Pollination biology of Persea americana Fuerte

Similar documents
Scientia Horticulturae, 7 (1977) Elsevier Scientific Publishing Company, Amsterdam -- Printed in The Netherlands

THE ROLE OF BORON IN AVOCADOS: THEORY, PRACTICE AND REALITY

Durian (Durio zibethinus L.) is one of the most

Hybridization between Lycopersicon esculentum Mill. and Lycopersicon pennellii Cor.: Pollen Fertility and Viability in F 1.

THE IMPACT OF FOLIAR APPLICATIONS OF NITROGEN AND BORON ON 'HASS' AVOCADO FRUIT SET

IGCSE BIOLOGY 0610 SCHEME OF WORK 1

Past Questions on Plant Reproduction

BIOLOGY CLASS: VIII TOPIC: Life Processes: Growth, Reproduction & Development (plants) Difference between self-pollination & cross pollination

REPRODUCTION IN FLOWERING PLANTS

SEXUAL REPRODUCTION IN PLANTS WITH SEEDS

Reproduction 19/02/2016. Asexual Reproduction. Budding: Types of asexual reproduction: SEXUAL VS. ASEXUAL

3/18/2012. Chapter 36. Flower Parts. Flower Parts. Reproduction in Angiosperms

Plant Science 1203L Laboratory 5 - Sexual Reproduction (Pollination and Double Fertilization)

Reproductive Biology of Mango (Mangifera indica) in a Mediterranean Climate

SPINE ROAD HIGH SCHOOL

(i) Describe how the presence of these enzymes may increase the efficiency of the washing powder in removing stains from clothes.

Open Flower. Juvenile leaf Flowerbud. Carpel 35 NA NA NA NA 61 NA 95 NA NA 15 NA 41 3 NA

Flowers, Fruit and Seeds Notes Flower Structure and Reproduction Taken from

SEASONAL VARIATIONS IN LEAF MINERAL CONTENT

CONTROL OF PREHARVEST FRUIT DISEASES OF AVOCADO Part I: Efficacy of various Triazole fungicides against Cercospora spot and Sooty blotch

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Flower Morphology. Flower Structure

Chapter 38. Plant Reproduction. AP Biology

Boron Nutrition of Avocados

UNIT 4. REPRODUCTION

Chapter 38. Plant Reproduction. AP Biology

Effect of Certain Antibiotics on Pollen Germination and Pollen Tube Growth in Tecomella undulata and Haplophragma adenophyllum.

Chemical control of Phytophthora cinnamomi

2.1 Reproduction At the end of this sequence of lessons I can:

Scheme of work Cambridge IGCSE Biology (0610)

Unit E: Plant Propagation. Lesson 1: Understanding Sexual Reproduction

Effect of Moisture Content on Pollen Storage of Hevea Clone RRIM 600 and RRIT 251

Control of Phytophthora root rot of avocados by trunk injection

Plants Provision for Life. Chapter 2 7 th Grade

Female and male sterility cause low fruit set in a clone of the `Trevatt' variety of apricot (Prunus armeniaca)

Effect of temperature regime on pollen and the effective pollination of `Kent' mango in Israel

16B Flower Dissection

Comparison of different calcium sources on avocado production

Glossary. The living component or part of the biosphere. An animal's body takes on the same temperature as that of their environment.

Introduction. Copyright 2002 Pearson Education, Inc., publishing as Benjamin Cummings

Nyla Phillips-Martin 2013 mscraftynyla.blogspot.com

Chapter 38: Angiosperm Reproduction and Biotechnology

Ontwikkeling; bevruchting

NOTES: CH 38 Plant Reproduction

High temperature injuries in tomato. V. Fertilization and development of embryo with special reference to the abnormalities caused by high temperature

Seed Plants Lab. Learning Objectives. Procedure and Questions

Plant Life Cycles. Plant life cycles alternate between. producing gametes. Life cycle phases look different among various

Flowering Plant Reproduction

Operation Flower Dissection

How Avocado Fruits Soften During Ripening

Researches in reproductive biology of sour cherry

Johnny Johnny Saichuk Rice Specialist

S C I E N C E POLLINATION AND FERTILIZATION SELF INSTRUCTIONAL MATERIALS

Teaching A2 Biology Practical Skills Appendix 2

Chapter 40 Flowering Plant Sexual Reproduction

plant reproduction Alternation of Generations chapter 38

Plant Reproduction fertilization

Biology Journal Volume I

CHAPTER 2 Sexual reproduction in flowering plants.

Angiosperms. The most diverse group of plants, with about 14,000 genera and 257,000 species.

Scientia Horticulturae

THE GENETIC CONTROL OF SELF-INCOMPATIBILITY IN THE GENUS GASTERIA (LILIACEAE)

POLLEN CRYOPRESERVATION

Inflorescence and Flower Development of the 'Hass' Avocado (Persea americana Mill.) during "On" and "Off" Crop Years

SEXUAL REPRODUCTION IN FLOWERING PLANTS

SENSITIVITY OF FUNGAL PATHOGENS TO CHEMICAL SUBSTANCES IN AVOCADO TREES

"Our Flowering World" PRE-TEST. Directions: Write a definition for each of the terms listed below:

FERTILIZER EFFECTS UPON MICRONUTRIENT NUTRITION OF THE AVOCADO

We will learn to label the parts of a plant and flower.

Peony Flower Anatomy I

Effect of calcium nitrate and boric acid on pollen germination of some date palm male cultivars

Plant Reproduction. In a nutshell

Botany Physiology. Due Date Code Period Earned Points

Reproduction in plants

plant reproduction chapter 40 Alternation of Generations

Chapter 31: Plant Reproduction

Sexual Reproduction in Flowering Plants

CHANGE IN THE FATTY ACID COMPOSITION OF AVOCADO FRUIT DURING ONTOGENY, COLD STORAGE AND RIPENING

The Flower - what is it? 1/31/18. Magnoliophyta - Flowering Plants. Magnoliophyta - Flowering Plants. Magnoliophyta - Flowering Plants

Student Exploration: Pollination: Flower to Fruit

Sexual Reproduction in Flowering Plants

Kingdom Plantae, Part II - Gymnosperms and Angiosperms

CHAPTER 2 Reproduction of Flowering Plants. Bui Tan Anh College of Natural Sciences

ESA Study Guide Year 10 Science

Original content Copyright by Holt, Rinehart and Winston. Additions and changes to the original content are the responsibility of the instructor.

BIOLOGY 3201 REPRODUCTION

Unit 2: Multicellular Organisms

The Flower, Pollination, and Seeds

SEASONAL CHANGES OF AVOCADO LIPIDS DURING FRUIT DEVELOPMENT AND STORAGE

Chapter 38 Angiosperm Reproduction and Biotechnology

CONTROLLING PREFERTILIZATION BARRIERS BY IN VITRO POLLINATION AND FERTILIZATION OF BROMELIACEAE

1.3 - Sexually Reproduction What is Sexual Reproduction?

Reproduction and Development in Flowering Plants

ANGIOSPERM L.S. POLLEN GRAIN

Modes of reproduction Types of cultivar

To produce its kind is a

Flower Morphology. Flower Structure. Name

Flowering plants can be pollinated by wind or animals.

The potential of double haploid cassava via irradiated pollen

Angiosperm Reproduction

Transcription:

South African Avocado Growers Association Yearbook 1987. 10:43-45. Proceedings of the First World Avocado Congress Pollination biology of Persea americana Fuerte LA COETZER and PJ ROBBERTSE Margaretha Mes Institute for Seed Research, University of Pretoria, Pretoria 0002, RSA SYNOPSIS In vivo germination tests were conducted with pistils and pollen obtained from borondeficient and boron-supplemented trees. Boron-sufficient pollen on boron-deficient pistils gave significantly lower germination figures than boron-deficient pollen on boronsufficient pistils. INTRODUCTION Disappointingly low avocado fruit yields are often encountered (Bergh, 1967; Tourer & Gottreich, 1975 and Sedgley, 1977) and this has led to research in various fields in an effort to solve the problem. In the morphological discipline, research has been concentrated on the flowers, especially regarding the ovule (Tomer & Gottreich, 1975, 1976 and 1978), stigma and style (Sedgley & Buttrose, 1978 and Sedgley, 1979a), pollination (Higgins, 1917; Robinson & Savage, 1926 and Schroeder, 1954) and pollen tube-growth (Sedgley, 1976, 1977 and 1979b and Sedgley & Grant, 1982). Avocado flowers periodically close and re-open, resulting in alternating female and male phases. The flowers are thus functionally dichogamous, representing a kind of temporal dioecy which is well known for members pf the Lauraceae (Kubitzki & Kurz, 1984). The pollen-ovule ratio is comparatively high (Coetzer & Robbertse, 1986) and one would expect that this abundance of pollen together with the phased sexuality of the flowers, should promote fertilisation and result in prolific fruit formation. The fact that fruit yields are nevertheless often low, compelled an investigation into the success rate of pollination. It is well known that various concentrations of boron have an effect on in vitro germination of pollen in general (Stanley & Lichtenberg, 1963). The influence of boron on avocado pollen in particular however, has not been researched. This paper represents results of an investigation into the effect of boron-deficiency and -sufficiency on avocado pollen germination and pollen tube-growth in the styles. MATERIALS AND METHODS The experimental material was obtained from seven-year-old grafted avocado trees of the cultivars Fuerte and Hass from the Westfalia Estates, Duivelskloof, in the Northern Transvaal, Republic of South Africa. Trees with leaf analysis registering 15 ppm boron called 'healthy' trees and trees exhibiting boron-deficiency, with leaf analysis registering 7 ppm boron, were selected from the orchards.

Flowers from both boron-sufficient and boron-deficient trees were collected prior to the first opening and placed in 1,5 per cent agar medium in Cooke's microtiter trays for 14 hours before being hand-pollinated with fresh pollen. Boron-supplementing tests were done on flowers placed in the same agar medium containing 1,60 m mol dm3 boron. The pollinations were divided into two experiments with three treatments each. At least 50 flowers were pollinated for each treatment. Experiment 1 was conducted using Hass pollen and Fuerte pistils throughout. All pollen was procured from healthy trees, but the pistils used were obtained as follows: Experiment 1.1 - pistils from healthy trees Experiment 1.2 - pistils from boron-deficient trees placed in boron-supplemented agar Experiment 1.3 - pistils from boron-deficient trees Experiment 2 was conducted using Hass pistils and Fuerte pollen throughout. All pistils were obtained from healthy trees, but the pollen varied: Experiment 2.1 - pistils placed in boron-supplemented agar and pollinated with pollen from boron-deficient trees Experiment 2.2 - pistils pollinated with pollen from boron-supplemented trees Experiment 2.3 - pistils pollinated with pollen from boron-deficient trees. After pollination, flowers were kept in a growth cabinet for 24 hours at 20 C before fixing in Carnoy's fluid. The pistils were removed and processed for fluorescence microscopy using Aniline Blue according to the method of Martin (1959). Preparations were studied and photographed using a Nikon Optiphot epifluorescence microscope with ND2 and ND4 excitation filters, a UV (420) barrier filter and a Nikon HBO - 100 W/2 mercury lamp. The pistils were observed for the number of pollen tubes in the styles. The data was statistically analysed using a single factor variance analysis and Duncan's multiple range test for variables. RESULTS The main aim in Experiment 1 was to determine the effect of boron on the functioning of the pistil in maintaining pollen tube-growth up to the ovule. In Experiment 2 the emphasis was on the influence of boron on pollen germination and pollen tube-growth. The results are summarised in Figure 1. DISCUSSION Pistils from healthy trees (Experiment 1.1) pollinated with pollen from boron-sufficient trees, showed significantly more pollen tubes per style than pistils from boron-deficient trees (Experiment 1.3) pollinated with the same boron-sufficient pollen. In Experiment 1.2 the addition of boron to the agar resulted in a dramatic increase in the number of growing pollen tubes per style.

This indicates that the boron available in optimum quantity has a positive influence on pollen tube-growth. Although a small number of pollen grains germinate on the borondeficient stigmas, most of the pollen tubes stop growing at approximately the base of the stigma, whereas pollen tubes exhibit active and prolonged growth in styles of flowers from boron-sufficient trees. Sedgley (1979a) reported that, immaterial of the number of pollen grains germinating on the stigma, only a few pollen tubes will exhibit prolonged growth and eventually reach the ovule. It was found that cessation of pollen tube-growth was particularly marked in boron-deficient pistils while in pistils from boronsupplemented trees, significantly more pollen tubes showed active and prolonged growth in the style. In Experiment 2, Hass pistils from boron-sufficient trees were used. In Experiment 2.2, where healthy pollen was used, the pollen tube-growth was significantly better than in Experiment 2.3 where the same healthy pistils were pollinated with boron-deficient pollen. In Experiment 2.1, where the same healthy pistils were further supplemented with boron and then pollinated with boron-deficient pollen, the pollen tube-growth was even better. If one compares Experiment 1.3, where the pistils were deficient in boron, and Experiment 2.3, where the pollen was boron-deficient, it is evident that, as the pollen tube-growth is significantly lower in the boron-deficient pistils than with boron-deficient pollen, the negative influence of the boron-deficiency is more pronounced on the pistil than on the pollen. This deduction is supported by the dramatic increase in pollen tubegrowth when boron is added to boron-deficient pistils. It can thus be concluded that the addition of boron to avocado flowers has a significantly positive effect on the in vivo growth of the pollen tubes.

ACKNOWLEDGEMENTS The authors wish to thank the SA Avocado Growers' Association for funding the project, the director and staff of the Westfalia Estates for material, Dr N Swart, Department of Statistics, University of Pretoria, for the statistical analysis of the data and Dr E Schoonraad for critically reading the manuscript. REFERENCES 1 Berg, BO, 1967. Reasons for low yields of avocados. Calif Avocado Soc Yrb, 1967, 161-172. 2* Coetzer, LA& Robbertse, PJ, 1986. A literature study of avocado flower morphology and palynology with reference to an investigation of Fuerte pollen. S Afr Avocado Growers Assoc Yrb, 9, 79-81. 3 Higgins, JE, 1917. Cross pollination of the avocado. Report of the Hawaii Agricultural Experimental Station, 17. 4 Kubitzki, K & Kurz, H, 1984. Synchronised dichogamy and dioecy in Neotropical Lauraceae. Plant Systematics and Evolution, 147, 253-266. 5 Martin, FW, 1959. Staining and observing pollen tubes in the style by means of fluorescence. Stain Technology, 34, 125-128. 6 Robinson, TR & Savage, EM, 1926. Pollination of the avocado. United States Department of Agriculture Circular, 387, 1-16. 7 Schroeder, CA, 1954. Some aspects of pollination in the avocado. Calif Avocado Soc Yrb, 38, 159-162. 8 Sedgley, M, 1976. Control by the embryo sac over pollen tube-growth in the style of the avocado (Persea americana Mill). New Phytologist, 77, 149-152. 9 Sedgley, M, 1977. The effect of temperature on floral behaviour, pollen tube-growth and fruit set in the avocado. Journal of Horticultural Science, 52, 135-141. 10 Sedgley, M, 1979a. Light microscope study of pollen tube-growth, fertilisation and early embryo and endosperm development in the avocado varieties Fuerte and Hass. Annals of Botany, 44, 353-359. 11 Sedgley, M, 1979b. Inter-varietal pollen tube-growth and ovule penetration in the avocado. Euphytica, 28, 25-35. 12 Sedgley, M & Buttrose, MS, 1978. Structure of the stigma and style of the avocado. Australian Journal of Botany, 26, 663-682.

13 Sedgley, M & Grant, WJR, 1982. Effect of low temperatures during flowering on floral cycle and pollen tube-growth in nine avocado cultivars. Scientia Horticulturae, 18, 207-213. 14 Stanley, RG & Lichtenberg, EA, 1963. The effect of various boron compounds on in vitro germination of pollen. Physiologia Plantarum, 16, 337-346. 15 Tomer, E & Gottreich, M, 1975. Observations on the fertilisation process in avocado with fluorescent light. Euphytica, 24, 531-535. 16 Tomer, E & Gottreich, M, 1976. Defective ovules in avocado cultivars. Journal of the American Society for Horticultural Science, 101, 620-623. 17 Tomber, E & Gottreich, M, 1978. Abnormalities in avocado ovule development. Botanical Gazette, 139, 81-86. *In Afrikaans