The effects of ascorbic acid on salt induced alfalfa (Medicago sativa L.) in in vitro culture

Similar documents
THE EFFECT OF ENVIRONMENTAL POLLUTION, ACIDIC RAINS, ALUMINIUM CONTAINING PACKAGING ON THE GROWTH OF WHEAT

Tobacco responds to salt stress by increased activity of antioxidant enzymes

Effect of Salt Stress on Antioxidant Activity and Seedling Growth of Canola (Brassica Napus L.) Cultivars

Advances in Environmental Biology

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 6, No 2, Copyright by the authors - Licensee IPA- Under Creative Commons license 3.

Effect of salt stress on antioxidant activity and seedling growth of three canola (Brassica napus L.) cultivars

Proline, sodium and potassium concentration changes in gamma rays and NaCl treated potato calli

EVALUATION OF THE REACTION OF TWO CONTRASTING BARLEY (HORDEUM VULGARE L.) CULTIVARS IN RESPONSE TO OSMOTIC STRESS WITH PEG 6000

THE EFFECT OF SALT AND OSMOTIC STRESS ON THE RETENTION OF POTASSIUM BY EXCISED BARLEY AND BEAN ROOTS

Salinity effects on toxic ions accumulation in grape (Vitis L.)

Aluminium toxicity in winter wheat

en ferl izer wi th 4 levels including 0, 50, 100, and 150 kg/ha urea chemical fertilizer. The second factor on the other hand was phosphorous ferl

Ameliorative Effect of Proline and Ascorbic Acid on Seed Germination and Vigour Parameters of Tomato (Solanum lycopersicum L.) Under Salt Stress

ROLE OF MINERAL NUTRITION IN ALLEVIATING DETRIMENTAL EFFECTS OF ENVIRONMENTAL STRESSES ON CROP PRODUCTION

The effects of NaCl priming on salt tolerance in canola (Brassica napus L.) seedlings grown under saline conditions

Evaluation of Performance and Variability of Six Sorghum Genotypes under Salinity Stress

Effects of Salinity on Growth, Activity of Antioxidant Enzymes and Sucrose Content in Tomato (Lycopersicon esculentum Mill.) at the Reproductive Stage

Role of Antioxidative Enzymes Activity in Salt Stress and Salinity Screening in Rice Grown Under in vitro Condition

Science Arena Publications Specialty Journal of Biological Sciences ISSN: Available online at , Vol, 4 (2): 18-27

Nelofer Jan et al / Int. J. Res. Ayurveda Pharm. 6(2), Mar - Apr Research Article.

Accumulation of Proline under Salinity and Heavy metal stress in Cauliflower seedlings

EFFECTS OF NaCl STRESS ON ACCUMULATION OF K +, Na +, Cl -, NO 3 -, SUGAR AND PROLINE CONTENTS IN THE SEEDLINGS OF TRITICALE-I

SALINITY TOLERANCE THRESHOLD OF BERSEEM CLOVER (TRIFOLIUM ALEXANDRINUM) AT DIFFERENT GROWTH STAGES

THE EFFECT OF CARBON SOURCES ON IN VITRO MICROTUBERIZATION OF POTATO (Solanum tuberosum L.)

Biological Forum An International Journal 7(1): (2015) ISSN No. (Print): ISSN No. (Online):

Biological Forum An International Journal 7(1): (2015)

Kader MAL, S. (2010 March) Cytosolic calcium and ph signaling in plants under salinity stress. Plant Signal Behav. 5(3):

ABSTRACT INTRODUCTION ISSN: OPEN ACCESS ARTICLE.

Studies on Seed Priming with Hydrogen Peroxide for Mitigating Salt Stress in Rice

Fig In the space below, indicate how these sub-units are joined in a molecule of ATP.

EFFECTS OF SALICYLATE ON GROWTH AND BIOCHEMICAL CHANGES IN MAIZE SEEDLINGS UNDER SALT STRESS

Effects of Sodium Chloride on Some Physiological Traits and Chemical Composition of Two Safflower Cultivars HOSSEIN SADEGHI

Mercury induced oxidative stress of antioxidants in Clitoria ternatea L.

GROWTH AND MINERAL CONCENTRATIONS OF PEA PLANTS UNDER DIFFERENT SALINITY LEVELS AND IRON SUPPLY

Effect of Salinity on Biochemical and Physiological Characteristics in Correlation to Selection of Salttolerance in Aromatic Rice (Oryza sativa L.

Effects of exogenous IAA on the growth and physiological. characteristics of Chinese cabbage seedlings under salt stress

vulgaris L.) seedling under salinity

Morphological and Physiological Responses of Cotton (Gossypium hirsutum L.) Plants to Salinity

Effect of NaCl stress on H 2 O 2 metabolism in rice leaves

EFFECTS OF NaCl TREATMENTS ON SEED GERMINATION AND ANTIOXIDANT ACTIVITY OF CANOLA (BRASSICA NAPUS L.) CULTIVARS E SHAHBAZI*, A ARZANI AND G SAEIDI

INTERACTION BETWEEN SALINITY AND POTASSIUM ON GRAIN YIELD, CARBOHYDRATE CONTENT AND NUTRIENT UPTAKE IN PEARL MILLET

Effect of salt stress on some morphological and biochemical characteristics of sunflower (Samsung- 600)

ANTIOXIDANT ACTIVITIES IN INDICA RICE (Oryza sativa L.) SEEDLINGS DURING SALINITY TREATMENT Sutee Chutipaijit, 1, * Kanokporn Sompornpailin 1,2

In vitro response of date palm (Phoenix dactylifera L.) to K/Na ratio under saline conditions

Mono and Bi-Cationic Effect on the Concentration of Carbohydrates in Maize Plant (Zea mays L.) Incubated Seedlings

Ascorbate Peroxidase Activity of Aranda Broga Blue Orchid Protocorm-like Bodies (PLBs) In Response to PVS2 Cryopreservation Method

Callus growth and ion composition in response to longterm NaCl-induced stress in two sugarcane (Saccharum sp.) cultivars

Terry Richmond s Fertilizer Package mentioned in the panel discussion March 14, 2013.

Supporting Information

Understanding a Soil Report

CATION-EXCHANGE CHARACTERISTICS OF WHEAT, BARLEY AND PEA DEPENDING ON THE OSMOTIC PRESSURE IN NUTRIENT SOLUTIONS OF LOW ph

Effect of salicylic acid on Na + accumulation in shoot and roots of tomato in different K + status

Zinc Toxicity in Tomato Plants

Evaluation of Helianthus annuus L. tolerance for Zinc in vitro post combination with Naphthalene acetic acid and Benzyl adenine

OSMOREGULATION IN HIGHER PLANTS: EFFECTS OF NaCl SALINITY ON NON-NODULATED PHASEOLUS A UREUS L. L GROWTH AND MINERAL CONTENT

Generation of reactive oxygen and nitrogen species in pea cultivars under copper exposure

EFFECT OF SALINITY ON SODIUM & POTASSIUM UPTAKE AND PROLINE, CARBOHYDRATES CONTENTS OF TURMERIC PLANT PARTS

Alkalinity and salinity tolerance during seed germination and early seedling stages of three alfalfa (Medicago sativa L.

Effect of nitrogen, phosphorus and potassium deficiency on the uptake and mobilization of ions in Bengal gram (Cicer arietinum)

Relative leaf water content as an efficient method for evaluating rice cultivars for tolerance to salt stress

INTERACTIVE EFFECTS OF SALINITY AND HEAVY METAL STRESS ON ECO- PHYSIOLOGICAL RESPONSES OF TWO MAIZE (ZEA MAYS L.) CULTIVARS

Index of Root Carbohydrates Contents for Salt Tolerance in Alfalfa

Effect of salinity level of irrigation water on cowpea (Vigna Unguiculata) growth

Effect of salinity on Na+ and K+ compartmentation in salt tolerant and sensitive wheat genotypes

RESPONSE OF TOMATO AND CORN PLANTS TO INCREASING Cd LEVELS IN NUTRIENT CULTURE

The effect of nano-micronutrients seed priming on germinability of Kabuli chickpea

Effect of salinity stress on some physiological traits of spring rapeseed genotypes at seedling stage

COMPARISON THE EFFECTS OF SPRAYING DIFFERENT AMOUNTS OF NANO ZINCOXIDE AND ZINC OXIDE ON, WHEAT

Evaluation of antioxidant enzymes activity in canola under salt stress

International Journal of Scientific & Engineering Research, Volume 4, Issue 6, June ISSN

PMT. Q1. (a) A student measured the rate of aerobic respiration of a woodlouse using the apparatus shown in the diagram.

Visit For All NCERT solutions, CBSE sample papers, Question papers, Notes for Class 6 to 12. Chapter-12 MINERAL NUTRITION

International Journal of Current Research in Biosciences and Plant Biology ISSN: Volume 2 Number 6 (June-2015) pp

GROWTH AND IONIC COMPOSITION OF SALT-STRESSED EUCALYPTUS CAMALDULENSIS AND EUCALYPTUS TERETICORNIS

Effective Salt Criteria in Callus-Cultured Tomato Genotypes

Department of Botany, Jahangirnagar University, Savar, Dhaka, Bangladesh. Key words: NaCl salinity, Wheat, Water relations, Ion accumulation.

Mitigation of salt stress in strawberry by foliar K, Ca and Mg nutrient supply

PHYTOTOXICITY OF FLUORIDE IN THE GERMINATION OF PADDY (ORYZA SATIVA) AND ITS EFFECT ON THE PHYSIOLOGY AND BIOCHEMISTRY OF GERMINATED SEEDLINGS

ROLE OF PROLINE, K/NA RATIO AND CHLOROPHYLL CONTENT IN SALT TOLERANCE OF WHEAT (TRITICUM AESTIVUM L.)

Growth and Physiological Responses of Diverse Perennial Ryegrass Accessions to Increasing Salinity

BRASSINOSTEROIDS. Abiotic Stress Tolerance In Tomato And Wheat Plants

The effect of salicylic acid different levels on two Coriandrum sativum varieties under deficit irrigation condition

Basra, Iraq; 2 Al Barjesiah Research Station, Ministry of Agriculture Basra, Iraq. Corresponding author: M. A. Ibrahim,

GROWTH AND NODULATION OF MUNGBEAN (VIGNA RADIATA [L.] WILCZEK) AS AFFECTED BY SODIUM CHLORIDE

Salinity stress evaluation on nutrient uptake and chlorophyll sugarcane genotypes

Slide 1. Institute of Plant Nutrition and Soil Science

How to Develop a Balanced Program for Pecan and Chili. Robert R Smith

Effect of salt stress (NaCl) on biomass and K + /Na + ratio in cotton

Roll of Poly Amines (Spermidine and Putrescine) on Protein, Chlorophyll and Phenolic Compounds in Wheat (Triticum aestivum L.) under Salinity Stress

THE EFFECTS OF HIGH SALINITY (NaCl) AND SUPPLEMEN- TARY PHOSPHORUS AND POTASSIUM ON PHYSIOLOGY AND NUTRITION DEVELOPMENT OF SPINACH

Full terms and conditions of use:

Soil Composition. Air

Stress Response to Different Concentrations of NaCl: Analysis of Root Length and Protein Expression on Wild Type

Salicylic Acid Ameliorates the Effects of Oxidative Stress Induced by Water Deficit in Hydroponic Culture of Nigella sativa

PHYSIOLOGICAL REACTION OF BEAN PLANTS (PHASEOLUS VULG. L.) TO SALT STRESS

Running title: Short-term salt stress effects on antioxidant enzymes

Growth, water status and nutrient accumulation of seedlings of Holoptelea integrifolia (Roxb.) Planch in response to soil salinity

PRELIMINARY STUDIES IN VITRO REGENERATION OF VETIVERIA ZIZANIOIDES THROUGH MERISTEM TIP CULTURE. College, Coimbatore , India.

Selection of donors for salt-tolerance in tomato using physiological traits

IMPROVING GROWTH AND YIELD OF SUNFLOWER (HELIANTHUS ANNUUS L.) BY FOLIAR APPLICATION OF POTASSIUM HYDROXIDE (KOH) UNDER SALT STRESS

Transcription:

BIOKEMISTRI 1():3-9 (December ) Available online at http://www.bioline.org.br/bk and at http://www.ajol.info/journals/biokem Printed in Nigeria The effects of ascorbic acid on salt induced alfalfa (Medicago sativa L.) in in vitro culture Lila ARAB and Ali Akbar EHSANPOUR * Department of Biology, Faculty of Science, Isfahan University, Isfahan, Iran Received 17 February MS/No BKM//, Nigerian Society for Experimental Biology. All rights reserved. --------------------------------------------------------------------------------------------------------------------------------------- Abstract Ascorbic acid as an antioxidant agent has already been used for increasing of stress tolerance. Callus was produced from stem segments of alfalfa (Medicago sativa L.) on MS medium supplemented with, dichlorophenoxy acetic acid, naphthalene acetic acid and kinetin ( mg/l each).calli were then transferred to the same medium containing, 3,, 9, 1 mm NaCl and,., 1.,. mm ascorbic acid. Addition of ascorbic acid to the medium improved seed germination and also increased the activity of acid phosphates, chlorophyll content, and dry mass. The Na + and K + content of stem-leaf and root was relatively increased with some variations. The fresh weight of calli was also increased by ascorbic acid under salt stress condition Keywords: Ascorbic acid, in vitro, Medicago sativa, salt stress *Author to whom correspondence should be addressed. E-mail: ehsanpou@yahoo.com 3

INTRODUCTION Salinity induces a wide range of metabolic perturbation in higher plant. Although plant in nature have evolved several adaptation mechanisms to cope with the presence of salt in their environment, an understanding of these mechanisms still remains incomplete, mainly due to the complexity of salt stress, which present an ionic component, and an osmotic component on the other hand 1. Moreover, physiological characterization of salt affected plants in natural environments remains difficult. Salin soils are typically very patchy in their salinity, and ions other than Na and Cl could contribute to the high electrical conductivity of salt-affected lands 3. Medicago species are relatively salt tolerant. The production of activated oxygen species (AOS) which can damage DNA, protein, chlorophyll and membrane function is a byproduct of oxidative metabolism in chloroplasts, mitochondria and peroxisomes. AOS production is further enhanced in response to various abiotic stress, such as drought, salt, extreme temperature and herbicides. Numerous studies have shown that the level of antioxidative enzyme is increased when plants are exposed to biotic or abiotic stresses,. Various plant tissues are known to accumulate up to milimolar concentration of L-ascorbic acid. It plays an important role as an antioxidant and protects the plant during oxidative damage by scavenging free radicals and active oxygen species that are generated during salt stress condition 7,. In vitro tissue culture is a useful tool to study the cellular mechanisms of the stress and its application at the cellular level, independent of regulatory mechanisms occurring at the whole plant level. Salt resistant line has been selected using plant cell culture techniques 9. Nevertheless, the phenomenon of physiological adaptation to NaCl stress is not completely understood. The present study was therefore undertaken to investigate the effects of various salt concentrations and exogenous ascorbic acid on plant growth under in vitro condition. MATERIALS AND METHODS Seeds of Medicago sativa cultivar (cv) Rehnany were obtained from the Seed and Seedling Production Center in Isfahan, Iran. Seeds were surface sterilized for 1- min in 9% ethanol (v\v) then treated in % sodium hypochlorite for min, followed by 3 washes with sterile distilled water and were placed on MS medium containing, 3,, 9, 1 mm NaCl and., 1, mm exogenous ascorbic acid under aseptic condition. Then for -1 days post germination, and after weeks, growth parameters (stem and root length, number of lateral root and dry weight and relative cholorophyl by chlorophyll meter (Min-LTA, RAD-), acid phosphatase according to method of Julie et al. 1 and Na +, K + level in tissues were determined using flame photometer (Perkin- Elmer Coleman 1-ca). For callus production, stem segments from in vitro grown plants on MS (Murashige and Skooge, 19) 11, were cultured on MS medium supplemented with NAA (naphthalene acetic acid),,-d (, dichlorophenoxy acetic acid), kinetin, (each at mg/l) and 1 g/l yeast extract. All cultures were kept in culture room at C. Calli were produced after - weeks, then were sub-cultured at weeks intervals. After 3 subcultures, segments of callus (approx. size -1 mm) with 1 replications were transferred to the same medium containing, 9, 1 mm NaCl and., 1, mm ascorbic acid. Fresh weights of the calli were measured after weeks. Approx. 1 gram callus per each treatment with 3 replications was used for ascorbic acid determination using the method of Smirnoff 1. All data were analyzed according to Duncan test at p<.. RESULTS The effects of salt and ascorbic acid on germination of Medicago sativa seeds are as shown in Figure 1. Result indicated that seed germination decreased with increasing NaCl concentration, but exogenous ascorbic acid in the medium increased germination even at 9 and 1 mm salt.

Germanation in day (%) 1 1 3 9 1 Growth parameters such as stem and root length, number of root and dry weight were affected by both NaCl and ascorbic acid (Fig. a, b, c, d). These parameters were decreased as concentration of salt was increased in the medium, however, plant growth were improved by adding exogenous ascorbic acid significantly. Fig 1: Effect of NaCl and ascorbic acid on seed germination after days (Bars are SE of data). Addition of ascorbic acid to the culture medium contaning NaCl improved growth of callus in Medicago sativa cv. Rehnany significantly (p<.) as shown in Figure 3. a b 1 S t e m l e n g t h (c m ) 3 9 1 a R o o t l e n g t h (c m ) 1 3 9 1 c N u m b e r o f l a t e ra l ro o t 1 1 3 9 1 d D ry w e i g h t ( g r )...1.1. 3 9 1 Fig : Effect of salt and ascorbic acid on a) stem length, b) root length, c) root number, d) dry weight of Medicago sativa (Bars are SE of data). When high concentration of NaCl were applied to the medium, callus fresh weight were decreased dramatically. The exogenous ascorbic acid increased fresh weight significantly (p<.) at concentration of 1mM NaCl. Similar response was observed in chlorophyll content of stem and leaf (Fig ). Acid phosphatase activity was also measured in leaf and stem from in vitro grown plants under salt stress. Comparison between salt treated and control shows that enzyme activity increased by increasing of salt concentration. However, it seems that enzyme activity was positively affected by adding ascorbic acid but the

difference between ascorbic acid treated and non treated callus was not significant (Fig. ). Weight of callus (gr) 9 1 NaCl (Mm) Fig 3: Effect of NaCl and ascorbic acid on callus fresh weight (Bars are SE of data). The pattern of Na+ and K+ in stem-leaf and roots of plants cultured in medium containing salt and ascorbic acid is shown in Figure. Sodium content of stem-leaf and roots were increased due to increasing NaCl in the medium, but potassium level was basically higher than sodium. Ascorbic acid at. mm in the medium decreased the level of Na + content of stem-leaf and roots significantly (p<.). Relative chlorophyl 3 1 3 9 1 Fig : Effect of NaCl and ascorbic acid on relative chlorophyll content of stem-leaf (Bars are SE of data). Activity of enzyme (U/gFW) 7 7 7 7 7 3 9 1 Fig : Acid phosphatase activity in leaf and stem of Medicago sativa plant (Bars are SE of data). a) A mount of N a+ in stem - leaf (mgr/l) b) 1 1 A m ou n t o f N a+ in ro o t (m gr/l) C) A m o u n t o f k + i n s t e m - l e a f ( m g r / l) d) 7 A m o u n t o f k + i n r o o t ( m g r / l ) 3 1 7 3 1 1 3 9 1 3 9 1 3 9 1 3 9 1 Fig : Level of Na+ (a and b), and k+ (c and d) in stem-leaf and roots of Medicago sativa in the presence of ascorbic acid (Bars are SE of data).

Relative ascorbic acid in callus.7....3..1 9 1 Fig 7: Ascorbic acid content of callus after weeks (Bars are SE of data). Relative ascorbic acid instem-leaf 1. 1.... 3 9 1 Fig : Ascorbic acid content of stem-leaf after weeks (Bars are SE of data) The amount of ascorbic acid in callus was measured four weeks post culture using spectrophotometer at nm. The results are shown in Figures 7 and. The level of ascorbic acid content in cells after weeks was increased as the amount of this antioxidant was increased in the medium. However, the highest amount of ascorbic acid was observed when,. and.mm ascorbic acid was added to the medium. DISCUSSION Salinity is a major factor in reducing plant growth and productivity. The effect of salt stress on plant and corresponding callus depends on four responses: dehydration of the cells through the low water potential, nutritional imbalance caused by the interference of saline ions with essential nutrients in both uptake and translocation processes, toxicity due to the high accumulation of Na and Cl in the cytoplasm as well as the production of activated oxygen species during salt stress. A common response to increasing the salt concentration is decreasing of growth rate of callus. It has been reported that under salt stress condition the growth of sensitive callus of Lycopersicon esculentum is decreased dramatically. Moreover, when high concentration of exogenous proline (1mM) and NaCl were applied to the medium the dry weight of Medicago sativa cv. Yazdi was increased 13. The exogenous ascorbic acid in the medium increased germination, dry weight, and ascorbic acid content in stem-leaf tissues as well as callus. In fact exogenous ascorbic acid increased level of ascorbic acid uptake by different tissues as reported by Arrigoni et al. 1. One of the remarkable roles of ascorbic acid in seed germination and cell growth under salinity is its anti-oxidant activity, rather than its possible utility as an organic substrate for respiratory energy metabolism. Several finding indicate that salt-induced low growth of plant and callus is associated with increasing of the cell damaging active oxygen species (AOS). The effect of additional ascorbic acid on plant survival is associated with the partial inhibition of a few interactions in AOS production 1. The inhibitory effect of ascorbic acid on lipid peroxidation is related to plant survival but its actual mechanism(s) are not yet clear. One possibility is that addition of ascorbic acid would increase the leakage of essential electrolytes following peroxidative damage to plasma membrane 1,17. The amount of sodium accumulation in stem-leaf decreased when 1. and.mm ascorbic acid was added to the medium. No significant effect of ascorbic acid addition to the medium was found on potasium level of stem-leaf. We have found that ascorbic acid increased number of roots in salt treated seedlings. In fact the new roots and leaves produced by ascorbic acid under salt stress condition might be due to the cell division and differentiation of meristem cells. When ascorbic acid was added to the medium, despite of the concentration levels, the activity 7

of acid phosphatase was increased. It has been well documented that salt and water stress increase acid phsphatase activity. Acid phosphatase is known to act under salt stress by maintaining a certain level of inorganic phosphate which can co-transported with H + along a gradient of proton motive force. In contrast, a few reports indicating that acid phosphatase activity is independent of phosphate level 1. However, the relationship between ascorbic acid and phosphate level and acid phsphatase activity remind to be evaluated in details in the future. In conclusion, this report shows that Medicago sativa plant treated with ascorbic acid remarkably increase the capacity of germination, seedling survival by changes or balancing Na/K level as well as intracellular content of ascorbic acid. Results indicating that the salt tolerance level was increased using ascorbic acid. ACKNOWLEDGEMENTS Authors wish to thank all members of Graduate Directorship of Isfahan University for their support of this project REFERENCES 1.Basu, S., Gangopadhyay, G., Mukherjec, B., and Gupta, S. (1997) Plant regeneration of salt adapted callus of induca rice in salin condition. Plant Cell Tiss.Org.Cult. :13-19..Binzel, M. L., Pana-Hess, F., Bressan, R. A. and Hasegawa, P. M. (199) Mechanism of adaptation to salinity in cultured glycophyte cells. In: Cherry JH (ed) Environmental stress in plant (pp.139-13).springer-verlag, Berlin. 3.Cano, E. A., Prez-Alfocea, F., Moreno, V., Cara, M., and Bolarin, M. C. (199) Evalution of salt tolerance in cultivated wild tomato species through shoot apex culture. Plant Cell Tiss.Org.Cult. 3:19-..Hasegawa, P. M., Bressan, R. A., Zhu, J. K. and Bohner, H. J. () Plant cellular and molecular response to high salinity. Ann. Rev. Plant Physiol. 1:3-99..Harinasut, P., Poonsopa, D., Roengmongkol, K. and Charensataporn, K. (3) Salinity effect on antioxidant enzyme in mulberry cultivar. Science Asia. 9:19-113..Mitova, V., Tal, M., Volokita, M. and Gury, M. () Salt stress induces up regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennelii but not in the cultivated species. Physiologia Plantarum 11:393. 7.Hernandez, J. A., Ferrer, M. A, Jimenez, A., Rosarelo, A. and Sevilla, F. (1) Antioxidant system and H O production in the apoplast of pea leaves. Its relation with salt-indused necrotic lesions in minor reins. Plant Physiology 17:17-31..Tabata, K., Oba, K., Suzuki, K. and Esaka, M. (1) Generation and properties of acorbic acid-deficient transgenic tobacco cells expressing antisense RNA for L- galactono 1,-lacton dehidrogenas. The Plant Journal 7:139-1. 9.Ehsanpour, A. A., and Amini, F. (3) Effect of salt and drought stress on acid phosphatase activites in alfalfa (Medicago sativa L.) explants under in vitro culture. Africa Journal of Biotechnology :133-13. 1.Julie, E. H., Richardson, A. E. and Simpson, R. J. (1999) Phytase acid phosphatase activities in extracts from roots of temperate pasture grass and legume seedlings. Aus. Plant Physiol. :1-9. 11.Murashige, T. and Skoog, F. (19) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Plant Physiol. 1: 73-79. 1.Smirnoff, N. () Ascorbic acid: metabolism and function of a multi-facetted molecule. Current Opinion in Plant Biology 3:9-3. 13.Ehsanpour, A. A. and Fatahian, N. (3) Effect of salt and prolin on Medicago sativa callus. Plant Cell Tissue and Organ Culture 73:3-. 1.Arrigoni, O. and Detullio, M. C. () The roll of ascorbic acid in cell metabolism: between gene-directed function and un predicatable chemical reaction. Plant Physiol. 7:71-7.

1.Shalata, A. and Neumann, P. M. (1) Exogenous ascorbic acid increases resistance to salt stress reduces lipid peroxidation. Journal of Experimental Botany : 7-11. 1.Blokhina, O., Virolainen, E. and Fagerstedt, K. V. (3) Antioxidant damage and oxygen deprivation stress. Annals of Botany 91:179-197. 17.Bourgeois-Chillou, P. and Gurrier, G. (199) Salt responses in Lycopersicon esculentum call and whole plants. J. Plant Physiology 1:9-1. 1.Barret-Lennard, E. D., Robson, A. D. and Greenway, H. (19) Effect of phosphorus deficiency and water defication phosphates activity from wheat leaves. J. Exp. Bot. 33: -93. 9