Applicability of segmental bioelectrical impedance analysis for predicting trunk skeletal muscle volume

Similar documents
Segmental Body Composition Assessment for Obese Japanese Adults by Single-Frequency Bioelectrical Impedance Analysis with 8-point Contact Electrodes

Bioelectrical impedance: effect of 3 identical meals on diurnal impedance variation and calculation of body composition 1,2

I n most standard textbooks of sports and exercise physiology,

ISPUB.COM. D Adeyemi, O Komolafe, A Abioye INTRODUCTION

The Bone Wellness Centre - Specialists in Dexa Total Body 855 Broadview Avenue Suite # 305 Toronto, Ontario M4K 3Z1

Suprailiac or Abdominal Skinfold Thickness Measured with a Skinfold Caliper as a Predictor of Body Density in Japanese Adults

Segment-specific resistivity improves body fluid volume estimates from bioimpedance spectroscopy in hemodialysis patients

BODY MASS INDEX AND BODY FAT CONTENT IN ELITE ATHLETES. Abstract. Introduction. Volume 3, No. 2, 2011, UDC :572.

Assessment of body composition of Sri Lankan Australian children using ethnic specific equations

The Bone Wellness Centre - Specialists in Dexa Scanning 855 Broadview Avenue Suite # 305 Toronto, Ontario M4K 3Z1

The Bone Wellness Centre - Specialists in DEXA Scanning 855 Broadview Avenue Suite # 305 Toronto, Ontario M4K 3Z1

The Bone Wellness Centre - Specialists in DEXA Scanning 855 Broadview Avenue Suite # 305 Toronto, Ontario M4K 3Z1

The Bone Wellness Centre - Specialists in DEXA Scanning 855 Broadview Avenue Suite # 305 Toronto, Ontario M4K 3Z1

In-vivo precision of the GE Lunar idxa for the measurement of visceral adipose tissue in

The Bone Wellness Centre - Specialists in DEXA Scanning 855 Broadview Avenue Suite # 305 Toronto, Ontario M4K 3Z1

The effect of a meal on measures of impedance and percent body fat estimated using contact-electrode bioelectrical impedance technology

Validation Study of Multi-Frequency Bioelectrical Impedance with Dual-Energy X-ray Absorptiometry Among Obese Patients

Development of a Viable Bedside Ultrasound Protocol to Accurately Predict Appendicular Lean Tissue Mass

Obesity is associated with reduced joint range of motion (Park, 2010), which has been partially

COMPARISON OF BODY COMPOSITION ASSESSMENT IN WOMEN USING SKINFOLD THICKNESS EQUATIONS, BIOELECTRICAL IMPEDANCE ANALYSIS AND UNDERWATER WEIGHING

Total-body skeletal muscle mass: development and cross-validation of anthropometric prediction models 1 3

DIALYSIS OUTCOMES Quality Initiative

Premium solution for your health

Note that metric units are used in the calculation of BMI. The following imperial-metric conversions are required:

Chapter 17: Body Composition Status and Assessment

Fitness and Wellness 12th Edition Hoeger TEST BANK Full download at:

Effect of Physical Training on Body Composition in Moscow Adolescents

FAT MASS ESTIMATION BY BIOELECTRICAL IMPEDANCE ANALYSIS

Body Composition. Lecture Overview. Measuring of Body Composition. Powers & Howely pp Methods of measuring body composition

Applied Physiology, Nutrition, and Metabolism

Body Composition. Sport Books Publisher 1

BODY COMPOSITION: AN ANALYSIS BETWEEN THE FOOTBALLER AND THANG-TA PRACTITIONER OF MANIPUR

Creatinine Height Index in a Sample of Japanese Adults under Sedentary Activities. Tsuguyoshi SuzuKI, Tsukasa INAOKA, and Toshio KAWABE1

Validity of Anthropometric Regression Equations for Predicting Changes in Body Fat of Obese Females

Comparison of Methods for Assessing Abdominal Adipose Tissue from Magnetic Resonance Images

Intramachine and intermachine reproducibility of concentric performance: A study of the Con-Trex MJ and the Cybex Norm dynamometers

What Factors Determine Vertical Jumping Height?

Health Care & Human Care

Can Muscle Power Be Estimated From Thigh Bulk Measurements? A Preliminary Study

Bioelectrical Impedance versus Body Mass Index for Predicting Body Composition Parameters in Sedentary Job Women

InBody R20 Body composition Analyzer

Luís B Sardinha, Timothy G Lohman, Pedro J Teixeira, Dartagnan P Guedes, and Scott B Going

Gender Based Influences on Seated Postural Responses

APONEUROSIS LENGTH AND FASCICLE INSERTION ANGLES OF THE BICEPS BRACHII

O besity is one of the biggest continuing public health

Dynamics of segmental extracellular volumes during changes in body position by bioimpedance analysis

International Journal of Gerontology

Body composition A tool for nutritional assessment

Victor Babes University of Medicine and Pharmacy, Timisoara, Romania b

CHAPTER 9. Anthropometry and Body Composition

Development of Bio-impedance Analyzer (BIA) for Body Fat Calculation

Bioelectrical impedance analysis to assess body composition in obese adult women: The effect of ethnicity

Anatomical Terminology

Investigation of Human Whole Body Motion Using a Three-Dimensional Neuromusculoskeletal Model

Estimation of body composition from bioelectrical impedance of body segments : comparison with dual-energy X-ray absorptiometry

RESULTS SHEET BREAKDOWN

Magic angle artifact in MRI of the patellar ligament: preliminary comparison between conventional and weightbearing

Relative Isometric Force of the Hip Abductor and Adductor Muscles

MEASUREMENT OF BODY COMPOSITION BY IMPEDENCEMETRY NUTRITION CENTRES

Fitness Concepts + Principles Packet. Name: Period:

G roin pain is associated with many sports and

Unit 1: Fitness for Sport and Exercise. Fitness Testing

Overview of the FITNESSGRAM Body Composition Standards

APONEUROSIS LENGTH AND FASCICLE INSERTION ANGLES OF THE BICEPS BRACHII

G roin pain is associated with many sports and

Spinal Cord Rehab Program, Toronto Rehabilitation Institute, University Health Network, 520 Sutherland Drive, Toronto, ON, Canada M4G 3V9 2

Comprehensive Evaluation of Selected Methods for Assessing Human Body Composition

ANALYSIS OF BODY FAT AMONG AMRAVATI CITY ADOLESCENT SCHOOL BOYS

Design of Bodyfat Measurement System based on the Android Platform

Can the LeanScreen App Accurately Assess Percent Body Fat and Waistto-Hip

Location of body fat and body size impacts DXA soft tissue measures: a simulation study

Duncan Macfarlane IHP, HKU Parts of this lecture were based on lecture notes provided by the Lindsay Carter Anthropometric Archive, AUT, NZ

Prediction of extracellular water and total body water by multifrequency bio-electrical impedance in a Southeast Asian population

The Assessment of Body Composition in Health and Disease

Body Composition Assessment Scholars

Can Thigh Girth Be Measured Accurately? A Preliminary Investigation

A new method of stature estimation for forensic anthropological application IZZET DUYAR 1 *, CAN PELIN 2, RAGIBA ZAGYAPAN 2

Lecture 2. Statics & Dynamics of Rigid Bodies: Human body 30 August 2018

Open and Closed Chained Activity Effect on Shoulder External Rotation Range of Motion using Whole Body Vibration Therapy

Analysis of Standing Posture Shapes of Elderly Women for Clothing Design

Results of the physical activity assessments from Boukje Groot

Body composition. Body composition models Fluid-metabolism ECF. Body composition models Elemental. Body composition models Anatomic. Molnár Dénes.

EXTRACELLULAR WATER REFERENCE VALUES. Extracellular Water: Reference values for Adults

Fat Mass. Baseline. (lbs) (lbs) Composition Trend: Total. Aug 17. Apr 17. May 17. Jun 17. Jul 17. Measured Date

Interpretation Guide. What you are made of? Find out with - Vital Body Scan NZ Ltd. Mobile Body Composition Analysis

HHS Public Access Author manuscript Obesity (Silver Spring). Author manuscript; available in PMC 2014 April 01.

Santosh Metgud 1, Charleen D Silva * 2, Anand Heggannavar 3. Access this Article online. Quick Response code. Original Research Article

Whole Body Dual X-Ray Absorptiometry to Determine Body Composition

Welcome! ACE Personal Trainer Virtual Exam Review: Module 5. Laura Abbott, MS, LMT. What We ll Cover This Module

Cover Page. The handle holds various files of this Leiden University dissertation.

Anthropometry and methods of body composition measurement for research and eld application in the elderly

Quadriceps Muscle and Intermuscular Fat Volumes in the Thighs of Men in the OAI are Associated with Physical Function and Knee Pain

School Visits Fitness Testing

What Is Body Composition?

performance in young jumpers

Abdominal fat distribution (subcutaneous vs. visceral abdominal fat compartments): correlation with gender, age, BMI and waist circumference

COMPARISON OF AIR DISPLACEMENT PLETHYSMOGRAPHY TO HYDROSTATIC WEIGHING FOR ESTIMATING TOTAL BODY DENSITY IN CHILDREN

Test-Retest Reliability of the StepWatch Activity Monitor Outputs in Healthy Adults

ORIGINAL COMMUNICATION

A 2-year follow-up study on muscle size and dynamic strength in teenage tennis players

Transcription:

J Appl Physiol 100: 572 578, 2006. First published October 6, 2005; doi:10.1152/japplphysiol.00094.2005. Applicability of segmental bioelectrical impedance analysis for predicting trunk skeletal muscle volume Noriko Ishiguro, 1 Hiroaki Kanehisa, 1 Masae Miyatani, 2 Yoshihisa Masuo, 3 and Tetsuo Fukunaga 3 1 Department of Life Sciences (Sports Sciences), University of Tokyo, Tokyo; 2 Division of Health Promotion and Exercise, National Institute of Health and Nutrition, Tokyo; and 3 Department of Sport Sciences, School of Human Sciences, Waseda University, Saitama, Japan Submitted 27 January 2005; accepted in final form 29 September 2005 Ishiguro, Noriko, Hiroaki Kanehisa, Masae Miyatani, Yoshihisa Masuo, and Tetsuo Fukunaga. Applicability of segmental bioelectrical impedance analysis for predicting trunk skeletal muscle volume. J Appl Physiol 100: 572 578, 2006. First published October 6, 2005; doi:10.1152/japplphysiol.00094.2005. This study aimed to investigate the validity of using segmental bioelectrical impedance (BI) analysis for estimating skeletal muscle volume (MV) in the trunk, defined as the body segment from the acromion process to the greater trochanter. Using a magnetic resonance imaging (MRI) method, the trunk MV was determined in 28 men (19 34 yr), divided into validation (n 20) and cross-validation (n 8) groups, and used as a reference (MV MRI ). For BI measurements of the trunk, the source electrodes were placed at the dorsal surface of the third metacarpal bone of both hands and the dorsal surface of the third metatarsal bone of both feet, and the detector electrodes were placed at the acromion process of both shoulders and the greater trochanter of both femurs. Using this arrangement, the BI values of five parts of the trunk, both sides of the upper region, the middle region, and both sides of the lower region, were obtained and then used to calculate the whole trunk BI value and BI index (BI index TR ). In the validation group, a simple regression analysis of the relationship between BI index TR and MV MRI showed a significant correlation between the two variables (r 0.884, P 0.05) and produced a prediction equation with a SE of estimation of 1,020.3 cm 3 (8.5%). In the validation and crossvalidation groups, there were no significant differences between the measured and estimated MV without systematic errors. These findings indicate that the segmental BI analysis employed in the present study can be used to estimate trunk MV. human body composition; magnetic resonance imaging; muscle distribution; validation; cross validation THE TRUNK, DEFINED AS THE part of the body from the acromion process to the greater trochanter, contains about one-half of the body s mass and lean tissue mass (6, 22). Skeletal muscles located in the trunk play an important role in moving and stabilizing the upper body during various movements in daily life or sport (17, 18, 23). Moreover, these muscles are sensitive to inactivity (1) and aging (16, 19), and their quantitative profiles are assumed to be associated with the occurrence of lower back pain (14, 25). Therefore, establishing a method for determining accurately and conveniently the muscularity of the trunk would help us to evaluate physical resources in relation to physical performance in daily life and/or sporting activities. At present, computerized axial tomography and magnetic resonance imaging (MRI) of multiple sections of the body are widely used to determine human skeletal muscle volume (MV). On the other hand, there is increasing interest in the use of bioelectrical impedance (BI) analysis to assess body composition. Since Organ et al. (22) developed various electrode combinations for determining the BI of every body segment, several attempts have been made to examine the applicability of segmental BI analysis for estimating limb MV through comparison with MV determined by MRI (3, 20, 21). These previous studies reported that the use of segmental BI analysis enabled estimates of limb MV with an accuracy of 6.1 10.4% in terms of the SE of the estimate (SEE) (3, 20, 21). However, no study has tried to investigate the validity of using BI analysis to predict trunk MV. The studies cited above have employed segmental BI analysis to estimate limb MV by assuming the limbs to be one cylindrical conductor with a uniform cross-sectional area (CSA). The distribution of the tissues making up the trunk, however, is not so simple (12). Chumlea et al. (12) suggested that the complexity of the internal structure of the trunk would lead to a highly specific resistivity in this part of the body. Baumgartner et al. (5) examined the relationship between MV and bioelectrical resistance in every body segment and indicated that the BI determined for the trunk contributed less to the equation for predicting total body MV, despite a large mass in this region. On the other hand, Organ et al. (22) and Cornish et al. (13) arranged the positions of electrodes so as to divide the trunk into regions by taking the structural complexity of the trunk into account and tried to measure the BI of each region. However, neither study examined whether this approach is applicable for predicting trunk MV. From the findings of Abe et al. (2), the distribution of the skeletal muscle CSA in the trunk is not as simple as that in the limbs for either gender. In their study, the skeletal muscle CSA measurements per slice in the trunk showed three peaks and troughs. In addition, the trunk involves visceral tissue such as the heart, lung, gastrointestinal tract, and urinary bladder. In the present study, therefore, we assumed the trunk to be a collection of five cylinders, each of which corresponds to a region having a predominant distribution of skeletal muscle or visceral tissues. On the basis of this assumption, the present study tried to determine the BI value of each of the five regions with the use of a segmental BI analysis. We hypothesized that the method used in the present study could measure BI reflecting the distribution of trunk skeletal muscle and so predict trunk MV with an accuracy similar to that previously reported Address for reprint requests and other correspondence: N. Ishiguro, Dept. of Life Sciences (Sports Sciences), Univ. of Tokyo, Komaba 3-8-1, Meguro, Tokyo 153-8902, Japan (e-mail: yuminori@lily.ocn.ne.jp). The costs of publication of this article were defrayed in part by the payment of page charges. The article must therefore be hereby marked advertisement in accordance with 18 U.S.C. Section 1734 solely to indicate this fact. 572 8750-7587/06 $8.00 Copyright 2006 the American Physiological Society http://www.jap.org

for limb MV. The main purpose of the present study was to investigate whether this approach can be validated and crossvalidated by comparing the data obtained using MRI. METHODS Subjects. Twenty-eight healthy men (19 34 yr) voluntarily participated in this study. Thirteen of the subjects were athletes (8 American football players, 3 power lifters, 1 weight lifter, and 1 triathlete) who had participated in competitive meets in their own events at the college level within a year preceding the measurements. The rest were either sedentary or mildly active, but none was currently involved in any type of exercise program ( 30 min/day, 2 days/wk). To confirm the cross validity of the predicting equation, the subjects were randomly separated into a validation group (n 20) and a crossvalidation group (n 8), in which the percentage of the number of athletes to the total number of subjects was almost the same: 10 athletes in the validation group and 3 athletes in the cross-validation group. Physical characteristics of each subject group are listed in Table 1. Data for the athletes were collected during preseason training. Therefore, none of the athletes was dehydrated to control his body mass for competition. All measurements for the athletes were performed 40 h after completion of a training session. This study was approved by the ethics committee of the Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, and was consistent with their requirements for human experimentation. The subjects were fully informed about the procedures and the purpose of this study. Written, informed consent was obtained from all participants. Anthropometric measurements. Body height was measured to the nearest 0.1 cm on a standard physician s scale. Body mass was measured to the nearest 0.1 kg on a calibrated electric scale. MRI measurements. With the use of MRI scans with a body coil (Airis, Hitachi Medco, Japan), a series of transverse images from the acromion process of both shoulders to the greater trochanter of both femurs were obtained. The distance between the acromion process of the right shoulder and the greater trochanter of the right femur was defined as the length of the trunk (L TR). The 0% L TR corresponds to the level of the acromion process, and 100% L TR to the greater trochanter. The image condition was T1 weighted, spin-echo, multislice sequences, with a slice thickness of 10 mm and a slice interval of 20 mm, with a repetition time of 200 ms and an echo time of 20 ms. Each subject lay supine in the body coil with his arms and legs extended and relaxed. From each cross-sectional image, outlines of tissues (skeletal muscle, subcutaneous fat, bone, and others) were traced and digitized by personal computer (Power Macintosh G4, Apple) to calculate the anatomical CSA of every tissue. Adipose and ESTIMATION OF TRUNK MUSCLE VOLUME 573 tendinous tissues, which were imaged in different tones from the muscle tissue, were excluded when digitizing. By summing the anatomical skeletal muscle CSA and then multiplying the sum by the interval of 20 mm, MV was determined and referred to as MV MRI. As described in a prior study (5), the skeletal muscle in the trunk was separated from limbs by using slices between specific landmarks: the acromion process of the shoulder and the greater trochanter of the femur. Therefore, some muscles located in the shoulders or gluteal (i.e., triangular or gluteal muscle) were partially analyzed as part of MV MRI. The test-retest variability of MV MRI was assessed with 10 men (22 26 yr) on 2 separate days. The intraclass correlation coefficient for the test-retest measurements was 0.990, and the coefficient of variation (%CV) was 1.8%. There was no significant difference between the mean values of the two tests. Again, the intraobserver reproducibility was assessed by analyzing the trunk MRI images of five men (22 26 yr) two times. The intraclass correlation coefficient and the %CV of MV MRI values from the two trials were 0.951 and 2.9%, respectively. There was no significant difference between the mean values of the two trials. BI measurements. A BI acquisition system (Muscle, Art Haven 9) and disposable electrodes (Red Dot 2330, 3M) were used to determine the BI value of the trunk. The measured BI value was referred to as Z. This system applies a constant current of 500 A and frequency of 50 khz through the body. The trunk Z measurements were performed on different days from the MRI measurements with an interval of 1 or 2 days. The subjects refrained from vigorous exercise and alcohol intake for 24 h and from taking a meal for 4 h preceding the experiments. All Z measurements were carried out in the supine position, the arms relaxed at the side but not touching the body, and the legs separated at least 25.0 cm at the ankles so that there was no contact between the thighs. Subjects were instructed to keep breathing quietly because the respiratory cycle affected Z (8). During the measurements, the room temperature was usually kept at 23 C (10). The source electrodes were placed at the dorsal surface of the third metacarpal bone of both hands and the dorsal surface of the third metatarsal bone of both feet. The detector electrodes were placed at the acromion process of both shoulders and the greater trochanter of both femurs. The combination of electrodes used in this study makes it possible to separate the trunk into five parts and to determine the Z of each of the parts (13, 22). In a pilot study, using one adult man aged 26 yr, we confirmed the dividing point of each voltage measurement area by measuring the electric potential pattern in the trunk. The positions of the source electrodes were fixed while the positions of the detector electrodes were Table 1. Descriptive data on physical characteristics and magnetic resonance imaging-measured tissue volume in validation and cross-validation groups Validation Group (n 20) Cross-validation Group (n 8) Variables Mean SD Max Min Mean SD Max Min Age, yr 24.5 2.8 30.0 19.0 25.3 3.9 34.0 21.0 Height, cm 175.4 5.0 183.2 168.9 174.5 5.4 179.2 162.7 Body mass, kg 77.8* 10.7 101.7 60.9 72.9 7.0 83.6 62.4 BMI, kg/m 2 25.3 3.3 30.9 20.2 24.0 2.6 28.3 20.9 Trunk length, cm 61.0 2.8 66.0 56.0 58.3 2.9 62.0 54.0 Tissue volume, cm 3 Skeletal muscle (%) 11,949.5 (40.7) 2,255.8 (4.3) 16,252.2 (46.2) 8,165.8 (31.4) 10,733.3 (38.8) 1,284.0 (2.7) 12,310.7 (41.9) 9,179.3 (34.7) Subcutaneous fat (%) 3,954.6 (13.2) 1,606.2 (4.7) 6,257.2 (21.0) 1,009.2 (4.6) 3,735.3 (13.6) 1,164.4 (4.6) 5,708.1 (21.6) 2,504.0 (9.5) Visceral (%) 8,889.5 (30.6) 838.3 (2.9) 10,255.7 (35.7) 7,266.3 (25.9) 8,792.8 (31.8) 641.9 (1.4) 9,837.3 (34.1) 7,929.6 (30.0) Bone (%) 1,876.7 (6.5) 197.0 (0.7) 2,227.3 (8.0) 1,399.7 (5.2) 1,750.6 (6.3) 294.8 (0.9) 2,194.7 (7.5) 1,407.3 (5.3) Other (%) 2,604.9 (9.0) 370.3 (1.2) 3,780.2 (12.9) 2,051.5 (7.5) 2,609.0 (9.4) 353.2 (0.9) 3,275.2 (11.3) 2,216.9 (8.4) n, No. of subjects. BMI, body mass index; Max, maximum; Min, minimum. *Mean value is significantly different from that for the cross-validation group at P 0.05. Values within parentheses denote the percentage of total trunk volume.

574 ESTIMATION OF TRUNK MUSCLE VOLUME Fig. 1. Schematic representation of the electrical potential pattern of the trunk. A: anterior of the trunk. B: posterior of the trunk. The gray areas indicate two equipotential zones of 10.0 mv (SD 0.5) and another two of 3.0 mv (SD 0.5), generated with each zero potential at each source electrode. C: schematic representation of the trunk measured bioelectrical impedance (BI) value (Z TR) measurements. Z TRur, Z TRul, Z TRm, Z TRlr, and Z TRll: upper right, upper left, middle, lower right, and lower left Z TR, respectively. crisscrossed every 5 cm. Figure 1 shows a schematic representation of the electrical potential pattern in each of the anterior (Fig. 1A) and posterior (Fig. 1B) trunk. The gray areas indicate two equipotential zones of the acromion process and the greater trochanter, respectively, generated with each zero potential at each detector electrode. In both the anterior and posterior trunk, the former two equipotential zones cross each other in the upper part in the center line of the trunk, just above the xiphoid process ( 30% L TR) and the latter ones, in the lower part in the center line of the trunk, just below the iliac crest ( 90% L TR). From this result, we considered that the arrangement of the electrodes used in the present study was able to separate the trunk BI network into five regions, as shown in Fig. 1C: upper right (Z TRur) and upper left trunk Z (Z TRul) at both sides of the upper region, middle trunk Z (Z TRm), in the middle region, and lower right (Z TRlr) and lower left trunk Z (Z TRll) at both sides of the lower region. The whole trunk Z (Z TR whole) can be calculated by the following equation using each Z measurement: Z TRwhole Z TRur Z TRul / Z TRur Z TRul Z TRm Z TRlr Z TRll / Z TRlr Z TRll The BI index (BI index TR) was calculated as follows: BI index TR L TR 2 /Z TR whole The test-retest variability of the Z and BI index was assessed with 13 men (22 30 yr) on 2 separate days. The intraclass correlation coefficients were 0.839 0.922 for each Z and 0.929 for BI index TR. The %CV was 2.4 2.9% for each Z and 3.0% for BI index TR. There were no significant differences in each Z and BI index TR between the two tests. Table 2. Descriptive data on the Z and BI index in the validation and cross-validation groups Validation Group (n 20) Cross-validation Group (n 8) Variables Mean SD Max Min Mean SD Max Min BI value, Z TRur 18.4 2.8 23.9 13.7 19.7 2.5 23.3 15.0 Z TRul 18.7 3.0 23.6 13.3 20.0 2.8 22.7 15.0 Z TRm 20.7 2.6 24.4 15.9 21.0 1.9 24.2 18.1 Z TRlr 6.3 1.0 7.9 4.2 6.1 1.0 7.5 4.7 Z TRll 6.5 1.2 10.3 4.5 5.8 0.9 7.3 5.0 Z TRwhole, 45.7 5.7 56.7 34.4 46.7 4.7 52.1 38.8 BI index TR, cm 2 / 114.2 18.0 148.8 83.1 101.1 11.5 115.2 85.4 n, No. of subjects. BI, bioelectrical impedance; Z, measured BI value; Z TRur, Z TRul, Z TRm, Z TRlr, Z TRll, and Z TRwhole: trunk upper right, upper left, middle, lower right, lower left, and whole trunk Z, respectively; BI index TR, trunk BI index.

ESTIMATION OF TRUNK MUSCLE VOLUME 575 Fig. 2. Volume distribution of skeletal muscle, subcutaneous fat, bone, and the other tissues in the trunk (n 28). The 0% trunk length (L TR) corresponds to the level of the acromion process, 30% L TR to that of the xiphoid process, and 100% L TR to that of the greater trochanter. Data analysis. Descriptive values were presented as means (SDs). In the validation group, first, a simple regression analysis was applied to develop a prediction equation for MV in the trunk with BI index TR as an independent variable. The estimated MV was referred to as MV BI. Second, it was confirmed that the regression slope and intercept for the relationship between the MV MRI and MV BI values did not significantly differ from 1 and 0, respectively. The SEE was calculated to evaluate the accuracy of MV BI. The SEE was expressed as an absolute value and relative to the mean of MV MRI. Third, the difference between MV MRI and MV BI was plotted against the mean MV of the two methods to examine for systematic error, as described by Bland and Altman (7). When the three conditions mentioned above were satisfied, the predicted values of MV were calculated for individuals in the cross-validation group by using the equation derived from the validation group. In the cross-validation group, the significance of the difference between MV MRI and MV BI and the existence of systematic error were tested by using Student s paired t-test and a Bland-Altman plot (7), respectively. The probability level for statistical significance was set at P 0.05. RESULTS Baseline characteristics of the validation and cross-validation groups. Table 1 shows the descriptive data on physical characteristics and MRI-measured tissue volumes in the validation and cross-validation groups. There were no significant differences between the two groups in any variables except for body mass. Moreover, no significant differences were found between the groups in the measured Z and BI index TR (Table 2). Figure 2 shows the distribution of the measured tissue volume along L TR, calculated in each of 10 divisions of L TR (0 10, 11 20, 21 30, 31 40, 41 50, 51 60, 61 70, 71 80, 81 90, and 91 100% L TR ). The skeletal MVs were significantly greater at 20% L TR and 81% L TR than at the other slice levels. The visceral tissue volume was significantly greater at 21 60% L TR than at the other slice levels. The bone, other tissue, and subcutaneous fat volumes were greatest at 91 100, 0 10, and 91 100% L TR, respectively. At 20% L TR and 61% L TR, skeletal MVs were significantly larger than the other tissue volumes analyzed. At the slice levels of 21 50% L TR, however, the visceral tissue volume was significantly greater than the skeletal MV. On the other hand, subcutaneous fat volume became significantly greater than visceral tissue, bone, and other tissue volumes at 71 80% L TR. Prediction equation derived from the validation group. BI index TR was significantly correlated to MV MRI (r 0.844, P 0.05, Fig. 3) in the validation group. This relationship produced an equation, MV MRI 108.2 BI index TR 402.2, with R 2 and SEE values of 0.713 and 1,020.3 cm 3 (8.5%), respectively. Regression analysis indicated that the slope and intercept of the regression equation for the relationship between MV MRI and MV BI were not significantly different from 1 and 0, respectively (Fig. 4A). There was no significant difference between MV MRI [11,949.5 cm 3 (SD 2,255.8)] and MV BI [11,946.9 cm 3 (SD 1,908.5)]. Moreover, no significant systematic error was found in the Bland-Altman plot (Fig. 4B). Cross validation of the prediction equation. The prediction equation derived from the validation group was used to estimate MV MRI in the cross-validation group. There was no significant difference between MV MRI [10,733.3 cm 3 (SD 1,284.0)] and MV BI [10,566.5 cm 3 (SD 1,245.1)]. In addition, no significant systematic error was found in the Bland-Altman plot (Fig. 5). DISCUSSION In a comparison with MRI data, the segmental BI analysis used in this study was validated and cross validated for estimating trunk MV. Some studies have already tried to deter- Fig. 3. Relationships between the muscle volume (MV) determined by magnetic resonance imaging (MV MRI) and trunk BI index (BI index TR). The solid line indicates the regression line.

576 ESTIMATION OF TRUNK MUSCLE VOLUME Fig. 4. Relationships between MV MRI and MV determined by BI (MV BI) values (A), and between the residual (difference between MV MRI and MV BI) and mean MV determined by two methods (B) in the validation group. A: dotted line and solid line indicate the line of identity and the regression line (MV MRI 1.0000 MV BI 0.0008), respectively. SEE, SE of the estimate. B: the two dashed lines indicate the lines of 2SD. Fig. 5. Relationship between the residual (difference between MV MRI and MV BI) and the mean MV determined by two methods in the cross-validation group. MV BI was calculated using the multiple regression equation derived from the BI analysis in the validation group. The two dashed lines indicate the lines of 2SD. represents a region having a predominant distribution of skeletal muscle or visceral tissues and determined Z in each of them, i.e., Z TRur, Z TRul, Z TRm, Z TRlr, and Z TRll, separated from the limbs. The use of BI index TR as an independent variable produced a prediction equation for MV MRI with a SEE of 8.5% in the validation group. The observed SEE value was similar to that (6.1 10.4%) reported in previous studies, which estimated MV in the limbs by BI analysis (3, 20, 21). This implies that, with a similar accuracy in the prediction of limb MV, the segmental BI analysis used in the present study enables us to estimate trunk MV. Although the present result supports the applicability of segmental BI analysis for predicting trunk MV, we should comment on the limitations of the approach used here. First, mine the Z value of the trunk and used it to develop prediction equations for the lean tissue mass or MV of the total body (4, 8, 11, 12). However, some problems exist with the previous approaches used to determine trunk Z. First, the trunk Z has been determined together with limb Z using the network circuit model in which the trunk was connected in series with the limbs (11). As a result, trunk Z was affected by limb composition, because a limb has a smaller CSA and simpler composition than the trunk (6, 8). Furthermore, the previous studies assumed the trunk to be one cylinder (4, 8, 12), regardless of the complexity of the tissue composition in this region. These points have been considered to be the reasons why the trunk Z contributes less to the prediction equation of the lean tissue mass or MV of the total body (4, 8, 11, 12), despite the fact that the trunk contains about one-half of the body s mass and lean tissue mass (6, 22). To solve these problems, therefore, we took the trunk to be a collection of five cylinders, each of which Fig. 6. Relationship between the percentage of visceral tissue volume to skeletal MV at 41 50% L TR and the residual expressed as a percentage of MV MRI. The solid line indicates the regression line.

the voltage measurement area of each of the measured Z values does not always reflect the distribution of the skeletal MV in the trunk, especially that in the lower parts. As shown in Fig. 1, the Z measurement areas were summarized to the upper (Z TRur and Z TRul ), middle (Z TRm ), and lower (Z TRlr and Z TRll ) regions, based on the lines indicating equipotential zones crossover to each other at upper ( 30% L TR ) and lower ( 90% L TR ) parts in the center line of the trunk. In the distribution of tissue volume along L TR (Fig. 2), the skeletal MV was significantly greater at the slice levels of 20% L TR and 81% L TR than at the other slice levels. In the two ranges of the slice levels, skeletal MV was significantly larger than the other tissue volumes. There were no significant differences between the skeletal MVs at slice levels of 41 80% L TR. Hence, the two equipotential zones that cross over in the upper part of the trunk at 30% L TR can be considered valid for reflecting the difference in the distribution of skeletal MV between the slice levels of 20% L TR and 41% L TR to the Z measurements. However, the Z measurement of the lower region does not involve the slice level of 81 90% L TR, at which skeletal MV showed a second peak among the slice levels. The reason for the discrepancy is unknown but might be related to the anisotropic effects that skeletal muscle fibers can have on Z (5). Namely, it is speculated that the morphological and architectural profiles of each skeletal muscle group located in the lower part of the trunk influence the determination of the Z measurement area of this region. In any case, we have no data to examine this assumption. Further study is warranted to elucidate the voltage measurement area, determined by the electrode combinations used here, with relation to not only the distribution but also morphological and architectural profiles of individual skeletal muscle groups located in the trunk. The second of the limitations is that the approach used in the present study cannot exclude the influence of the visceral tissue volume on the MV estimates. Among the slice levels involved in the upper region, visceral tissue volume was significantly greater than skeletal MV at 21 30% L TR. However, it should be noted that most of the visceral tissue involved at the slice levels corresponding to the upper region is lung, which is a dielectric tissue (6). Hence the influence of the visceral tissue volume in this region on the MV estimate can be ignored. Meanwhile, the visceral tissue involved in the slice levels corresponding to the middle region is mainly gastrointestinal tract, which is made up of smooth muscles and contains much water, which has high conductivity (6). Considering these points, it is reasonable to assume that the visceral tissue involved at slice levels of 31 40% L TR has an electrically different effect on the Z measurement from that at slice levels of 21 30% L TR. Notably, the visceral tissue volumes at 31 50% L TR were significantly greater than the skeletal MVs at the corresponding levels. This makes it difficult to separate skeletal muscle from visceral tissue electrically. In the data obtained from the validation group, if one examines the relationship between the percentage of the visceral tissue volume to the skeletal MV at every slice level and the residuals of MV estimates, expressed as a percentage of MV MRI, a low but significant negative correlation (r 0.447, P 0.05) is found in the corresponding value at 41 50% L TR (Fig. 6). This implies that the influence of visceral tissue volume on the accuracy of predicting MV in the trunk is not negligible. ESTIMATION OF TRUNK MUSCLE VOLUME Furthermore, another factor that might affect the accuracy of predicting trunk MV is the volume of fat in this region. Fat tissue has a high resistivity in general (9). However, Baugartner et al. (5) reported that the ratio of subcutaneous fat volume to skeletal MV has a slight but significant effect on Z measurements in obese women. In addition, Tagliabue et al. (24) indicated that fat volume had a significant effect on the accuracy of predicting lean tissue mass by BI analysis. The subjects examined here were young and nonobese. Therefore, a slice level at which subcutaneous fat tissue volume was greater than skeletal MV was not found. In addition, there was no slice level at which the percentage of subcutaneous fat tissue volume to skeletal MV was significantly correlated to the percentage of residuals of the MV estimates. However, Bracco et al. (8) reported that the trunk acts as a reservoir for fat accumulation in overweight individuals. In addition, it is known that visceral fat shows a greater increase than subcutaneous fat with aging (15). To apply the BI analysis used in this study to individuals with a high percentage of body fat and/or the elderly, therefore, the influence of visceral fat volume on MV estimates must be established. In summary, the findings obtained here indicate that segmental BI analysis can be used to estimate trunk MV. However, the present study examined only young and nonobese men. In addition to the development of the best approach for reducing the effects of visceral tissues on the estimation of trunk MV, further investigation is needed to examine the application of the BI analysis used in this study to women, the elderly, the obese, and/or individuals hospitalized long term. ACKNOWLEDGMENTS We thank Dr. Masamitsu Ito for help with MRI measurements. REFERENCES 577 1. Abe T, Kawakami Y, Suzuki Y, Gunji A, and Fukunaga T. Effects of 20 days bed rest on muscle morphology. J Gravit Physiol 4: S10 S14, 1997. 2. Abe T, Kearns CF, and Fukunaga T. Sex differences in whole body skeletal muscle mass measured by magnetic resonance imaging and its distribution in young Japanese adults. Br J Sports Med 37: 436 440, 2003. 3. Bartok C and Schoeller DA. Estimation of segmental muscle volume by bioelectrical impedance spectroscopy. J Appl Physiol 96: 161 166, 2004. 4. Baumgartner RN, Chumlea WC, and Roche AF. Estimation of body composition from bioelectric impedance of body segments. Am J Clin Nutr 50: 221 226, 1989. 5. Baumgartner RN, Ross R, and Heymsfield SB. Does adipose tissue influence bioelectric impedance in obese men and women? J Appl Physiol 84: 257 262, 1998. 6. Baumgartner RN. Electrical impedance and total body electrical conductivity. In: Human Body Composition, edited by Roche AF, Heymsfield AB, and Lohman TG. Champaign, IL: Human Kinetics, 1996. 7. Bland JM and Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1: 307 310, 1986. 8. Bracco D, Thiebaud D, Chiolero RL, Landry M, Burckhardt P, and Schutz Y. Segmental body composition assessed by bioelectrical impedance analysis and DEXA in humans. J Appl Physiol 81: 2580 2587, 1996. 9. Brown B, Karatzas T, Nakielny R, and Clarke R. Determination of upper arm muscle and fat areas using electrical impedance measurements. Clin Phys Physiol Meas 9: 47 55, 1988. 10. Caton JR, Mole PA, Adams WC, and Heustis DS. Body composition analysis by bioelectrical impedance: effect of skin temperature. Med Sci Sports Exerc 20: 489 491, 1988. 11. Cha K, Shin S, Shon C, Choi S, and Wilmore DW. Evaluation of segmental bioelectrical impedance analysis (SBIA) for measuring muscle distribution. J ICHPER SD-ASIA 1: 11 14, 1997.

578 ESTIMATION OF TRUNK MUSCLE VOLUME 12. Chumlea WC, Baumgartner RN, and Roche AF. Specific resistivity used to estimate fat-free mass from segmental body measures of bioelectric impedance. Am J Clin Nutr 48: 7 15, 1988. 13. Cornish BH, Jacobs A, Thomas BJ, and Ward LC. Optimizing electrode sites for segmental bioimpedance measurements. Physiol Meas 20: 241 250, 1999. 14. Danneels LA, Vanderstraeten GG, Cambier DC, Witvrouw EE, and De Cuyper HJ. CT imaging of trunk muscles in chronic low back pain patients and healthy control subjects. Eur Spine J 9: 266 272, 2000. 15. Enzi G, Gasparo M, Biondetti PR, Fiore D, Semisa M, and Zurlo F. Subcutaneous and visceral fat distribution according to sex, age, and overweight, evaluated by computed tomography. Am J Clin Nutr 44: 739 746, 1986. 16. Kanehisa H, Miyatani M, Azuma K, Kuno S, and Fukunaga T. Influences of age and sex on abdominal muscle and subcutaneous fat thickness. Eur J Appl Physiol 9: 534 537, 2004. 17. Krebs DE, Wong D, Jevsevar D, Riley PO, and Hodge WA. Trunk kinematics during locomotor activities. Phys Ther 72: 505 514, 1992. 18. MacKinnon CD and Winter DA. Control of whole body balance in the frontal plane during human walking. J Biomech 26: 633 644, 1993. 19. Miyatani M, Kanehisa H, Azuma K, Kuno S, and Fukunaga T. Site-related differences in muscle loss with aging a cross-sectional survey on the muscle thickness in Japanese Men aged 20 to 79 years. Int J Sports Health Sci 1: 34 40, 2003. 20. Miyatani M, Kanehisa H, and Fukunaga T. Validity of bioelectrical impedance and ultrasonographic methods for estimating the muscle volume of the upper arm. Eur J Appl Physiol 82: 391 396, 2000. 21. Miyatani M, Kanehisa H, Masuo Y, Ito M, and Fukunaga T. Validity of estimating limb muscle volume by bioelectrical impedance. J Appl Physiol 91: 386 394, 2001. 22. Organ LW, Bradham GB, Gore DT, and Lozier SL. Segmental bioelectrical impedance analysis: theory and application of a new technique. J Appl Physiol 77: 98 112, 1994. 23. Sakurai S and Miyashita M. Mechanical energy changes during treadmill running. Med Sci Sports Exerc 17: 148 152, 1985. 24. Tagliabue A, Andreoli A, Comelli M, Bertoli S, Testolin G, Oriani G, and De Lorenzo A. Prediction of lean body mass from multifrequency segmental impedance: influence of adiposity. Acta Diabetol 38: 93 97, 2001. 25. Wood S, Pearsall DJ, Ross R, and Reid JG. Trunk muscle parameters determined from MRI for lean to obese males. Clin Biomech (Bristol, Avon) 11: 139 144, 1996.