Laboratory Evaluation of Crude Extracts of Cinnamomum tamala for Potential Antibacterial Activity

Similar documents
In vitro Evaluation of Antibacterial Activity of Various Crude Leaf Extracts of Indian Sacred Plant, Ocimum sanctum L.

A Study of antimicrobial activity of some spices

In vitro study of antibacterial activity of Carissa carandas leaf extracts

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August ISSN

CHAPTER 8 ANTIBACTERIAL ACTIVITY OF THE CRUDE ETHANOLIC EXTRACT AND THE ISOLATED COMPOUNDS FROM THE STEM OF COSTUS IGNEUS

Available online at

Bioprospecting of Neem for Antimicrobial Activity against Soil Microbes

Octa Journal of Biosciences

Higher plants produced hundreds to thousands of diverse chemical compounds with different biological activities (Hamburger and Hostettmann, 1991).

Antimicrobial activity of Terminalia chebula

Jigna Parekh, Nehal Karathia and Sumitra Chanda*

Screening of Antimicrobials of some Medicinal Plants by TLC Bioautography

Phytochemical screening and antibacterial properties of Garcinia kola

Chandan Prasad.et.al. Int. Journal of Engineering Research and Application ISSN : , Vol. 7, Issue 9, ( Part -6) September 2017, pp.

Asian Journal of Pharmaceutical Analysis and Medicinal Chemistry Journal home page:

International Journal of Pharma and Bio Sciences A COMPARITIVE STUDY OF ANTIMICROBIAL ACTIVITY OF SOME HERBS AND THEIR SYNERGISTIC EFFECT ABSTRACT

In vitro antimicrobial activity of leaves and bark extracts of Ficus religiosa (Linn.)

Antimicrobial activity of some commonly used Indian Spices

Puducherry. Antimicrobial activity, Crude drug extraction, Zone of Inhibition, Culture Media, RVSPHF567.

ANTIBACTERIAL ACTIVITY OF LEAF AND SEED EXTRACTS OF DELONIX REGIA AND ACHYRANTHUS ASPERA AGAINST SELECTED BACTERIAL STRAINS

Chapter 4. Anti-bacterial studies of PUFA extracts from Sardinella longiceps and Sardinella fimbriata. 4.1 Introduction

Pharmacologyonline 2: (2011) ewsletter Tiwari et al. A EVALUATIO OF A TIMICROBIAL ACTIVITIES OF ROOT EXTRACT OF CALE DULA OFFICI ALIS (LI.

ANTIBACTERIAL ACTIVITY OF GYMNEMA SYLVESTRE HYDROALCOHOLIC LEAF EXTRACT.

In vitro Evaluation of Antibacterial Activity of Bark and Flower Extracts of Pimenta officinalis Lindl.

ANTIMICROBIAL ACTIVITY OF NON EDIBLE SEEDS AGAINST IMPORTANT PATHOGENIC MICROORGANISMS PROJECT REFERENCE NO.: 38S _B_MSC_010

SCREENING OF ANTIMICROBIAL ACTIVITY OF OILS FROM DIFFERENT SPECIES OF OSCIMUM AGAINST PATHOGENIC BACTERIAL STRAINS

Evaluation of Antibacterial Effect of Odor Eliminating Compounds

International Journal of Research in Pharmaceutical and Nano Sciences Journal homepage:

*MIAN SHAHZADA ZIA AHMAD & ZAHEER-UD-DIN KHAN. Department of Botany, GC University, Lahore. ABSTRACT INTRODUCTION

Process Optimization for Preparation of an Antibacterial Agent Using a Combined Extract of Tulsi and Marigold Leaves

Antimicrobial Potential of Whole Plant and Callus Extract of Aristolochia bracteolata Lam

Effect of various solvents on bacterial growth in context of determining MIC of various antimicrobials

. Chemistry Department, Faculty of Science, Chulalongkom University, Bangkok 10330, Thailand. Antibacterial Activity of Some Essential Oils

COMPARATIVE ANTI MICROBIAL STUDY OF SHUDDHA KASISA AND KASISA BHASMA

Research Journal of Pharmaceutical, Biological and Chemical Sciences

Effect of various solvents on bacterial growth in context of determining MIC of various antimicrobials

International Journal of Food Nutrition and Safety, 2012, 1(2): International Journal of Food Nutrition and Safety

Antifungal activity of methanolic and ethanolic leaf extracts of medicinal plants

ANTIMICROBIAL AND PHYTOCHEMICAL SCREENING OF TRAGIA INVOLUCRATA L. USING UV-VIS AND FTIR

Antibacterial Activity of Francoeuria crispa, Pulicaria undulata, Ziziphus spina-christi and Cucurbita pepo Against Seven Standard Pathogenic Bacteria

Influence of the crude Phenolic, Alkaloid and Terpenoid compounds extracts of Cardaria draba (Lepidium draba L.) on Human Pathogenic Bacteria

Dian Riana Ningsih, Zusfahair, Dwi Kartika. Chemistry Department Basic Science Faculty Jenderal Soedirman University. ABSTRACT

ANTIBACTERIAL EFFECTS OF CRUDE EXTRACT OF Azadirachta indica AGAINST Escherichia coli and Staphylococcus aureus

Jl. Perintis Kemerdekaan KM.5 Makassar 90231, South Sulawesi Indonesia.

in vitro Evaluation of Aqueous and Solvent extract of Tribulus terrestris L. leaf against Human bacteria

International Journal of Pharma and Bio Sciences

ANTI-MICROBIAL ACTIVITIES OF BETEL NUT (ARECA CATECHU LINN) SEED EXTRACTS

NSave Nature to Survive

Antimicrobial Activity of Ethanol Leaf Extracts of Catharanthus Roseus From Saudi Arabia

Research Article. Study on antibacterial activity of some medicinally important plants

INTERNATIONAL JOURNAL OF PHARMACEUTICAL RESEARCH AND BIO-SCIENCE

Antibacterial Activity of Boerhaavia diffusa L. (Punarnava) On certain Bacteria

Prof. Dr. K. Aruna Lakshmi (DEAN Academic Affairs) Dept. of Microbiology GITAM University Visakhapatnam. Under the Guidance of.

[PHAR06] Anti Helicobacter pylori from extracts of ten species of Phyllanthus sp. with special emphasis on chloroform extracts of Phyllanthus pulcher

To Study the Therapeutic Role of Indian Spices In The Treatment Of Gastrointestinal Disease Caused By Vibrio Species

THE EFFECT OF ALKALOIDS AND FLAVONOIDS EXTRACTS OF VITEX DONIANA SEED ON SOME MICROORGANISMS

Determination of MIC & MBC

Antibacterial properties of Anthocephalus cadamba fruits

Antimicrobial activity of Trinpanchmool drugs

Phytochemical analysis and antibacterial properties of leaf extract of Azima tetracantha (Lam.)

Studies on antibacterial activity of some medicinal plant against Human pathogenic Micro Organism

A STUDY ON ANTIBACTERIAL PROPERTIES OF TINOSPORA CORDIFOLIA LEAF, STEM, ROOT EXTRACTS

Journal of Chemical and Pharmaceutical Research

Enhanced antibacterial potential of ethanolic extracts of neem leaf (Azadiracta indica A. Juss.) upon combination with bacteriocin

Antibacterial activities of extracts and their fractions of leaves of Tridax procumbens Linn

Keywords- Hibiscus rosa- sinensislinn., phytochemical, extract.antibacterial, axillary solitary, companulate.

Antibacterial activity of Polyalthia longifolia var. angustifolia stem bark extract

CHAPTER 6 EVALUATION OF SELECTED PLANT EXTRACTS FOR EVALUATION OF SELECTED PLANT EXTRACTS FOR ANTI-ACNE ACTIVITY

Research Article. In Vitro Screening of Antibacterial Activity of Cow Urine Against Pathogenic Human Bacterial Strains

Received; accepted CHEMICAL COMPOSITION AND ANTIMICROBIAL PROPERTIES OF ESSENTIAL OIL OF AGONIS FLEXUOSA

Antimicrobial activity of some medicinal plants against multidrug resistant skin pathogens

Influence of Different Prebiotics and Probiotics on Selective Intestinal Pathogens

PRELIMINARY PHYTOCHEMICAL SCREENING AND IN-VITRO ANTIBACTERIAL ACTIVITY OF CUCURBITA MAXIMA SEED EXTRACT

The textile material is goods carrier of various types

Journal of Chemical and Pharmaceutical Research

6. SUMMARY AND CONCLUSION

Evaluation of Biological Activity (In-Vitro) of Some 2-Phenyl Oxazoline Derivatives

Antibacterial Effect of Ethanol Extracts of Tulsi (Ocimum sanctum) Leaves Against Pathogenic Bacterial Strains

Evaluation of antimicrobial activity and Bidens biternata ehrenb Leaves

Study of Phytochemical Screening and Antimicrobial Activity of Citrus aurantifolia Seed Extracts

Evaluation of Antibacterial Activity of Disulfiram.

In vitro Antibacterial Activity of Methanol Seed Extract of Elettaria cardamomum (L.) Maton

SCREENING THE BIOACTIVE POTENTIAL OF PROTEIN ISOLATED FROM CYPRINUS CARPIO. Iyyanuchamy, S.K and A. Periyanayagasamy*

Screening of Antibacterial Activity of Aqueous Bark Extract of Bombax ceiba against some Gram Positive and Gram Negative Bacteria

INTERNATIONAL RESEARCH JOURNAL OF PHARMACY

Pelagia Research Library. A Study on Antibacterial Properties of Rosa indica against Various Pathogens

Screening of Thymoquinone (Tq) Content in Nigella sativa-based Herbal Medical Products

Life Science Archives (LSA)

Evaluation of Antibacterial and Antifungal Activities of Leaf and Seed Extracts of Croton Tiglium Plant against Skin Disease Causing Microbes

3. REVIEW OF LITERATURE

Inhibitory Effect of Different Solvent Extracts of Vitex negundo L. and Allium sativum L. on Phytopathogenic Bacteria

Inhibitory effect of different solvent extracts of Vitex negundo L. and Allium sativum L. on phytopathogenic bacteria

Antifungal activity of some plant extracts against Clinical Pathogens

Antimicrobial Activities of Bitter Kola (Garcina Kola) Extract on Salmonella typhi

St. Joseph's Journal of Humanities and Science ISSN:

Priyanka Chaudhary et al. Int. Res. J. Pharm. 2015, 6 (9) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY

PIDSP Journal 2011 Vol 12 No.1 Copyright 2011

Effect of different sampling locations on the antibacterial property of Centella asiatica leaves

Mohammed Al-janabi and ZainabYaseen

Transcription:

Laboratory Evaluation of Crude Extracts of Cinnamomum tamala for Potential Antibacterial Activity Pankaj Goyal*, Abhishek Chauhan, P. Kaushik Department of Botany and Microbiology, Gurukul Kangri University, Hardwar, Uttarakhand, India * Corresponding author. Tel: +91 9990007377; Fax: 01334-246366; E-mail: pankaj.goyals@gmail.com Abstract Emergence of microbial resistance is the one of the major problem nowadays; thus there have been tremendous efforts towards finding new chemicals, specifically herbals, for the development of new antimicrobial drugs. Cinnamomum tamala (Buch.- Ham.) Nees & Eberm. is an important traditional medicinal plant, mentioned in various ancient literatures such as Ayurveda.. The plant is selected to evaluate the possibility for novel pharmaceuticals having antibacterial potential. Stem-bark of the plant was extracted using various solvents. Extracts were evaluated for their antimicrobial potential by agar well diffusion assay against a total of six bacterial strains. Active extracts thus obtained were subjected to determine their minimum inhibitory concentration(s) (MICs) followed by their phytochemical analysis. The current study indicated that the pattern of inhibition depends largely upon the extraction procedure, the plant part used for extraction, state of plant part (fresh or dry), solvent used for extraction and the microorganism tested. Almost all the extracts evaluated showed variable degree of inhibition zones against different bacterial species except hexane extract which was found completely inactive. Other organic extracts viz., ethanol, methanol and ethyl acetate were found to have significant activity against all test bacteria except Escherichia coli, which was observed completely resistant to all the extracts. Methanol extract was found comparatively more effective Organic extracts provided more potent antibacterial activity as compared to aqueous extracts. Gram-positive bacteria were found more sensitive than Gram-negative bacteria. The study promises an interesting future for designing potentially active antibacterial agents from Cinnamomum tamala. Keywords: Agar well diffusion assay; antibacterial activity; Ayurveda; Cinnamomum tamala; MIC. 1. Introduction Antibiotic chemotherapy has been one of the most important medical achievements of the twentieth century. This therapy is widely practiced for the treatment of various microbiological infections; however, Fleming warned that the misuse of antibiotics could lead to the emergence of resistant forms of bacteria. These drug-resistant strains of microorganisms pose a greater threat to the global public health (Russell, 2002; Goyal et al.; 2008; Kaushik et al., 2008). Unfortunately, as we enter the new millennium many of our existing antibacterial agents are under threat due to widespread emergence of bacterial resistance. A feasible way to combat the problem of microbial resistance is the development of new antibacterial agents for substitution with ineffective ones (Leggadrio, 1995). Thus, global attention has been shifted towards finding new chemicals, specifically herbals, for the development of new drugs. The study indicated that natural products are important sources for new drugs and are also good lead compounds suitable for further modification during drug development. Numerous methods have been utilized to acquire compounds for drug discovery, including isolation from plants and other natural sources, synthetic chemistry, combinatorial chemistry and molecular modeling (Geysen et al., 2003; Lombardino and Lowe, 2004; Kaushik et al., 2009). Plant-based medicines initially dispensed in the form of crude drugs such as tinctures, teas, poultices, powders, and other herbal formulations (Samuelsson, 2004; Kaushik and Goyal, 2008), now serve as the basis of novel drug discovery. A number of medicinal plants have been evaluated for their antibacterial potential (Kaushik and Dhiman, 2000; Kaushik, 1988; Goyal et al., 2009; Kaushik et al., 2009).Cinnamomum tamala (Buch.-Ham.) Nees & Eberm. (syn. Cinnamomum tejpata Hort.; Laurus tamala Buch.-Ham.) belongs to family Lauraceae. The specific epithet tamala is after a local name of the plant in India. Essential oil extracted from the leaves contains monoterpenoides ISSN 1860-3122 - 75 -

including phellandrene, eugenol, linalool and some traces of α-pinene, p-cymene, β-pinene and limonene, phenylpropanoids (Agaoglu et al., 2007). This plant is frequently mentioned in various Ayurvedic literatures for its various medicinal values. The current study refers to the evaluation of the stem-bark extracts of this plant for potential antibacterial activity against some clinically significant bacterial strains as mentioned below. 2. Materials and Methods Plant material Stem-bark of Cinnamomum tamala was collected during the late 2007 from NCR-Delhi, India. The material was taken to the laboratory and was authenticated by Prof. P. Kaushik at Gurukul Kangri University, Hardwar, India. Extract preparation Plant material was washed repeatedly under running tap water, followed by sterilized distilled water. Bark was further air-dried on filter paper at room temperature and then powdered with the help of sterilized pestle and mortar under aseptic condition. Plant material was then extracted using the following methodology (Gupta et al., 2009). Aqueous extraction 10g of powdered bark was mixed well in 100ml distilled water with constant stirring for 30 minutes. The solution was kept at room temperature for at least 24h and then filtered using muslin cloth. The filtrate was centrifuged at 5000rpm for 15 minutes. The supernatant was again filtered using Whattman s Filter No. 1 under strict aseptic conditions. The filtrate was collected in fresh sterilized glass tubes and stored at 4 C until use. Aqueous extract was prepared in final concentration of 100 mg/ml. Extraction using Organic Solvents 10g of plant part was thoroughly mixed with 100ml organic solvent (viz.; ethanol, methanol, ethyl acetate and hexane). The mixture thus obtained was filtered through muslin cloth and then re-filtered by passing through Whattman s filter No. 1. The filtrate was then concentrated by complete evaporation of solvent at room temperature to yield the pure extract. Stock solutions of crude extracts were prepared by mixing well the appropriate amount of dried extracts with appropriate solvent to obtain a final concentration of 100 mg/ml. Each solution was stored at 4 C after collecting in sterilized glass tubes until use. Bacterial Strains Six bacterial strains namely; Escherichia coli MTCC- 739, Salmonella typhi MTCC-531, Bacillus cereus MTCC-430, Bacillus subtilis MTCC-736, Staphylococcus aureus MTCC-740 and Streptococcus pyogenes MTCC-442 were selected for the present study. All strains were collected from the Microbial Type Culture Collection (MTCC), India. The bacterial cultures were maintained in nutrient agar slants at 37 C. Each of the microorganisms was reactivated prior to susceptibility testing by transferring them into a separate test tube containing nutrient broth and incubated overnight at 37 C. Antibacterial Susceptibility Assay Agar well diffusion assay (Perez et al., 1990) was the key process used to evaluate the antibacterial potential of Cinnamomum tamala bark extracts. Extracts were first sterilized by sterile membrane syringe filter (pore size 0.45 µm, manufactured by Pall Life Sciences). Petri dishes (100mm) containing 18ml of Mueller Hinton Agar (MHA) were seeded with approximately 100µl inoculum of bacterial strain (inoculum size was adjusted so as to deliver a final inoculum of approximately 10 8 CFU/ml). Media was allowed to solidify. Wells of 6mm diameter were cut into solidified agar media using a sterilized cup-borer. 100µl of each extract was poured in the respective well and the plates were incubated at 37 C overnight. The experiment was performed in triplicate under strict aseptic conditions to ensure consistency of all findings. The antibacterial activity of each extract was expressed in terms of the mean of diameter of zone of inhibition (in mm) produced by each extract at the end of incubation period. Organic solvents used in preparation of extracts were also used as negative controls during the study. Tetracycline (5μg/ml) was used as a standard antibiotic (i.e. positive control) in the present study for a comparative analysis with the effectiveness of various plant extracts against selected microflora. Assessment of Minimum Inhibitory Concentration MIC (minimum inhibitory concentration) of active extracts thus obtained were further examined by standard two-fold microdilution broth methodology (NCCLS, 1997). A stock solution of each active extract was serially diluted in 96-wells microtiter plate with Mueller Hinton broth to obtain a concentration ranging from 8.0 µg/ml to 4096 µg/ml. A standardized inoculum for each bacterial strain was prepared so as to give an inoculum size of approximately 5 x 10 5 CFU/ml in each well. Microtiter plates were then kept at 37 C for an overnight incubation. Following incubation, the MIC was calculated as the lowest concentration of the extract inhibiting the visible growth of bacterial strain using reflective viewer. ISSN 1860-3122 - 76 -

All the chemical ingredients used in present study were of analytical grade and were purchased from Hi Media, India. Phytochemical Analysis Active extract was analyzed for its phytochemistry by using methods as described by Harborne (Harborne, 1973). 3. Results Stem-bark extracts of Cinnamomum tamala were evaluated for in vitro antibacterial potential by agar well diffusion assay, the result of which has been mentioned in Table 1. Almost all the extracts evaluated showed variable degree of inhibition zones against different bacterial species except hexane extract which was found completely inactive. Other organic extracts viz., ethanol, methanol and ethyl acetate were found to have significant activity against all test bacteria except Escherichia coli, which was observed completely resistant to all the extracts. Methanol extract was found comparatively more effective with zone sizes ranging from 11.26 mm to 20.77 mm. Ethanol extract showed inhibition in the range of 11.83 mm to 17.90 mm, slightly lower than that of methanol extract. Ethyl acetate extract was shown to have mild activity with average zone size approximately 12 mm and maximum inhibition of Staphylococcus aureus with 15 mm inhibition zone. Aqueous extract was found effective only against Staphylococcus aureus and Bacillus cereus with zone size approximately 11 mm against each bacterium. Salmonella typhi and Streptococcus pyogenes were shown to have mild susceptibility against ethanol, methanol and ethyl acetate extracts with zone size ranging between 11 to 14 mm only. Table 1. In Vitro Antibacterial Activity of Aqueous and Organic Extracts of Cinnamomum tamala Stem-Bark. Type of Extract Zone of Inhibition* ( in mm diameter) Gram-negative Bacteria Gram-positive Bacteria Escherichia coli Salmonella typhi Streptococcus pyogenes Staphylococcus aureus Bacillus subtilis Bacillus cereus Ethanol NI 11.93±0.51 13.87±0.81 17.90±0.17 12.50±0.87 11.83±1.60 Methanol NI 11.26±0.68 13.53±0.92 20.77±0.64 13.96±0.45 14.30±0.75 Ethyl Acetate NI 12.17±0.58 12.23±1.08 15.06±0.31 11.67±1.15 12.33±1.26 Hexane NI NI NI NI NI NI Aqueous Extract NI NI NI 11.76±0.25 NI 11.10±0.66 Tetracycline + 29.50±0.50 25.83±1.61 29.83±1.89 32.50±1.50 34.17±1.76 32.16±1.04 Note: Values of the observed zone of inhibition (in mm diameter) including the diameter of well (6 mm) after 24 hours incubation against different bacterial species when subjected to different extracts in agar well diffusion assay. Assay was performed in triplicate and results are the mean of three values ± Standard Deviation. In each well, the sample size was 100 µl. Inhibition observed in extracts due to solvent were assessed through negative controls. NI -No Inhibition Zone was observed. + Tetracycline (5 μg ml -1 ) was used as standard antibiotic. Active Crude Extract Table 2. Minimum Inhibitory Concentration of Active Crude Extracts of Cinnamomum tamala Stem-Bark. Test Microorganism Concentration of Extracts* (in μg ml -1 ) 4096 2048 1024 512 256 128 64 32 16 8 Ethanol S. aureus - - - - + + + + + + 512 MIC (in μg/ml l -1 ) Ethanol S. pyogenes - + + + + + + + + + 4096 Ethanol B. subtilis + + + + + + + + + + >4096 Methanol S. aureus - - - - - + + + + + 256 Methanol S. pyogenes - + + + + + + + + + 4096 Methanol B. subtilis - + + + + + + + + + 4096 Methanol B. cereus - - + + + + + + + + 2048 Ethyl acetate S. aureus - - + + + + + + + + 2048 Note: Different concentrations of active crude extracts evaluated in 96-well microtiter plate using Microbroth Dilution Assay as recommended by NCCLS. All values are expressed in μg ml -1 ; (-) represents No Growth Observed ; (+) represents Growth Observed. ISSN 1860-3122 - 77 -

Inhibitory concentrations (MICs) of Cinnamomum tamala extracts as evaluated by microbroth dilution assay are shown in Table 2. Staphylococcus aureus was found most susceptible bacterium as it was significantly inhibited at 256μg/ml and 512 μg/ml concentrations of methanol and ethanol extracts, respectively. The bacterium was inhibited by ethyl acetate extract at 2048μg/ml concentration. Streptococcus pyogenes was inhibited at 4096μg/ml of both methanol and ethanol extracts. MIC of methanol extract was found to be 2048 μg/ml and 4096 μg/ml against Bacillus cereus and Bacillus subtilis, respectively. Ethanol extract was not found satisfactory for Bacillus subtilis inhibition in the entire range of concentrations (i.e. MIC >4096 μg/ml). 4. Discussion Results of the present study clearly demonstrated that Cinnamomum tamala stem-bark extracts revealed a good antibacterial activity. Some earlier researches carried out on the other species of Cinnamomum were also in concordance with our results. The essential oil from the bark of Cinnamomum zeylanicum showed in vitro antimicrobial activity against several microorganisms (Palmer et al., 1998; Prabuseenivasan et al., 2006). Cinnamomum cassia bark extract prepared in alcohol showed good antibacterial activity with 7-29 mm size of inhibition zones against the test organisms. Ethyl acetate and acetone extracts showed no antibacterial activity against one or more bacterial strains (Ates and Erdogrul, 2003). The activity was explained due to the presence of certain volatile oil components such as cinnamic aldehyde and eugenol (Baratta et al., 1998). In our study, qualitative analysis reveals the presence of certain secondary metabolites including terpenoids, tannins, alkaloids and flavonoids. The present study also confirms the use of organic solvents in the preparation of plant extracts as compared to aqueous extracts. The polarity of antibacterial compounds make them more readily extracted by organic solvents, and using organic solvents does not negatively affect their bioactivity against bacterial species. The data also showed that some antimicrobial substances could only be extracted by organic solvents, suggesting that organic solvents are clearly better solvents of antimicrobial agents (Thongson et al., 2004). In our study, Gram-positive bacteria were found to have more susceptibility as compared to Gramnegative bacterial species. This was also confirmed by the study of Cinnamomum verum bark as evaluated by Nanasombat and Lohasupthawee (Nanasombat and Lohasupthawee, 2005) that showed mild activity against several Enterobacteria. Cinnamomum zeylanicum bark showed no activity against Escherichia coli, while it was moderately active against Staphylococcus aureus and Pseudomonas aeruginosa (Agaoglu et al., 2007). The hypothesis can be given to the differences in the chemical composition and structure of cell wall of both types of microorganisms. The current study supports the traditional advantages of the studied plant and suggests that some of the bark extracts possess compounds with good antimicrobial properties that can be used for the therapy of infectious diseases caused by certain pathogens. The most active extracts can be subjected to isolation of the therapeutic antimicrobials and carry out further pharmacological evaluation by several methods such as NMR, Mass Spectrometry, UC-MS, LC-MS etc. References [1] Russell AD. Antibiotic and biocide resistance in bacteria: Introduction. J Appl Microbiol Symp Suppl 2002; 92:1S- 3S. [2] Goyal P, Khanna A, Chauhan A, Chauhan G, Kaushik, P. In vitro evaluation of crude extracts of Catharanthus roseus for potential antibacterial activity. Int J Gr Phar 2008; 2(3):176-181. [3] Kaushik P, Chauhan A, Chauhan G, Goyal P. Evaluation of Nostoc commune for potential antibacterial activity and UV-HPLC analysis of methanol extract. The Internet J Microbiol 2008;5(1). [4] Leggadrio RJ. Emerging drug resistant bacteria: the wake-up call has come. Stn Med J 1995; 88:884-885. [5] Geysen HM, Schoenen F, Wagner D, Wagner R. Combinatorial compound libraries for drug discovery: An ongoing challenge. Nature Rev Drug Discov 2003; 2:222-230. [6] Lombardino JG, Lowe III JA. The role of the medicinal chemist in drug discovery - then and now. Nature Rev Drug Discov 2004; 3:853-862. [7] Kaushik P, Garmia, Chauhan A, Goyal P. Screening of Lyngbya majuscula for potential antibacterial activity and HPTLC analysis of active methanolic extract. J Pure & Applied Microbiol 2009; 3(1):169-174. [8] Samuelsson G (2004). Drugs of Natural Origin: A Textbook of Pharmacognosy, 5 th Swedish Pharmaceutical Press, Stockholm. [9] Kaushik P, Goyal P. In vitro evaluation of Datura innoxia (thorn-apple) for potential antibacterial activity. Ind J Microbiol 2008; 48(3):353-357. [10] Kaushik P, Dhiman AK. (2000). Medicinal Plants and Raw Drugs of India. Bishen Singh Mahendra Pal Singh, New Cannaught Place, Dehradun, pp. XII+623 (with colour plates). ISSN 1860-3122 - 78 -

[11] Kaushik P (1988). Indigenous Medicinal Plants including Microbes and Fungi. Today and Tomorrow's Printers & Publishers, New Delhi, pp. VIII+344. [12] Goyal P, Chauhan A, Garima, Kaushik P. UV-HPLC analysis and antibacterial activity of crude methanolic extracts of Ocimum sanctum leaves. J Pharmacy Research 2009 (Accepted). [13] Goyal P, Chauhan A, Kaushik P. HPLC analysis and antibacterial activity of various extracts from leaves of Calotropis gigantea L. International Journal of Pharmagenesis 2009 (Accepted). [14] Kaushik P, Goyal P, Chauhan A, Chauhan G. In vitro evaluation of antibacterial potential of dry fruit extracts of Elettaria cardamomum Maton (Chhoti Elaichi). Iranian J Pharmaceutical Research 2009 (Accepted). [15] Agaoglu S, Dostbil N, Alemdar S. Antimicrobial activity of some spices used in the meat industry. Bull Vet Inst Pulawy 2007; 51:53-57. [16] Gupta PC, Batra R, Chauhan A, Goyal P, Kaushik P. Antibacterial activity and TLC Bioautography of Ocimum basilicum L. against pathogenic bacteria. J Pharmacy Research 2009; 2(3):407-409. [17] Perez C, Pauli M, Bazerque P. An antibiotic assay by the agar-well diffusion method. Acta Biologiae et Medecine Experimentalis 1990; 15:113-115. [18] NCCLS-National Committee for Clinical Laboratory Standards: Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, 1997; Approved Standards M7-A4, Wayne, Pa. [19] Harborne JB (1973). Phytochemical Methods, Chapman and Hill, London. [20] Palmer AS, Stewart J, Fyfe L. Antimicrobial properties of plant essential oils and essences against five important food-borne pathogens. Letters in Applied Microbiology 1998; 26:118-122. [21] Prabuseenivasan S, Jayakumar M, Ignacimuthu S. In vitro antibacterial activity of some plant essential oils. BMC Complementary and Alternative Medicine 2006; 6:39. [22] Ates DA, Erdogrul OT. Antimicrobial activities of various medicinal and commercial plant extracts. Turk J Biol 2003; 27:157-162. [23] Baratta MT, Dorman HJ, Deans SG, Figueiredo AC, Barroso JG, Ruberto G. Antimicrobial and antioxidant properties of some commercial essential oils. Flav Fragr J 1998; 13:235-244. [24] Thongson C, Davidson PM, Mahakarnchanakul W, Weiss J. Antimicrobial activity of ultrasound-assisted solvent-extracted spices. Letters Appl Microbiol 2004; 39:401-406. [25] Nanasombat S, Lohasupthawee P. Antibacterial activity of crude ethanolic extracts and essential oils of spices against Salmonellae and other enterobacteria. KMITL Sci Tech J 2005; 5(3):527-538. ISSN 1860-3122 - 79 -