exercise 1: Reading chemical reactions in glycolysis (Solution on p. 11.) In the rst reaction in gure 1. What are the reactants and what are the products? a. Reactants: glucose b. Products: glucose-6-phosphate c. Reactants:glucose and ATP d. Products: ADP and glucose-6-phosphate e. a and b f. c and d Exercise 2 (Solution on p. 11.) The phosphorlyation of glucose to glucose 6-phosphate: a. Occurs without a catalyst b. Is so energetically favorable that the source of phosphate is not important c. Is so energetically favorable that it can be used to synthesize ATP d. Requires energy from ATP to occur. 2.1 Second Half: Energy Payo Phase If viewed in the absence of other metabolic pathways, glycolysis has thus far cost the cell two ATP molecules and produced two small, three-carbon sugar molecules: dihydroxyacetone-phosphate (DAP) and glyceraldehyde- 3-phosphate (G3P). When viewed in a broader context this investment of energy to produce a variety of molecules that can be used in a variety of other pathways doesn't seem like such a bad investment. Both DAP and G3P can proceed through the second half of glycolysis. We now examine these reactions.

OpenStax-CNX module: m59692 7 Figure 4: The second half of glycolysis is called the energy payo phase. In this phase, the cell gains two ATP and 2 NADH compounds. At the end of this phase glucose has become partially oxidized to form pyruvate. Source: Bis2ATeam Step 5 of glycolysis. In the fth step of glycolysis, an isomerase transforms the dihydroxyacetonephosphate into its isomer, glyceraldehyde-3-phosphate. The 6 carbon glucose has therefore now been converted into two phosphorylated 3-carbon molecules of G3P. Step 6 of glycolysis. The sixth step is key and one from which can now leverage our understanding of the several types of chemical reactions that we've studied so far. If you're energy focused, this is nally a step of glycolysis where some of the reduced sugar is oxidized. The reaction is catalyzed by the enzyme glyceraldehyde-3-phosphate dehydrogenase. This enzyme catalyzes a multistep reaction between three substrates, glyceraldehyde-3-phosphate, the cofactor NAD +, and inorganic phosphate (P i ) and produces three products 1,3-bisphosphoglycerate, NADH and H +. One can think of this reaction as two reactions: (1) an oxidation/reduction and (2) a substrate-level phosphorylation (a condensation reaction in which an inorganic phosphate is transferred onto a molecule). In this particular case, the redox reaction (a transfer of electrons o of G3P and onto NAD + is exergonic and the phosphate transfer happens to be endergonic. The net standard free energy change hovers around zero - more on this later. The enzyme, here acts as a molecular coupling agent to couple the energetics of the exergonic reaction to that of the endergonic reaction thus driving both forward. This processes happens through a multi-step mechanism in the enzyme's active site and involving the chemical activity of a variety of functional groups. Exercise 3 (Solution on p. 11.) Which of the following characteristics apply to reaction 6 in glycolysis? a. This reaction is a redox reaction b. The reactants are NAD, P and G3P c. The products are NADH, H, 13BPG d. Reaction 6 is actually two dierent, unconnected reactions so it should have two dierent lists of reactants and two dierent lists of products. e. a, b, c f. a and d

OpenStax-CNX module: m59692 8 Exercise 4 (Solution on p. 11.) A substantial amount of the free energy released by glucose oxidation is captured on and. a. ATP, NADH b. NADH, proton gradient c. NAD+, ADP d. ATP, FADH2 It is important to note that this reaction depends upon the availability of the oxidized form of the electron carrier, NAD +. If we consider that there is a limiting pool of NAD + we can then conclude that the reduced form of the carrier (NADH) must be continuously oxidized back into NAD + in order to keep this step going. If NAD + is not available, the second half of glycolysis slows down or stops. Step 7 of glycolysis: The seventh step of glycolysis, catalyzed by phosphoglycerate kinase (an enzyme named for the reverse reaction), 1,3-bisphosphoglycerate transfers a phosphate to ADP, forming one molecule of ATP and a molecule of 3-phosphoglycerate. This reaction is exergonic and is also an example of substratelevel phosphorylation. note: If a transfer of a phosphate from 1,3-BPG to ADP is exergonic, what does that say about the free energy of hydrolysis of the phosphate from 1,3-BPG as compared to the free energy of hydrolysis of the terminal phosphate on ATP? Step 8. In the eighth step, the remaining phosphate group in 3-phosphoglycerate moves from the third carbon to the second carbon, producing 2-phosphoglycerate (an isomer of 3-phosphoglycerate). The enzyme catalyzing this step is a mutase (isomerase). Step 9. Enolase catalyzes the ninth step. This enzyme causes 2-phosphoglycerate to lose water from its structure; this is a dehydration reaction, resulting in the formation of a double bond that increases the potential energy in the remaining phosphate bond and produces phosphoenolpyruvate (PEP). Step 10. The last step in glycolysis is catalyzed by the enzyme pyruvate kinase (the enzyme in this case is named for the reverse reaction of pyruvate's conversion into PEP) and results in the production of a second ATP molecule by substrate-level phosphorylation and the compound pyruvic acid (or its salt form, pyruvate). Many enzymes in enzymatic pathways are named for the reverse reactions, since the enzyme can catalyze both forward and reverse reactions (these may have been described initially by the reverse reaction that takes place in vitro, under non-physiological conditions). 2.2 Outcomes of Glycolysis A couple of things to consider: One of the clear outcomes of glycolysis is the biosynthesis of compounds that can enter into a variety of metabolic pathways. Likewise compounds coming from other metabolic pathways can feed into glycolysis at various points. So, this pathway can be part of a central exchange for carbon ux within the cell. If glycolysis is run long enough, the constant oxidation of glucose with NAD + can leave the cell with a problem; how to regenerate NAD + from the 2 molecules of NADH produced. If the NAD + is not regenerated all of the cell's NAD will be nearly completely transformed into NADH. So how do cells regenerate NAD + Pyruvate is not completely oxidized, there is still some energy to be extracted - how might this happen? Also, what should the cell do with all of that NADH? Is there any energy there to extract? note: Can you write an energy story for the overall process of glycolysis. For energy terms just worry about describing things in terms of whether they are exergonic or endergonic. When I say

OpenStax-CNX module: m59692 9 overall process I mean overall process: glucose should be listed in the reactants and pyruvate listed on the product side of the arrow. Exercise 5 (Solution on p. 11.) The ow of carbon through glycolysis can be described as: a. Oxidation of a six carbon sugar. b. Oxidation of a six carbon sugar, followed by cleavage into two three carbon molecules. c. Cleavage of a six carbon sugar into two three carbon molecules, followed by their oxidation. d. Conversion of glucose into carbon dioxide. Exercise 6 (Solution on p. 11.) Glycolysis a. Does not require oxygen to generate energy. b. Requires oxygen to generate energy c. Is inhibited by oxygen. d. Rate is increased in the presence of oxygen 2.3 Substrate Level Phosphorylation (SLP) The simplest rout to synthesize ATP is substrate level phosphorylation. ATP molecules are generated (that is, regenerated from ADP) as a direct result of a chemical reaction that occurs in catabolic pathways. A phosphate group is removed from an intermediate reactant in the pathway, and the free energy of the reaction is used to add the third phosphate to an available ADP molecule, producing ATP. This very direct method of phosphorylation is called substrate-level phosphorylation. It can be found in a variety of catabolic reactions, most notably in two specic reactions in glycolysis (which we will discuss specically later). Suce it to say what is required is a high energy intermediate whose oxidation is sucient to drive the synthesis of ATP.

OpenStax-CNX module: m59692 10 Figure 5: Substrate phosphorylation in glycolysis. Here is one example of substrate level phosphorylation occurring in glycolysis. A direct transfer of a phosphate group from the carbon compound onto ADP to form ATP. Source: Bis2ATeam In this reaction the reactants are a phosphorylated carbon compound called G3P (from reaction 6 of glycolysis), an ADP molecule and the products are 1,3BPG and ATP. The transfer of the phosphate from G3P to ADP to form ATP in the active site of the enzyme is substrate level phosphorylation. This occurs twice in glycolysis and once in the TCA cycle (discussed in module 5.4).

OpenStax-CNX module: m59692 11 Solutions to Exercises in this Module Solution to Exercise (p. 6) f Solution to Exercise (p. 6) d Solution to Exercise (p. 7) e Solution to Exercise (p. 8) a Solution to Exercise (p. 9) b Solution to Exercise (p. 9) Insert Solution Text Here