Diabetic Neuropathy: Discordance between Symptoms and Electrophysiological Testing in Saudi Diabetics

Similar documents
JMSCR Vol 04 Issue 12 Page December 2016

Clinical and Electrodiagnostic Profile of Diabetic Neuropathy in a Tertiary Hospital in Punjab, India

ORIGINAL ARTICLE. STUDY OF CLINICO ELECTROPHYSIOLOGICAL PROFILE OF DIABETIC NEUROPATHY Sachin. G. J, Ravi Vaswani, Shilpa. B.

Diabetic Neuropathy. Nicholas J. Silvestri, M.D.

Physician s Compliance with Diabetic Guideline

Kim Chong Hwa MD,PhD Sejong general hospital, Division of endocrine & metabolism

DIABETIC NEUROPATHY ASSESSED AT TWO TIME POINTS FIVE YEARS APART

DIAGNOSIS OF DIABETIC NEUROPATHY

Mædica - a Journal of Clinical Medicine. University of Oradea, Institute for Doctoral Studies, Oradea, Bihor County, Romania

Chapter 37: Exercise Prescription in Patients with Diabetes

ABSTRACT KEY WORDS KATHMANDU UNIVERSITY MEDICAL JOURNAL. Page 120. Background

Original Research Article

EFFECT OF GLYCEMIC CONTROL ON ELECTROPHYSIOLOGIC CHANGES OF DIABETIC NEUROPATHY IN TYPE 2 DIABETIC PATIENTS

Evaluation of nerve conduction abnormalities in type 2 diabetic patients

Neurophysiological evaluation in newly diagnosed Diabetes Mellitus type 1

Original Article Cutaneous manifestations of diabetic foot Sarwat Nasreen, Ijaz Ahmed, Muhammad Umer Jahangir*

The Egyptian Journal of Hospital Medicine (July 2017) Vol.68 (2), Page

JMSCR Vol 05 Issue 10 Page October 2017

Influence of Risk Factors and Diabetic Complications on Peripheral Nerve Function in Type 2 Diabetes Mellitus

Diabetes Mellitus Type 2 Evidence-Based Drivers

Diabetes Mellitus and the Dental Healthcare Professional

A study of micro vascular complications and associated risk factors in newly diagnosed patients of type 2 diabetes mellitus

Keywords: Type 2 DM, lipid profile, metformin, glimepiride ABSTRACT

Impact of Physical Activity on Metabolic Change in Type 2 Diabetes Mellitus Patients

Diabetic Foot Ulcers. Alex Khan APRN ACNS-BC MSN CWCN CFCN WCN-C. Advanced Practice Nurse / Adult Clinical Nurse Specialist

Prevalence and determinants of peripheral neuropathy among diabetics in a rural cum costal area of Villupuram district, Tamil Nadu

CHAPTER.7 CARING THE DIABETIC FOOT

Practical upates in Diabetes & CV risk management: Brief Updates Neurological complications in diabetes

Use of Antihypertensive Medications in Patients with type -2 Diabetes in Ajman, UAE

Original article: Study to correlate of findings of Ankle Brachial Index with duration of diabetes, serum lipid profile and HbA1c

Moving to an A1C-Based Screening & Diagnosis of Diabetes. By Prof.M.Assy Diabetes&Endocrinology unit

THE FORGOTTEN COMPLICATION M. Pfeifer

Diabetologia 9 Springer-Verlag 1993

DIABETES MEASURES GROUP OVERVIEW

The near-nerve sensory nerve conduction in tarsal tunnel syndrome

The Role of Hyperlipidemia on Nerve Conduction. Abdul Raheem H Dawoud, MB,ChB, Board* Shaymaa J Al Shareefi, MB,ChB, MSc* Hedef D El Yassin, PhD, **

Risk factors for microvascular and macrovascular complications in men and women with type 2 diabetes

Knowledge of Diabetic Foot Care among Nursing Practitioners in Rivers State, Nigeria

Diabetes Mellitus Aeromedical Considerations. Aviation Medicine Seminar Bucharest, Romania. 11 th to 15 th November 2013

Prevalence and related risk factors of peripheral neuropathy in children with insulin dependent diabetes mellitus

ISSN X (Print) *Corresponding author V. Muthu Krishnan

Diabetes Day for Primary Care Clinicians Advances in Diabetes Care

Obesity, Insulin Resistance, Metabolic Syndrome, and the Natural History of Type 2 Diabetes

A nationwide population-based study. Pai-Feng Hsu M.D. Shao-Yuan Chuang PhD

The effect of educational intervention on knowledge, attitude and glycemic control in patients with type 2 diabetes mellitus

Study on clinical profile of patients attending a tertiary care hospital with diabetic foot from Andhra Pradesh

Managing Diabetes for Improved Health and Economic Outcomes

Journal of Chemical and Pharmaceutical Research, 2014, 6(1): Research Article

Welcome and Introduction

Lower Extremity Peripheral Neuropathy. Andrew Blount MD

Detection of peripheral vascular disease in patients with type-2 DM using Ankle Brachial Index (ABI)

TUE Physician Guidelines Medical Information to Support the Decisions of TUE Committees Diabetes Mellitus DIABETES MELLITUS

Diabetes Overview. How Food is Digested

Initiation and Titration of Insulin in Diabetes Mellitus Type 2

International Journal of Health Sciences and Research ISSN:

ATHLETES & PRESCRIBING PHYSICIANS PLEASE READ

Long-Term Cost-effectiveness of Saxagliptin for the Treatment of Type 2 Diabetes in South Africa

Diabetic Peripheral Neuropathy: Assessment and Treatment

Quality ID #1 (NQF 0059): Diabetes: Hemoglobin A1c (HbA1c) Poor Control (>9%) National Quality Strategy Domain: Effective Clinical Care

A computer simulation model for cost effectiveness analysis of mass screening for Type 2 diabetes mellitus

Diabetes treatment by the algorithm

Long-Term Care Updates

Clinical Research and Methods. Vol. 37, No. 2

Complications of Diabetes: Screening and Prevention

Prevalence and Characteristics of Painful Diabetic Neuropathy in a Large Community-Based Diabetic Population in the U.K.

School of Health Science & Nursing, Wuhan Polytechnic University, Wuhan , China 2. Corresponding author

Why is Earlier and More Aggressive Treatment of T2 Diabetes Better?

Study of significance of glycosylated hemoglobin in diabetic patient

Comparison of Sudomotor and Sensory Nerve Testing in Painful Sensory Neuropathies

Prevalence of Peripheral Neuropathy in Diabetic Patients

Effect of smoking on glycosylated hemoglobin (HbA1c) among patients with diabetes mellitus type II

IS HEMOGLOBIN A1C A VALUABLE PARAMETER IN NON-DIABETIC PATIENTS WITH PERIPHE- RAL ARTERIAL DISEASE?

Socio-Economic impact on families with Diabetic Foot Ulcers and Amputations

2018 OPTIONS FOR INDIVIDUAL MEASURES: REGISTRY ONLY. MEASURE TYPE: Process

Complications in IDDM are caused by elevated blood glucose level: The Stockholm Diabetes Intervention Study (SDIS) at 10-year follow up

International Journal of Scientific & Engineering Research Volume 9, Issue 1, January ISSN

Yiling J. Cheng, Edward W. Gregg, Henry S. Kahn, Desmond E. Williams, Nathalie De Rekeneire, and K. M. Venkat Narayan

Treatment Induced Neuropathy of Diabetes. Christopher Gibbons MD, MMSc

A prospective study in patients with type 1 diabetes

Diabetes: What is the scope of the problem?

Health-related quality of life of diabetic foot ulcer patients and their caregivers

Adolescent Obesity GOALS BODY MASS INDEX (BMI)

Frequency of peripheral neuropathy in pre diabetics in sub Himalayan region: a cross sectional observational study

Volume 5 Issue 8, August

Diabetes. HED\ED:NS-BL 037-3rd

Type 1 diabetes, although the most common

Isam Hamo Mahmood & Wail Moneer Mohammed Sadiq

We know these take time to gather, so please plan ahead!

Ο ρόλος των τριγλυκεριδίων στην παθογένεια των μικροαγγειοπαθητικών επιπλοκών του σακχαρώδη διαβήτη

HHS Public Access Author manuscript Curr Diab Rep. Author manuscript; available in PMC 2016 October 28.

Janice Lazear, DNP, FNP-C, CDE DIAGNOSIS AND CLASSIFICATION OF DIABETES

Aldose Reductase Inhibition by AS-3201 in Sural Nerve From Patients With Diabetic Sensorimotor Polyneuropathy

Early diagnosis, early treatment and the new diagnostic criteria of diabetes mellitus

My Diabetic Patient Has No Pulses; What Should I Do?

Clinical,Radiological and Monofilament study of HIV positive patients depending on the type of neurological symptoms manifestations.

THERE is little information available on the incidence

National Health and Nutrition Examination Survey

Distal Polyneuropathy in Type 2 Diabetes Mellitus in and Around Jabalpur, Madhya Pradesh, India

The Internist s Approach to Neuropathy

DOI: /jemds/2014/2044 ORIGINAL ARTICLE

Transcription:

Bahrain Medical Bulletin, Vol.24, No.1, March 2002 Diabetic Neuropathy: Discordance between Symptoms and Electrophysiological Testing in Saudi Diabetics Daad H Akbar, FRCP(UK), Arab Board, Saudi Board * Objective: To determine the prevalence of nerve conduction velocity alteration in symptomatic diabetic neuropathy and to report the associated risk factors. Method: A cross sectional study of Saudi diabetics followed up in the medical outpatient clinic at King Abdulaziz University Hospital between January 1998 to May 1999. Diabetic neuropathy was diagnosed using the Michigan Neuropathy Program. Patients included in the study were those who had symptomatic neuropathy and scored >2 on simple clinical examination. Nerve conduction studies were done, detailed information of each patients age, sex, Body Mass Index (BMI), type and duration of diabetes, mode of treatment, degree of glycemic control, presence of hypertension, hyperlipidemia and smoking were recorded. Results: A total of 136 patients were included in the study with mean age of 56.2 years and mean duration of diabetes 12.49 years. Normal nerve conduction studies were found in 36% of the patients. Patients using insulin, prolonged and poorly controlled diabetes were the most important risk factors associated with diabetic neuropathy (p<0.001). Conclusion: The discordance between symptoms and nerve conduction studies means that we need nerve conduction studies for the proper diagnosis of diabetic neuropathy. Prolonged, poorly controlled diabetes and insulin use were risk factors associated with diabetic neuropathy. Aggressive/strict control of blood glucose is the key in the ultimate prevention of diabetic neuropathy. Bahrain Med Bull 2002;24(1):10-12. Diabetic neuropathy (DN) is a common complication of diabetes mellitus (DM) that eventually affect the majority of diabetic patients and is associated with significant morbidity and disability 1-3. Nerve conduction velocity (NCV) alteration may not be concordant with signs and symptoms of DN 4,5. ----------------------------------------------------------------------------------------- * Associate Professor & Consultant Physician Member of the American Diabetes Association & American Endocrine Society King Abdulaziz University Hospital Jeddah Kingdom of Saudi Arabia

The aim of our study is to determine the prevalence of NCV alteration in symptomatic DN and to report on the risk factors associated with it. METHOD This is a cross sectional study in which Saudi diabetic patients being followed in the medical outpatient clinic of King Abdulaziz University Hospital (KAUH) Jeddah, from January 1998 till May 1999. All patients had established DM classified as either type I or II using WHO criteria 6. Neuropathy was diagnosed using the Michigan Neuropathy Program 7 which is a two-step program, Diabetic Neuropathy Index (DNI) and Diabetic Neuropathy Score (DNS). Patients were initially screened for DN using 15 yes or no questionnaire and a simple clinical examination (which consist of foot inspection, an assessment of vibration sensation on the great toe and the presence of ankle reflex) known as DNI. Patients who were symptomatic and scored more than 2 on simple clinical examination were selected for the study and referred to a neurologist for the second component of the program, which is the DNS. This component consists of a more complete neurological examination of sensation in the feet, distal strength and reflexes. It is followed by nerve conduction studies (NCS) (motor and sensory conduction velocities of common peroneal and median nerve) performed with the temperature maintained at 22 0 C using standard protocols 8. A nerve is considered abnormal if the calculated conduction velocity is less than average conduction velocity which is defined as values between the 1 st and 99 th percentile 8. Nerve conduction abnormalities were classified into normal and abnormal (mild, moderate and severe abnormalities) according to common peroneal (CPN) and median nerve (MN) conduction. The values for CPN are: Normal > 44.4 m/s, mild 40-44.3 m/s, moderate 36-39.9 m/s and severe <36 m/s. Whereas the values for MN are: normal > 52.8 m/s, mild 48-52.7 m/s, moderate 40-47.9 m/s and severe <40 m/s. The following information were recorded: age, sex as well as their body mass index (BMI) (weight in kilograms divided by square height in meters), type and duration of DM and type of treatment (diet, oral hypoglycemic agents, insulin or combined). Poorly controlled patients were diagnosed by their non-compliance to diet and medications, symptoms of hyperglycemia and HbA1c > 7%. The presence of hypertension, hyperlipidemia and smoking were recorded. Statistical analysis was done using the Statistical Package for Social Sciences (SPSS 7.5). T- test and Chi-square were used appropriately. Results were considered significant if the P value is less than 0.05. RESULTS A total of 136 patients fulfilled the criteria and were included in the study. The mean age was 56.20 years (17-80 years) with male to female ratio 1:1.6 (53:83) and mean BMI 28.62 ± 4.85. Most of the patients were type II, 120 (88.2%) while 16 (11.8%) were type I. The mean duration of DM was 12.49 ± 6.81 years. Oral hypoglycemic agents (OHG) were the treatment used by 81 patients (59.6%), followed by insulin 46 (33.8%), diet 5 (3.7%) and combined OHG and insulin in 4 (2.9%). Poor glycemic control was found in 87 patients (64%) while 49 (36%) were well controlled. Forty-eight (35.3%) patients

were hypertensive while hyperlipidemia was found in 36 (26.5%) and a history of smoking in 29 (21.3%). Normal NCS were found in 49 patients (36%). Abnormal NCS were found in 87 patients (64%) of which most of them had mild conduction defects 37 (42.5%), while moderate defects were found in 26 (29.8%) and severe in 24 (27.5%). Nerve conduction abnormalities in symptomatic patients were significantly related to poor glycemic control. Seventy-one (81.6%) poorly controlled patients had abnormal NCS as compared to 16 (18.4%) well controlled patients (P <0.001). Long duration of DM was also strongly related to abnormalities in NCS, the mean duration of DM in patients with NCS abnormalities was 14.4 years as compared to 9.1 years in those with normal NCS (P <0.001). Abnormal NCS were also significantly associated with insulin use, 32 (69.6%) of those on insulin showed abnormal NCS compared to 14 (30.4%) who showed normal NCS. There was no significant relation between abnormal NCS and patients age (p0.4) sex (p0.7) BMI (p0.36), type of DM (p0.1), hypertension (p0. 5), hyperlipidemia (p0.23) or smoking (p0.13). DISCUSSION DN is a common complication of DM and it is encountered in more than one third of diabetic patients 9. Pirar et al 10 had found a five fold increase in the incidence of DN after 25 years of follow up. Discordance between nerve conduction velocity and symptoms and signs of DN has been reported before 4,5. We found that 36% of our patients with symptomatic DN had normal NCS, which is higher than that reported by Sangiorgio et al 4 and Fedele et al 5. This discordance between symptoms and NCS means that we can not rely on patient s symptoms for the diagnosis of DN and we need NCS for better assessment and diagnosis of DN. Prolonged and poorly controlled DM were the most significant factors associated with DN and this has been reported by others 4,5,11,12. Cheng et al 13 has also reported a significant relation between insulin use and DN and this is similar to our findings. As reported by Hillson et al 14 and Maser et al 15 no significant relation has been found between DN and sex, BMI, hypertension and hyperlipidemia which is in agreement with our findings. The relation between smoking and DN varies, some reports showed significant relation 11 while others 16 didn t find any relation. We found no significant relation between DN and smoking. No significant relation has been found between age and abnormal NCS, while on the other hand a strong relation was found with poor glycemic control, this means that even young patients can develop alteration in NCS if they are not well controlled. As the pathogenic mechanisms of DN are not fully understood, there is no satisfactory and fundamental therapy for DN. Therefore, further researches are needed especially into pathogenic mechanisms in order that satisfactory treatment is achieved. Good glycemic control is essential if the risk of diabetic complications is to be minimized 17. There was a strong relation between baseline glycated hemoglobin and the loss of tactile sensation and temperature sensation 18. Intensive diabetic control had been shown to reduce the occurrence of clinical neuropathy by 60% 19,20. Several prospective randomized clinical

trials have shown the beneficial effect of tight glycemic control on the progression of chronic microvascular complications of DM 21-23. This means that strenuous control of blood glucose is the key in the ultimate prevention of DN. CONCLUSION The discordance between symptoms and nerve conduction studies means that we need nerve conduction studies for the proper diagnosis of diabetic neuropathy. Prolonged poorly controlled diabetes and insulin use were risk factors associated with diabetic neuropathy. Aggressive/strict control of blood glucose is the key in the ultimate prevention of diabetic neuropathy. REFERENCES 1. Apelqvist J, Tennvall RG, Persson U, et al. Diabetic foot in a multidisciplinary setting: an economic analysis of primary healing and healing with amputation. J Intern Med 1994;235:463-71. 2. Humphery LL, Palumbo PJ, Butters MA, et al. The contribution of non-insulin dependent diabetes to lower-extremity amputation in the community. Arch Intern Med 1994;154:885-92. 3. Ahroni JH, Boyko EJ, Davignon DR, et al. The health and functional status of veterans with diabetes. Diabetes Care 1994;17:318-21. 4. Sangiorgio L, Iemmolo R, Le-Moli R, et al. Diabetic neuropathy: prevalence, concordance between clinical and electrophysiological testing and impact of risk factors. Panminerva-Med 1997;39:1-5. 5. Fedele D, Comi G, Coscelli C, et al. Amulticenter study on the prevalence of diabetic neuropathy in Italy. Italian Diabetic Neuropathy Committee. Diabetes Care 1997;20:836-43. 6. World Health Organization. Diabetes mellitus: Report of a WHO Study Group. Tech Rep Ser 1985;727:1-113. 7. Feldman EL, Stevens MJ, Thomas PK, et al. A practical two-step quantitative clinical and electrophysiological assessment for the diagnosis and staging of diabetic neuropathy. Diabetes Care 1994;17:1281-9. 8. Kimura J. Principles of nerve conduction studies. In: Kimura J, ed. Electrodiagnosis in Diseases of Nerve and Muscle: Principles and Practice. Philadelphia: Davis, 1989:.83-104. 9. Ziegler D. Diagnosis, staging and epidemiology of diabetic peripheral neuropathy. Diabetes Nur Metab 1994;7:342-8. 10. Pirart J. Diabetes mellitus and it s degenerative complications; a prospective study of 4,400 patients observed between 1947-1973. Diabetes Care 1978;1:168-88.

11. Tesfaye S, Stevens LK, Stephenson JM, et al. Prevalence of diabetic neuropathy and it s relation to glycemic control and potential risk factors: the EURODIAB IDDM Complications Study. Diabetologia 1996;39:1377-84. 12. Lipnick JA, Lee TH. Diabetic Neuropathy. Am Fam Physician 996;54:2478-84, 2487-8. 13. Cheng WY, Jiang YD, Chuang LM, et al. Quantitative sensory testing and risk factors of diabetic sensory neuropathy. J Neurol 1999;246:394-8. 14. Hilson RM, Hockaday TDR, Newton DJ. Hyperglycemia is one correlate of deterioration in vibration sense during the 5-years after diagnosis of type 2 (noninsulin dependent ) diabetes. Diabetologia 1984;26:122-6. 15. Master RE, Steenkist AR, Dorman VK, et al. Epidemiological correlate of diabetic neuropathy: report from the Pittsburgh Epidemiology of diabetic complications study. Diabetes 1989;38:1456-61. 16. Benbow SJ, William G, MacFarlane IA. Smoking habits and painful diabetic neuropathy. J Diabetes Complications 1997;11:334-7. 17. UKPDS Group. Intensive blood glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837-53. 18. Klein R, Klein BEK, Moss SE. Relation of glycemic control to diabetic microvascular complications in diabetes mellitus. Ann Intern Med 1996;124:90-96. 19. The Diabetes Control and Complication Trial Research Group. The effect of intensive diabetes therapy on the development and progression of neuropathy. Ann Intern Med 1995;122:561-8. 20. Diabetes Control and Complications Research Group. The effect of intensive treatment of diabetes on the development and progression of long term complications in insulin dependent diabetes mellitus. N Eng J Med 1993;329:977-86. 21. Klein R. Hyperglycemia and microvascular and macrovascular disease in diabetes. Diabetes Care 1995;18:258-68. 22. Wang PH, Lau J, Chalmers TC. Meta-analysis of effect of intensive blood glucose control on late complications on type I diabetes. Lancet1993;341:1306-9. 23. Verrotti A, Catino M, Di-Ricco L, et al. Prevention of microvascular complications in diabetic children and adolescents. Acta Paediatr Suppl 1999;88:35-8.