Received 7 March 2002/Accepted 30 October 2002

Similar documents
The New England Journal of Medicine

Presence of an inducible HIV-1 latent reservoir during highly active antiretroviral therapy

Received 23 May 2001/Accepted 28 September 2001

Received 15 April 2002/Accepted 12 June 2002

The New England Journal of Medicine

ART Suppresses Plasma HIV-1 RNA to a Stable Set Point Predicted by Pretherapy Viremia

Limits on Replenishment of the Resting CD4 þ T Cell Reservoir for HIV in Patients on HAART

Current Estimates for HIV-1 Production Imply Rapid Viral Clearance in Lymphoid Tissues

Highly active antiretroviral therapy (HAART) is very effective

No Viral Evolution in the Lymph Nod. Combined Antiretroviral Therapy. Author(s) Miura, Tomoyuki; Igarashi, Tatsuhik

Virus Burden in Lymph Nodes and Blood of Subjects with Primary Human Immunodeficiency Virus Type 1 Infection on Bitherapy

Updated information and services can be found at: These include: Supplemental material

MODELING THE DRUG THERAPY FOR HIV INFECTION

The amount of HIV-1 in blood correlates with the risk of

Supervised Treatment Interruption (STI) in an Urban HIV Clinical Practice: A Prospective Analysis.

A novel PCR assay for quantification of HIV-1 RNA. and Immunology, Johns Hopkins University Bloomberg School of Public Health, 4

Decay characteristics of HIV-1- infected compartments during combination therapy

Evolution of Envelope Sequences of Human Immunodeficiency Virus Type 1 in Cellular Reservoirs in the Setting of Potent Antiviral Therapy

The prevalence of antiretroviral drug resistance in the United States

A stable latent reservoir for HIV-1 in resting CD4 + T lymphocytes in infected children

Acute infection with HIV is characterized by an exponential. Viral Dynamics of Acute HIV-1 Infection

Suppression of HIV replication in the resting CD4 T cell reservoir by autologous CD8

MODELLING VIRAL AND IMMUNE SYSTEM DYNAMICS

Diversity and Tropism of HIV-1 Plasma Rebound Virus after Treatment Discontinuation

Journal of Infectious Diseases Advance Access published July 11, Effect of Antiretroviral Therapy on HIV Reservoirs in Elite Controllers

Intracellular transactivation of HIV can account for the decelerating decay of virus load during drug therapy

Scientific Rationale for Antiretroviral Therapy in 2005: Viral Reservoirs and Resistance Evolution

Human Immunodeficiency Virus Type 1 (HIV-1) Antigen Secretion by Latently Infected Resting CD4 T Lymphocytes from HIV-1-Infected Individuals

Antiviral therapy for HIV-infected patients has greatly improved

BASIC SCIENCE. Transient Viremia, Plasma Viral Load, and Reservoir Replenishment in HIV-Infected Patients on Antiretroviral Therapy

ON ATTAINING MAXIMAL AND DURABLE SUPPRESSION OF THE VIRAL LOAD. Annah M. Jeffrey, Xiaohua Xia and Ian K. Craig

The frequency of resistant mutant virus before antiviral therapy

Precision in the Specification of Ordinary Differential Equations and Parameter Estimation in Modelling Biological Processes

Fitting analysis provides further evidence for eradication of hiv/aids infection under

Cell-associated HIV RNA: a dynamic biomarker of viral persistence

Professor Jonathan Weber

Supplemental Materials and Methods Plasmids and viruses Quantitative Reverse Transcription PCR Generation of molecular standard for quantitative PCR

Quantification of Human Immunodeficiency Virus Type 1 Proviral Load by a TaqMan Real-Time PCR Assay

Estimation of the Initial Viral Growth Rate and Basic Reproductive Number during Acute HIV-1 Infection

MAJOR ARTICLE JID 2004:189 (15 April) Kieffer et al.

Predicting the probability of persistence of HIV infection with the standard model

2 nd Line Treatment and Resistance. Dr Rohit Talwani & Dr Dave Riedel 12 th June 2012

ANTIRETROVIRAL therapy directed at the reverse

Modeling Kinetics of HBV Infection and Recommendations for Moving Forward

Towards an HIV Cure. Steven G. Deeks Professor of Medicine University of California, San Francisco

With over 20 drugs and several viable regimens, the mo6vated pa6ent with life- long access to therapy can control HIV indefinitely, elimina6ng the

The New England Journal of Medicine

Targeted Derepression of the Human Immunodeficiency Virus Type 1 Long Terminal Repeat by Pyrrole-Imidazole Polyamides

VIRUS POPULATION DYNAMICS

The first cases of HIV* infection in the United States began

IN PATIENTS INFECTED WITH HUMAN

Korean Red Ginseng Slows Depletion of CD4 T Cells in Human Immunodeficiency Virus Type 1-Infected Patients

The Distribution of HIV DNA and RNA in Cell Subsets Differs in Gut and Blood of HIV-Positive Patients on ART: Implications for Viral Persistence

Plasma HIV-1 RNA Detection Below 50 Copies/mL and Risk of Virologic Rebound in Patients Receiving Highly Active Antiretroviral Therapy

Current approaches to treatment for HIV-1 infection

HIV Basics: Pathogenesis

DATA SHEET. Provided: 500 µl of 5.6 mm Tris HCl, 4.4 mm Tris base, 0.05% sodium azide 0.1 mm EDTA, 5 mg/liter calf thymus DNA.

Department of Microbiology and Immunology, University of California San Francisco, San Francisco, California 94141, USA 4

Many highly active antiretroviral therapy PROCEEDINGS

ISSUES. Treatment. Adenovirus-based vaccines against HIV: A look at how the immune system could be trained to combat HIV.

A Phase II Randomized Study of HIV-Specific T-Cell Gene Therapy in Subjects with Undetectable Plasma Viremia on Combination Antiretroviral Therapy

A Mathematical Model for Treatment-Resistant Mutations of HIV

T Memory Stem Cells: A Long-term Reservoir for HIV-1

The rates of lymphocyte turnover during health and disease

NIH Public Access Author Manuscript J Acquir Immune Defic Syndr. Author manuscript; available in PMC 2013 September 01.

Clinical Development of ABX464, drug candidate for HIV Functional Cure. Chief Medical Officer ABIVAX

ID Week 2016: HIV Update

Dynamics of Compartmentalized HIV-1 Populations in the Central Nervous System Patrick R. Harrington

Performance Characteristics of the QUANTIPLEX HIV-1 RNA 3.0 Assay for Detection and Quantitation of Human Immunodeficiency Virus Type 1 RNA in Plasma

Stochastic Interplay between Mutation and Recombination during the Acquisition of Drug Resistance Mutations in Human Immunodeficiency Virus Type 1

Updated Recommendations of the International AIDS Society USA Panel JAMA. 2000;283:

Directly measured kinetics of circulating T lymphocytes in normal and HIV-1-infected humans

In Vitro Human Immunodeficiency Virus Eradication by Autologous CD8 T Cells Expanded with Inactivated-Virus-Pulsed Dendritic Cells

Mathematical Considerations of Antiretroviral Therapy Aimed at HIV-1 Eradication or Maintenance of Low Viral Loads. Wein, D'Amato, and Perelson

Rapid Turnover of 2-LTR HIV-1 DNA during Early Stage of Highly Active Antiretroviral Therapy

Predicting the duration of antiviral treatment needed to suppress plasma HIV-1 RNA

SUPPLEMENTARY INFORMATION

Suppression of HIV replication by lymphoid tissue CD8 cells correlates with the clinical state of HIV-infected individuals

C h a p t e r 5 5 HIV Therapy Where are We Now?

QUANTITATIVE HIV RNA (VIRAL LOAD)

HIV 101: Fundamentals of HIV Infection

Can HIV be cured? (how about long term Drug free remission?)

Theoretical Design of a Gene Therapy To Prevent AIDS but Not Human Immunodeficiency Virus Type 1 Infection

Mathematical Analysis of HIV-1 Dynamics in Vivo

Beyond HAART: Outline. HIV-1 Time Line. Outline. Approaches to HIV Eradication 8/15/2013

Incomplete Peripheral CD4 + Cell Count Restoration in HIV-Infected Patients Receiving Long-Term Antiretroviral Treatment

It takes more than just a single target

Clinical Case. Prof.ssa Cristina Mussini

A VACCINE FOR HIV BIOE 301 LECTURE 10 MITALI BANERJEE HAART

Recurrent HIV-1 Integration at the BACH2 Locus in Resting CD4 + T Cell Populations during Effective Highly Active Antiretroviral Therapy

Fayth K. Yoshimura, Ph.D. September 7, of 7 HIV - BASIC PROPERTIES

Therapy of Acute HIV-1 Infection: An Update. Susan Little, M.D. Associate Professor of Medicine University of California, San Diego

Predicting the Impact of a Nonsterilizing Vaccine against Human Immunodeficiency Virus

ScienceDirect. A mathematical study of combined use of anti-hiv drugs and a mutagen

HIV-1 Viral Load Real Time (RG)

Identification and Characterization of CD4 T cells actively transcribing HIV RNA in Peripheral Blood

Model of HIV-1 Disease Progression Based on Virus-Induced Lymph Node Homing and Homing-Induced Apoptosis of CD4 + Lymphocytes

[RH], ; 95% ; P

Determinants of residual viraemia during combination HIV treatment: Impacts of baseline HIV RNA levels and treatment choice

Transcription:

JOURNAL OF VIROLOGY, Feb. 2003, p. 227 2275 Vol. 77, No. 3 0022-538X/03/$08.00 0 DOI: 0.28/JVI.77.3.227 2275.2003 Copyright 2003, American Society for Microbiology. All Rights Reserved. In a Subset of Subjects on Highly Active Antiretroviral Therapy, Human Immunodeficiency Virus Type RNA in Plasma Decays from 50 to 5 Copies per Milliliter, with a Half-Life of 6 Months Michele Di Mascio, Geethanjali Dornadula, 2 Hui Zhang, 2 Julie Sullivan, 2 Yan Xu, 2 Joseph Kulkosky, 2 Roger J. Pomerantz, 2 and Alan S. Perelson * Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, and Dorrance H. Hamilton Laboratories, Center for Human Virology, Thomas Jefferson University, Philadelphia, Pennsylvania 907 2 Received 7 March 2002/Accepted 30 October 2002 Three of five virally suppressed human immunodeficiency virus type I (HIV-)-infected patients treated with highly active antiretroviral therapy and followed intensively with a supersensitive reverse transcriptase PCR assay with a lower limit of quantitation of 5 copies/ml showed statistically significant viral load decays below 50 copies/ml, with half-lives of 5 to 8 months and a mean of 6 months. This range of half-lives is consistent with the estimated half-life of the latent HIV- reservoir in the peripheral blood. Those patients without decay of viral load in plasma may have significant cryptic HIV- residual replication. Highly active antiretroviral therapy (HAART) has been shown to have potent effects on human immunodeficiency virus type I (HIV-) infection and has led to successful treatment of many infected individuals in the developed world. Many of these patients have demonstrated so-called undetectable levels of viral RNA in peripheral blood plasma after treatment with HAART regimens. Here, using a supersensitive PCR-based assay, we examine the dynamics of HIV- RNA change in a select subset of patients with viral loads in plasma of 50 copies/ml. HIV- replicates and is cleared in vivo at extremely high rates (7, 26, 30, 33, 39). HAART, by interfering with viral replication, causes declines in plasma virus, with a rapid first phase bringing viral loads in plasma down by or 2 orders of magnitude followed by a slower second phase (26, 27). In diverse cohorts, HAART may lead to viral loads in the peripheral blood plasma of 400 to 500 copies/ml, with somewhat fewer patients obtaining 50 copies of plasma HIV- RNA/ml (24). However, in recent clinical trials 80% of patients have achieved 50 copies/ml (3). The first- and second-phase declines are related to loss of productively infected CD4 T lymphocytes and the loss of a long-lived infected cell pool, respectively (26), although loss of virions trapped on follicular dendritic cells may also contribute to the second phase (2, 5, 6). The release of virus by activation of latently infected cells has been suggested as a possible third phase (), but viral decay kinetics consistent with the hypothesized half-life of latently infected cells of approximately 6 months have never been observed (3, 40). While HAART induces profound declines in plasma virus, * Corresponding author. Mailing address: MS-K70, T-0, Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, NM 87545. Phone: (505) 667-6829. Fax: (505) 665-3493. E-mail: asp@lanl.gov. several studies have demonstrated that resting CD4 T lymphocytes and other cells in the body, including seminal cells, may maintain replication-competent proviruses in patients on virally suppressive HAART (4, 5, 0, 25, 29, 34, 35). Also, very-low-level cryptic viral replication has been demonstrated in the peripheral blood and lymphoid tissue of most patients on virally suppressive HAART (2, 2, 8, 9, 2, 28, 40; V. Natarajan, M. Bosche, J. A. Metcalf, D. J. Ward, H. C. Lane, and J. A. Kovacs, Letter, Lancet 353:9-20, 999). Ongoing replication and the lack of sensitive assays have hindered the quantitative assessment of possible additional phases of plasma virus decay. Recently, we have utilized a supersensitive reverse transcriptase PCR (RT-PCR) to evaluate the blood plasma of patients on virally suppressive HAART with fewer than 50 copies/ml of plasma viral RNA by clinical assay systems (6). We demonstrated that the vast majority of patients have low but detectable levels of viral RNA in peripheral blood plasma, even during virally suppressive HAART regimens (6). In the present study, the decay rates of low levels of plasma viral RNA were analyzed for a subset of patients on virally suppressive HAART, who not only had 50 copies/ml by clinical assays but also were known to be compliant and had no intercurrent illnesses. This subset we felt best represented patients with little to no viral replication for whom we might be able to discern continuing plasma viral decay. Patient selection. Five HIV--infected men from a larger group of over 80 patients with 50 copies/ml of viral RNA, monitored at the Thomas Jefferson University Medical Center and the Center for Human Virology, were analyzed. These patients were not representative of the total group and were selected on the basis of possibly having the greatest degree of viral suppression. Each of these patients was on a stable HAART regimen and had not experienced intercurrent illness or changes in antiretroviral therapies. As well, each of these Downloaded from http://jvi.asm.org/ on September 5, 208 by guest 227

2272 NOTES J. VIROL. patients had relatively long follow-up with repeated supersensitive RT-PCR analyses of his plasma and was known to be adhering to antiretroviral drug therapy during the time of follow-up. All patients had consistently fewer than 400 to 500 copies of viral RNA/ml in peripheral blood plasma in the months prior to being selected for this cohort and subsequent follow-up by supersensitive RT-PCR for peripheral blood plasma viral RNA. These patients were found to have peripheral plasma viral RNA levels of fewer than 50 copies/ml on at least two occasions prior to entry into this cohort for follow-up by the laboratory-based supersensitive RT-PCR assay. All patients were stable immunologically (i.e., regarding CD4 T- lymphocyte counts) and virologically during HAART. The screening and analysis of these patients were approved by the Thomas Jefferson University Institutional Review Board, and each patient signed an informed consent form. Plasma HIV- RNA and RT-PCR. Eighty milliliters of peripheral blood was obtained, and Ficoll-Hypaque gradient centrifugation was used to separate cells from plasma. The blood plasma was concentrated via ultracentrifugation at 45,000 rpm for h using an NVT90 rotor on a Beckman ultracentrifuge. The supernatant was discarded, and virion-associated genomic RNA was extracted from the subsequent pellet by using a guanidinium thiocyanate method (Promega, Inc.) (3). The methodology for the supersensitive RT-PCR for HIV- RNA was described in detail previously (6, 36 38). The amplified PCR products were hybridized with a probe labeled with phosphorus 32, SK 9, and Southern blotting was then used to visualize the specific bands of the amplicons. A standard curve was developed by using an in vitro-transcribed gag RNA construct, as described previously (36). Comparison of the test samples with this serially diluted standard curve of the amplified in vitro-transcribed standard was used to quantify unspliced viral RNA to 5 copies/ml within the linear amplification range of this assay. Viral transcripts below 5 copies/ml were also detected but could not be quantified by this assay system (6). In some samples no viral transcripts could be detected, and they were treated as copy/ml. Quantitation of the viral transcripts was performed via analysis by PhosphoImager (Molecular Dynamics, Sunnyvale, Calif.). Linear regression analysis. Viral load (VL) data were fitted using a maximum-likelihood procedure that allows for censored data (20). Viral transcripts 5 copies/ml were treated as censored data in the range of to 5 copies/ml if detected or as censored data below copy/ml if undetected. Let Y j be the VL measurement at time t j. Also, suppose we have a model that given a set of parameter values predicts the viral load. Let be the vector of parameters in the model and let f(,t j ) be the predicted VL at time t j. Finally, assume that Yj f(,t j ) ε j, where ε j is the error between the theoretical model and the experimental data, which we assume is normally distributed with variance 2 : ε j N(0, 2 ). We fitted the model to the data by using the following maximum-likelihood procedure. An uncensored measurement contributes the term 2 2 e 2 2 yj f,tj 2 to the likelihood. A censored measurement for a VL where the Patient no. TABLE. Baseline clinical characteristics of study patients value is only known to be below a given threshold ( ) has a contribution to the likelihood of P Y k 2 2 e 2 2 u f,tk 2 du,,, t k whereas a censored measurement for a VL where the value is known to be only in a given range ( to 2 ) has a contribution to the likelihood of P Y k 2 2 2 2 e 2 2 u f,tk 2 du 2, 2,,, t k The likelihood function is obtained as the product of the contributions provided by each measurement: y j U No. of mos with viral load 400 copies/ml 2 2 e CD4 T-lymphocyte count (cells/mm 3 ) tj 2 2 2 yj f, y j C, 2 2, 2,,, t i Antiretroviral agents 42 323 ZDV/3TC/NFV 2 24 489 ZDV/3TC/IDV 3 25 709 ZDV/3TC/NFV 4 60,5 ZDV/IDV 5 23,6 ZDV/3TC/EFV () y k C,,, t k where U uncensored data, C censored data whose value is only known to be below the threshold, and C, 2 censored data whose value is known to be only in a given range ( to 2 ). To analyze viral decay, we assume that the logarithm of the VL decays according to a straight line, such that log (Y j ) mt j q ε j, where m is the slope of the decay curve. Maximumlikelihood estimates for this linear regression model are then obtained by searching for parameters (m, q, 2 ) that maximize the likelihood function (equation ). The decay slope m, the initial viral load q, and the variance 2 of the error between theory and data were estimated with corresponding 95% confidence intervals (CI). The 95% CI was computed by bootstrapping the pairs (t k, V k ) with replacement, where V k is the viral load measured at time t k (8). The significance of the slope m being different from zero with n observations was tested by a t test using the variable m/s, where S is the standard error of the estimated parameter m and n 2is the number of degrees of freedom (32). Since the censored data do not allow a direct computation of S, the value was estimated from the bootstrapped data (7). Viral load decay rates. The baseline clinical and virological characteristics of the patients are given in Table. All patients had viral loads in plasma below 50 copies/ml on entry into the study. In Fig., the data and the regression lines, when signif- Downloaded from http://jvi.asm.org/ on September 5, 208 by guest

VOL. 77, 2003 NOTES 2273 FIG.. Viral loads in plasma (filled circles) for patients, 2, 3, 4, and 5 (PAT through 5) and best-fitting linear regression lines. For patients 3 and 4 the slope of the regression line was not different from zero, and the line is not shown. Data for viral load data were fitted by using a maximum-likelihood procedure that allows for censored data, i.e., data given in the form of 5 copies/ml or copy/ml. We assumed that values reported as 5 copies/ml were between and 5 copies/ml; thus, the data points have associated vertical bars. Similarly, a measurement of 0 is here reported as anything below copy/ml and a vertical bar indicates this uncertainty. icant, are shown for each of these patients. Table 2 summarizes the estimate of the viral load decay slope m, its 95% CI, and the probability of m being non-zero. The corresponding halflives t /2 were computed from the estimate of m by the formula t /2 ln (2/m) 0.693/m. The decay slope was statistically different from zero only for patients, 2, and 5. For these patients the viral load decay yielded half-lives of 256, 49, and 38 days, respectively, with a mean of approximately 6 months. Patients 3 and 4 did not show statistically significant decay of viral load in plasma. Implications. HAART-induced decay of plasma virus occurs with a rapid first phase followed by a slower second phase (26, 27). Assuming that the second phase of decay continues unabated, virus was predicted to be eliminated from long-lived cells in 2 to 3 years of completely suppressive antiretroviral therapy. Thus, the failure of therapy to eradicate the virus in large cohorts of patients treated for much longer than 3 years suggests that either there exist additional very slowly decaying viral reservoirs or HAART does not fully suppress ongoing viral replication, or both. The existence of an additional phase of decay has been difficult to ascertain because of the limitations involved in quantifying extremely low levels of plasma virus, and alternative approaches were pursued. Refined coculture methods showed that, in individuals whose plasma viremia levels are well suppressed by antiretroviral therapy, peripheral blood mononuclear cells containing replicationcompetent HIV- decayed with a mean t /2 of approximately 6 months (40), close to the decay characteristics of memory lymphocytes in humans and monkeys (4, 22, 23). However, slower decays or no evidence of decay was observed in less selective patient populations (9), possibly due to ongoing cryptic viral replication in some patients. Here, using a new supersensitive RT-PCR assay with a quantitative threshold of 5 copies/ml, we were able to reveal continuing decay of viral load in plasma below the threshold of 50 copies/ml with a mean t /2 of 6 months and a range of 5 to 8 months. Although this decay was observed for only 3 of the 5 patients studied, it seems significant that the estimated mean half-life of 6 months is the same as the estimated half-life of resting CD4 T lymphocytes harboring replication-competent HIV- in individuals consistently maintaining plasma HIV- Patient no. TABLE 2. Estimated slope for decay of viral load in plasma, 95% CI, significance test, and half-life of viral decay m Lower CI Upper CI P value t /2 (days) 0.0027 0.009 0.0046 2.6 0 3 256 2 0.0046 0.0020 0.0065 2.3 0 3 49 3 0.0020 0.0003 0.0057 0.7 4 0.007 0.003 0.0023 0.060 5 0.0050 0.0042 0.0060 2.2 0 4 38 Downloaded from http://jvi.asm.org/ on September 5, 208 by guest

2274 NOTES J. VIROL. RNA levels of fewer than 50 copies/ml (3, 40). Further, the observation of these decays suggests that the supersensitive assay is providing quantitatively reliable measurements in the range of 5 to 50 copies/ml. While viral decay continued for three patients, for the other two patients analyzed, no statistically significant decay trend was observed. Thus, for these two patients the viral load in plasma may have reached a new quasi-steady state in which low-level viral replication was balanced by viral clearance or may be so close to steady state that the rate of viral decay could not be reliably established. The existence of such low viral steady states was suggested by the work of Furtado et al. (2), in which constant low levels of tat, rev, and gag mrna were detected in HAART-treated patients with viral loads in plasma below 50 copies/ml and are predicted by dynamic models of HIV--infection and treatment in which drug sanctuaries exist (). In the three patients with viral decay continuing below 5 copies/ml, there may still be ongoing cryptic viral replication. This is due to the fact that even if replication is ongoing, as long as the rate of virion production is lower than the rate of clearance, viral loads will continue to decay. An equivalent condition for continuing decay is that the reproductive number be less than, i.e., that the number of cells infected by each currently infected cell be less than. Thus, the 6-month halflife that we observed for this new phase of plasma virus decay and the 6-month half-life previously observed for latently infected CD4 T lymphocytes harboring replication-competent virus (3, 40) may still overestimate the rate of decay that could be obtained if all replication were stopped. In addition, if replication is ongoing in these patients, it is possible that the currently observed decay will ultimately stop with the attainment of a new very low steady state in which the viral load in plasma is less than 5 copies/ml. This analysis shows that statistically significant decays of viral load in plasma can be observed at least for some patients in the range of measurements below 50 copies/ml. Due to the presence of resting CD4 T lymphocytes that harbor replication-competent HIV-, it has been postulated that a third phase of viral decay should be present (). Here we have provided evidence of this decay for a subset of patients and have shown that it occurs with a half-life of 6 months, the presumptive half-life of the latent reservoir. Ongoing cryptic viral replication from CD4 T lymphocytes, monocytes, macrophages, and/or other cell types occurring at a level sufficient to balance clearance may account for those patients for which no decay of plasma HIV- RNA levels was demonstrable (29). This work was performed under the auspices of the U.S. Department of Energy and supported by NIH grants RR06555, AI28433 (A.S.P.), and AI46289 (R.J.P.). We thank C. Han and R. Ribeiro for helpful discussions and Rita Victor and Brenda Gordon for excellent secretarial assistance. REFERENCES. Callaway, D. S., and A. S. Perelson. 2002. HIV- infection and low steady state viral loads. Bull. Math. Biol. 64:29 64. 2. Cavert, W., D. W. Notermans, K. Staskus, S. W. Wietgrefe, M. Zupancic, K. Gebhard, K. Henry, Z. Q. Zhang, R. Mills, H. McDade, C. M. Schuwirth, J. Goudsmit, S. A. Danner, and A. T. Haase. 997. Kinetics of response in lymphoid tissues to antiretroviral therapy of HIV- infection. Science 276: 960 964. 3. Chomczynski, P., and N. Sacchi. 987. Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal. Biochem. 62:56 59. 4. Chun, T. W., L. Stuyver, S. B. Mizell, L. A. Ehler, J. A. Mican, M. Baseler, A. L. Lloyd, M. A. Nowak, and A. S. Fauci. 997. Presence of an inducible HIV- latent reservoir during highly active antiretroviral therapy. Proc. Natl. Acad. Sci. USA 94:393 397. 5. Dornadula, G., G. Nunnari, M. Vanella, J. Roman, T. Babinchak, J. DeSimone, J. Stern, M. Braffman, H. Zhang, and R. J. Pomerantz. 200. Human immunodeficiency virus type -infected persons with residual disease and virus reservoirs on suppressive highly active antiretroviral therapy can be stratified into relevant virologic and immunologic subgroups. J. Infect. Dis. 83:682 687. 6. Dornadula, G., H. Zhang, B. VanUitert, J. Stern, L. Livornese, Jr., M. J. Ingerman, J. Witek, R. J. Kedanis, J. Natkin, J. DeSimone, and R. J. Pomerantz. 999. Residual HIV- RNA in blood plasma of patients taking suppressive highly active antiretroviral therapy. JAMA 282:627 632. 7. Efron, B., and R. J. Tibshinari. 993. The bootstrap estimate of standard error, p. 45 49. In D. R. Cox (ed.), An introduction to the bootstrap. Chapman & Hall, New York, N.Y. 8. Efron, B., and R. J. Tibshinari. 993. Regression models, p. 05 23. In D. R. Cox (ed.), An introduction to the bootstrap. Chapman & Hall, New York, N.Y. 9. Finzi, D., J. Blankson, J. D. Siliciano, J. B. Margolick, K. Chadwick, T. Pierson, K. Smith, J. Lisziewicz, F. Lori, C. Flexner, T. C. Quinn, R. E. Chaisson, E. Rosenberg, B. Walker, S. Gange, J. Gallant, and R. F. Siliciano. 999. Latent infection of CD4 T cells provides a mechanism for lifelong persistence of HIV-, even in patients on effective combination therapy. Nat. Med. 5:52 57. 0. Finzi, D., M. Hermankova, T. Pierson, L. M. Carruth, C. Buck, R. E. Chaisson, T. C. Quinn, K. Chadwick, J. Margolick, R. Brookmeyer, J. Gallant, M. Markowitz, D. D. Ho, D. D. Richman, and R. F. Siliciano. 997. Identification of a reservoir for HIV- in patients on highly active antiretroviral therapy. Science 278:295 300.. Finzi, D., and R. F. Siliciano. 998. Viral dynamics in HIV- infection. Cell 93:665 67. 2. Furtado, M. R., D. S. Callaway, J. P. Phair, K. J. Kunstman, J. L. Stanton, C. A. Macken, A. S. Perelson, and S. M. Wolinsky. 999. Persistence of HIV- transcription in peripheral-blood mononuclear cells in patients receiving potent antiretroviral therapy. N. Engl. J. Med. 340:64 622. 3. Gulick, R. M., J. W. Mellors, D. Havlir, J. J. Eron, C. Gonzalez, D. McMahon, D. D. Richman, F. T. Valentine, L. Jonas, A. Meibohm, E. A. Emini, and J. A. Chodakewitz. 997. Treatment with indinavir, zidovudine, and lamivudine in adults with human immunodeficiency virus infection and prior antiretroviral therapy. N. Engl. J. Med. 337:734 739. 4. Hellerstein, M., M. B. Hanley, D. Cesar, S. Siler, C. Papageorgopoulos, E. Wieder, D. Schmidt, R. Hoh, R. Neese, D. Macallan, S. Deeks, and J. M. McCune. 999. Directly measured kinetics of circulating T lymphocytes in normal and HIV--infected humans. Nat. Med. 5:83 89. 5. Hlavacek, W. S., N. I. Stilianakis, D. W. Notermans, S. A. Danner, and A. S. Perelson. 2000. Influence of follicular dendritic cells on decay of HIV during antiretroviral therapy. Proc. Natl. Acad. Sci. USA 97:0966 097. 6. Hlavacek, W. S., C. Wofsy, and A. S. Perelson. 999. Dissociation of HIV- from follicular dendritic cells during HAART: mathematical analysis. Proc. Natl. Acad. Sci. USA 96:468 4686. 7. Ho, D. D., A. U. Neumann, A. S. Perelson, W. Chen, J. M. Leonard, and M. Markowitz. 995. Rapid turnover of plasma virions and CD4 lymphocytes in HIV- infection. Nature 373:23 26. 8. Hockett, R. D., J. M. Kilby, C. A. Derdeyn, M. S. Saag, M. Sillers, K. Squires, S. Chiz, M. A. Nowak, G. M. Shaw, and R. P. Bucy. 999. Constant mean viral copy number per infected cell in tissues regardless of high, low, or undetectable plasma HIV RNA. J. Exp. Med. 89:545 554. 9. Lafeuillade, A., L. Chollet, G. Hittinger, N. Profizi, O. Costes, and C. Poggi. 998. Residual human immunodeficiency virus type RNA in lymphoid tissue of patients with sustained plasma RNA of 200 copies/ml. J. Infect. Dis. 77:235 238. 20. Lawless, J. F. 982. Censoring and statistical methods, p. 3 34. In W. Shewart and S. S. Wilks (ed.), Statistical models and methods for lifetime data. Wiley, New York, N.Y. 2. Martinez, M. A., M. Cabana, A. Ibanez, B. Clotet, A. Arno, and L. Ruiz. 999. Human immunodeficiency virus type genetic evolution in patients with prolonged suppression of plasma viremia. Virology 256:80 87. 22. Michie, C. A., A. McLean, C. Alcock, and P. C. Beverley. 992. Lifespan of human lymphocyte subsets defined by CD45 isoforms. Nature 360:264 265. 23. Mohri, H., S. Bonhoeffer, S. Monard, A. S. Perelson, and D. D. Ho. 998. Rapid turnover of T lymphocytes in SIV-infected rhesus macaques. Science 279:223 227. 24. Montaner, J. S., P. Reiss, D. Cooper, S. Vella, M. Harris, B. Conway, M. A. Wainberg, D. Smith, P. Robinson, D. Hall, M. Myers, and J. M. Lange. 998. A randomized, double-blind trial comparing combinations of nevirapine, didanosine, and zidovudine for HIV-infected patients: the INCAS Trial. Italy, The Netherlands, Canada and Australia Study. JAMA 279:930 937. 25. Nunnari, G., M. Otero, G. Dornadula, M. Vanella, H. Zhang, and J. Frank. Downloaded from http://jvi.asm.org/ on September 5, 208 by guest

VOL. 77, 2003 NOTES 2275 2002. Residual HIV- disease in seminal cells of HIV- infected men on suppressive HAART. AIDS 6:39 45. 26. 27. Perelson, A. S., P. Essunger, Y. Cao, M. Vesanen, A. Hurley, K. Saksela, M. Markowitz, and D. D. Ho. 997. Decay characteristics of HIV--infected compartments during combination therapy. Nature 387:88 9. 27. Perelson, A. S., A. U. Neumann, M. Markowitz, J. M. Leonard, and D. D. Ho. 996. HIV- dynamics in vivo: virion clearance rate, infected cell life-span, and viral generation time. Science 27:582 586. 28. Pomerantz, R. J. 999. Residual HIV- disease in the era of highly active antiretroviral therapy. N. Engl. J. Med. 340:672 674. 29. Pomerantz, R. J. 200. Residual HIV- infection during antiretroviral therapy: the challenge of viral persistence. AIDS 5:20 2. 30. Ramratnam, B., S. Bonhoeffer, J. Binley, A. Hurley, L. Zhang, J. E. Mittler, M. Markowitz, J. P. Moore, A. S. Perelson, and D. D. Ho. 999. Rapid production and clearance of HIV- and hepatitis C virus assessed by large volume plasma apheresis. Lancet 354:782 785. 3. Ramratnam, B., J. E. Mittler, L. Zhang, D. Boden, A. Hurley, F. Fang, C. A. Macken, A. S. Perelson, M. Markowitz, and D. D. Ho. 2000. The decay of the latent reservoir of replication-competent HIV- is inversely correlated with the extent of residual viral replication during prolonged anti-retroviral therapy. Nat. Med. 6:82 85. 32. Sokal, R. R., and F. J. Rohlf. 98. Tests of significance in regression, p. 45 59. In J. Wilson (ed.), Biometry. W. H. Freeman and Company, San Francisco, Calif. 33. Wei, X., S. K. Ghosh, M. E. Taylor, V. A. Johnson, E. A. Emini, P. Deutsch, J. D. Lifson, S. Bonhoeffer, M. A. Nowak, B. H. Hahn, et al. 995. Viral dynamics in human immunodeficiency virus type infection. Nature 373: 7 22. 34. Wong, J. K., M. Hezareh, H. F. Gunthard, D. V. Havlir, C. C. Ignacio, C. A. Spina, and D. D. Richman. 997. Recovery of replication-competent HIV despite prolonged suppression of plasma viremia. Science 278:29 295. 35. Zhang, H., G. Dornadula, M. Beumont, L. Livornese, Jr., B. Van Uitert, K. Henning, and R. J. Pomerantz. 998. Human immunodeficiency virus type in the semen of men receiving highly active antiretroviral therapy. N. Engl. J. Med. 339:803 809. 36. Zhang, H., G. Dornadula, and R. J. Pomerantz. 996. Endogenous reverse transcription of human immunodeficiency virus type in physiological microenvironments: an important stage for viral infection of nondividing cells. J. Virol. 70:2809 2824. 37. Zhang, H., G. Dornadula, Y. Wu, D. Havlir, D. D. Richman, and R. J. Pomerantz. 996. Kinetic analysis of intravirion reverse transcription in the blood plasma of human immunodeficiency virus type -infected individuals: direct assessment of resistance to reverse transcriptase inhibitors in vivo. J. Virol. 70:628 634. 38. Zhang, H., Y. Zhang, T. P. Spicer, L. Z. Abbott, M. Abbott, and B. J. Poiesz. 993. Reverse transcription takes place within extracellular HIV- virions: potential biological significance. AIDS Res. Hum. Retrovir. 9:287 296. 39. Zhang, L., P. J. Dailey, T. He, A. Gettie, S. Bonhoeffer, A. S. Perelson, and D. D. Ho. 999. Rapid clearance of simian immunodeficiency virus particles from plasma of rhesus macaques. J. Virol. 73:855 860. 40. Zhang, L., B. Ramratnam, K. Tenner-Racz, Y. He, M. Vesanen, S. Lewin, A. Talal, P. Racz, A. S. Perelson, B. T. Korber, M. Markowitz, and D. D. Ho. 999. Quantifying residual HIV- replication in patients receiving combination antiretroviral therapy. N. Engl. J. Med. 340:605 63. Downloaded from http://jvi.asm.org/ on September 5, 208 by guest