Phytochemical screening and evaluation of in-vitro antioxidant potential of Monotheca buxifolia

Similar documents
Research Article GALLIC ACID AND FLAVONOID ACTIVITIES OF AMARANTHUS GANGETICUS

Antioxidant Activity of the plant Andrographis paniculata (Invitro)

Antioxidative activities and phenolic compounds of pumpkin (Cucurbita pepo) seeds and amaranth (Amaranthus caudatus) grain extracts

International Journal of Research in Pharmacy and Science

Antioxidant activity and GC-MS analysis of Grewia optiva

Determination of total phenolic, flavonoid content and free radical scavenging activities of common herbs and spices.

Peter John et al. Int. Res. J. Pharm. 2014, 5 (3) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY

In Vitro Antioxidant Activity of some Edibles Bearing Nutritional Value

3. PRELIMINARY PHYTOCHEMICAL SCREENING

Preparation and characterization of Aloe vera extract

WORLD JOURNAL OF PHARMACY AND PHARMACEUTICAL SCIENCES. World Journal of Pharmacy and Pharmaceutical Sciences SJIF Impact Factor 6.

CHEM104 Exp. 9 Phytochemical Antioxidants with Potential Benefits in Foods Part I. 1

Phytochemical Analysis and Antioxidant property of Aegle marmelos Extracts

PRELIMINARY PHYTOCHEMICAL SCREENING AND IN-VITRO FREE RADICAL SCAVENGING ACTIVITY OF MELOCHIA CORCHORIFOLIA PLANT EXTRACTS

In vitro antioxidant activity of a flavonoid compound isolated from methanolic extract of Helianthus annuus leaves (Asteraceae)

Phytochemical and antioxidant properties of some Cassia species

TOTAL ANTIOXIDANT ACTIVITY, TOTAL PHENOLIC CONTENT AND RADICAL SCAVENGING ACTIVITY BOTH FLESH AND PEEL OF RED PITAYA, WHITE PITAYA AND PAPAYA

SUPPLEMENTARY MATERIAL Antiradical and antioxidant activity of flavones from Scutellariae baicalensis radix

PRODUCTION OF VALUE ADDED PRODUCTS FROM SOME CEREAL MILLING BY-PRODUCTS SAYED SAAD ABOZAIED SMUDA THESIS DOCTOR OF PHILOSOPHY

Antioxidant Activities in Various Peel Extracts of Four Varieties Rambutan (Nephelium lappaceum) Using DPPH, FRAP Assays

4. Determination of fat content (AOAC, 2000) Reagents

ABTS Assay Kit KF tests (96 well plate)

Phytochemical screening and quantitative analysis of hexane, acetone, methanol & water extracts of Salicornia virginica by UV-spectrophotometry

Determination of Tanninoids. Analytical Pharmacognosy

Title: Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L.

International Journal of Research and Development in Pharmacy and Life Sciences. Research Article

Science & Technologies ANTIOXIDANT ACTIVITY AND SECONDARY METABOLITES IN DIFFERENT EXTRACTS OF EUPHRASIA OFFICINALIS L. GROWING IN BULGARIA

Evaluation of In Vitro Antioxidant Activity of Sateria verticillata Leaves by Using DPPH Scavenging Assay

Total Polyphenol Content and Antioxidant Activity of The Extracts from Thunbergia laurifolia Lindl. Leaves

Biological activities of an aboriginal herbal medicine, Piperaceae kadsura (Choisy) Ohwi, in Taiwan

OPTIMIZATION OF MICROWAVE-ASSISTED EXTRACTION OF BIOACTIVE COMPOUNDS FROM LEAVES AND STEMS OF THAI WATER SPINACH (Ipomoea aquatic var.

Evaluation of the in vitro antioxidant potential of extracts obtained from Cinnamomum zeylanicum barks

International Journal of Pharmacy and Pharmaceutical Sciences. Research Article IRDA FIDRIANNY 1*, IRA RAHMIYANI 1, KOMAR RUSLAN WIRASUTISNA 1

Chapter 2 Biochemical changes and antioxidant activity of elephant- foot yam corm during development

DMPD Assay Kit KF tests (96 well plate)

Keywords: antioxidant; extraction; paper flower; phenolic compound

International Journal of Research in Pharmacology & Pharmacotherapeutics

Antioxidants in Wax Cappings of Honey Bee Brood

ORAC Assay Kit KF A/ B 96/ 192 tests (96 well plate)

In Vitro Antioxidant Activity and Phytochemical Screening of Pholidota articulata

6 CHAPTER-6 TOTAL PHENOLIC AND FLAVONOID CONTENT DETERMINATION

Available online Research Article

DEVELOPMENT OF RICEBERRY EXTRACT FOR ANTIOXIDANT ACTIVITY. Wachiraporn Pukdee, Naphatsorn Kumar, Phanuphong Chaiwut and Tawanun Sripisut*

ANTIOXIDANT ACTIVITY OF THE 1,7-DIARYLHEPTANOIDS AND THEIR METAL COMPLEXES

ANTIOXIDANT ACTIVITIES OF FIVE WILD EDIBLE FRUITS OF MEGHALAYA STATE IN INDIA AND EFFECT OF SOLVENT EXTRACTION SYSTEM

The In Vitro Antioxidant Activity of Polyalthia Longifolia

Appendix A: Preparation of Media and Chemicals. Malt Extract Agar (MEA) weighing g was dissolved in 400 ml of distilled water

SUPPLEMENTARY MATERIAL Phenolic, flavonoid contents, anticholinestrase and antioxidant evaluation of Iris germanica var; florentina

Comparing Physicochemical Properties of Three Types Iranian Vinegars

Feedstuffs Analysis G-22-1 PROTEIN

In vitro Free Radical Scavenging Activity of Alcoholic Root Extract of Pseudarthria viscida

Study of Phytochemical Screening and Antimicrobial Activity of Citrus aurantifolia Seed Extracts

SUPPLEMENTARY MATERIAL

Protein Cleavage Due to Pro-oxidative Activity in Some Spices

PHYTOCHEMICAL AND ANTIOXIDANT ANALYSIS OF METHANOLIC EXTRACTS OF FOUR AFRICAN INDIGENOUS LEAFY VEGETABLES

Problem Based Practical Activities Problem 10: Patient prognosis

International Journal of Ethnobiology & Ethnomedicine. Research Article

Pelagia Research Library. Study of antioxidant activity of ethanolic extract of fresh Eichhornia crassipes (Mart.)Solms

Petrolatum. Stage 4, Revision 1. Petrolatum is a purified semi solid mixture of hydrocarbons obtained from petroleum.

A November 2015

Research Article An In-Vitro Free Radical Scavenging Activity of Methanolic Extracts of Whole Plant of Teramnus labialis (Linn.)

Determination of total phenolic content and antioxidant activity of Ganoderma lucidum collected from Dang district of Gujarat, India

INTERNATIONAL RESEARCH JOURNAL OF PHARMACY ISSN Research Article

Estimation of Phytochemical Content and Antioxidant Activity of Some Selected Traditional Indian Medicinal Plants

ANTI-OXIDANT ACTIVITIES OF LEAF EXTRACTS OF ZIZIPHUS MUCRONATA

Purity Tests for Modified Starches

International Journal of Drug Research and Technology

Title Revision n date

Free radical scavenging activity of plant extracts of Chlorophytum tuberosum B

The influence of level and source of microelements on the antioxidant activity of medicinal herbs

Residue Monograph prepared by the meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 82 nd meeting 2016.

Estimation of total phenolic and flavonoid content of Hibiscus furcatus Roxb leaves

Journal of Chemical and Pharmaceutical Research, 2012, 4(6): Research Article

Scholars Research Library. In-vitro antioxidant activity of Triumfetta pilosa Roth

ON TEA TANNIN ISOLATED FROM GREEN TEA.

Annexure III SOLUTIONS AND REAGENTS

Folin Ciocalteau Phenolic Content Quantification Assay Kit KB tests (96 well plate)

Enzymatic Assay of PROTEASE (EC )

Antioxidant activity of thymol: protective role in AAPH-induced hemolysis in diabetic erythrocytes

Project 9357R4: Effect of Purple Majesty Consumption on Antioxidant Status and Markers of Cardiovascular Risk in Healthy Volunteers Final Report

Determination of Antioxidant Properties of Ethanol and Water Extracts of Achillea millefolium L. (Yarrow)

Figure 2. Figure 1. Name: Bio AP Lab Organic Molecules

Phytochemical Investigation of Methanolic Extract of Icacina trichantha Tuber

In vitro Assessment of Antioxidant Activity of Anisomeles indica

Antioxidant properties and total phenolic content of a marine diatom, Navicula clavata and green microalgae, Chlorella marina and Dunaliella salina

MyBioSource.com. OxiSelect Ferric Reducing Antioxidant Power (FRAP) Assay Kit. Product Manual. Catalog Number

Properties of Alcohols and Phenols Experiment #3

Pharmacognostic and preliminary phytochemical analysis of Aegle marmelos L. and Centella asiatica L.

Properties of Alcohols and Phenols Experiment #3

Antioxidant Activity and Anticancer Study on Phytochemicals Extract from Tubers of Gloriosa superba against Human Cancer Cell (Hep-G2)

9( )- Hydroxyoctadecadienoic Acid ELISA

Comparative Phytochemical Evaluation of Mentha piperita Varieties (citrate and perpeta) Leaves and Stem Extracts

ANTIOXIDANT AND CYTOTOXIC POTENTIAL OF ACETONE AND METHANOLIC EXTRACTS OF FRESH AND DRY BARKS OF CINNAMOMUM ZEYLANICUM VERUM : IN VITRO STUDY

Aim: To study the effect of ph on the action of salivary amylase. NCERT

OxiSelect Hydrogen Peroxide Assay Kit (Colorimetric)

Work-flow: protein sample preparation Precipitation methods Removal of interfering substances Specific examples:

Suggested homework problems: 8.8, 8.13, ,

NIS/WW Report 1 1 of 11. Report 1. Testing of Willard s Water for antioxidant capacity and cellular uptake of selected nutrients.

Open Access Inhibition of the Oxidation of Corn Oil Stripped of Tocopherols and Refined Olive Oil by Thiols

Transcription:

E3 Journal of Biotechnology and Pharmaceutical Research Vol. 4(4), pp. 54-6, April 213 Available online at http://www.e3journals.org/jbpr ISSN 2141-7474 213 E3 Journals Full Length Research Paper Phytochemical screening and evaluation of in-vitro antioxidant potential of Monotheca buxifolia Jeveria Rehman 1*, Islam Ullah Khan 2, Sidra Farid 2, Shagufta Kamal 1 and Nosheen Aslam 1 1 Department of Chemistry, Government College University, Faisalabad 38, Pakistan. 2 Department of Chemistry, Government College University, Lahore 54, Pakistan. Accepted 2 March, 213 The present study aimed to investigate the antioxidant potential of Monotheca buxifolia leaves (ML) by employing some in vitro methods. The antioxidant components were initially extracted from the plant in methanol and were further fractionated in solvents of different polarity. The Phytochemical screening showed that the leaves of Monotheca buxifolia are naturally enriched with anthraquinones, flavanoids, reducing sugars, terpenoids, tannins, saponins, and cardiac glycosides. The trolox equivalent antioxidant capacity (TEAC) and Ferric reducing antioxidant power values for leave extracts were ranged from 3.3-19.2 mm of Trolox equivalents and 8.9-29.9 mg/l of FeSO 4 equivalents respectively. The EC 5 values of leaves fractions were found to be in range 14.4-172.8 (mg of dried mass/ml). Using Total phenolic contents assay, the amount of total phenolics varies from 39.2-131.8 mg/l of gallic acid equivalents for leaves. The total lavanoids content were found to be 262.75-825.45 mg/l of Quercetin for leaves and fruit fractions. The percentage bound iron for metal chelating activity varies from 69-73%. The percentage scavenging activity of superoxide anions radical was 61-73% for leave extracts. On the basis of these results obtained here ML may be considered as a rich source of antioxidant. Key words: Antioxidant activity, Monotheca buxifolia, phytochemical screening, TEAC value, EC 5. INTRODUCTION Almost 8% of the world population depends exclusively on plants for their health and healing. However in developed world reliance on surgery and pharmaceutical products is more usual. But in recent years, their attention is diverting towards the natural supplements. This motivation of people towards herbs is due to their concern about the harmful effects of drugs, which are prepared from synthetic materials (Khalil et al., 27). There has been a sudden rise of interest in therapeutic potential of plants due to presence of antioxidants which reduces the tissue injuries caused by free radicals. These free radicals are produced as a result of metabolic processes and environmental pollutants, i.e. radiations, toxins, smoking, deep fried and spicy food items as well as physical and emotional *Corresponding author. Email: javeriarehman7@gmail.com. stresses, also contribute to it. These free radicals cause depletion of immune system antioxidants which leads to change in gene expression and induce abnormal proteins. These free radicals contribute to several hundred human disorders like atherosclerosis, ischemia, gastritis, cancer, AIDS, reperfusion injury of many tissues, central nervous system injury, diabetes mellitus, and aging processes. However several synthetic antioxidants are commercially available such as butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT), Propyl gallate (PG), these synthetic antioxidants are widely employed in food industry to prevent oxidation and spoilage of food. But these are quite unsafe and their toxicity is a problem of major concern. This upsurges the trend of substituting the synthetic antioxidants with natural antioxidants. Natural antioxidants such as phenolics and flavanoids from fruits, vegetables, spices, tea and wine are already exploited commercially either as nutritional supplements or antioxidant additives (Pourmorad et al., 26). Such natural antioxidants show

Rehman et al. 55 Flow Sheet Of Extraction shade dried plant Extraction with MeOH Extraction with n-hexane Separation & evaporation of n-hexane Extraction with Ethyl acetate Crude Extract Aqueous layer Separation & evaporation of Ethyl acetate layer Aqueous layer Extracted with Chloroform Separation & evaporation of Chloroform Aqueous layer District Dir Lower (DDL) Pakistan. The leaves of plant were subjected to shade-drying and then to grinding. 5 g of finely ground leaves sample was then exhaustively extracted with methanol using Soxhlet apparatus at 45 C for 12 h. Then resulting extracts were filtered using Whatmann filter paper. Allowed these extracts to concentrate under vacuum at 45 C using Stuart-RE 3 rotary evaporator and calculated the yield of extract. Dissolved the residues in appropriate volume of distilled water and allowed it to fractionate using organic solvents (25X3 ml) of varying polarity (n-hexane, Ethyl acetate, chloroform), as shown in Figure 1. These resulting extracts and the water extracts were allowed to concentrate under vacuum using Stuart-RE3 rotary evaporator, at temperature according to the boiling point of the solvent. Then yield of every residue was calculated. These residues were dissolved in appropriate volume of respective solvent to get the stock solutions (3 mg/ml) to be used for antioxidant activity evaluation. Figure 1. Extraction scheme of ML (Monotheca buxifolia leaves) in different solvents their activity due to their redox properties which makes them reducing agents, hydrogen donors, metal chelators, or singlet oxygen quenchers (Demiray et al., 29). These exogenous antioxidants assist the body s antioxidant defense system against the free radicals and reduce the oxidative stress (Gan et al., 21). This prompted us to speculate some novel natural sources of antioxidants. Therefore the objective of present study is to evaluate the radical scavenging potential of Monotheca buxifolia leaves (ML), which is a broad leaved evergreen tree, belonging to family Sapotaceae. It is a native plant of District Dir Lower, Hindukash Range of Pakistan, locally known as gurguri. Ethanibotanically, it fruit is laxative, digestive and is commonly used in urinary tract diseases (Khan et al., 21). MATERIALS AND METHODS All the chemicals and solvents were of analytical grade. 2,2`azinobis-(3-ethylbenzo-thiazoline-6-sulphonic) diammonium salt (ABTS), 2,4,6-Tris-2-tripyridyl-s-triazine(TPTZ), 2,4,6- Nitrotetrazolium Blue Chloride (NBT), Nicotinamide Adenine Dinucleotiode (NADH), Phenozinemetho Sulphate (PMS) and Ferrozine were obtained from Fluka chemicals, Switzerland. Trolox (6-Hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid), were purchased from Aldrich Chemical Co., Gillingham, Dorset, UK). 2, 2`- Diphenyl-1-picrylhydrazyl (DPPH) was purchased from Sigma chemical company Ltd, USA. Experiments were performed on UV-17 Pharma- Spec UV- Visible Spectrophotometer, Shimadzu, Japan equipped with CPS controller. All the experiments were performed three times and results obtained were averaged. Data obtained, except where specifically mentioned, is mean ±SD (n = 3). Leaves (ML) of Monotheca buxifolia were obtained from Phytochemical screening The phyto constituents of leaves of Monotheca buxifolia (ML) were identified by performing standard protocols (Ayoola et al., 28). Test for Tannins Took.5 ml of plant sample solution in a test tube and allowed it to boil. Then add few drops of.1% FeCl 3 and waited for blueblack or greenish brown coloration. Test for Saponins Added.5 ml of sample solution in a test tube and boiled. Then added 5 ml of distilled water and shudder it violently till persistent froth is formed. To this froth, added 3 drop of olive oil and mixed it vigorously till an emulsion is formed. Test for Anthraquinones Took a small quantity of sample extract and boiled it with concentrated H 2SO 4 then filtered it and added chloroform and mixed it gently. Separated out the chloroform layer and added dilute ammonia solution to it and waited for the color changes. Test for Terpenoids For Terpenoids determination, took 5 ml of sample extract and added 3 ml of chloroform and 2 ml of concentrated sulfuric acid to develop a layer and waited for the red color appearance at the interface. Test for Flavanoids For flavanoids determination, took.5 ml of sample material and added 5 ml of dilute ammonia solution and 2 ml of

56 E3 J. Biotechnol. Pharm. Res. concentrated sulfuric acid. Appearance of yellow color will indicate the +ve test. Test for reducing sugars. To.5 ml of sample extract, added.5ml of Fehling A and.5 ml of Fehling B and heat the reaction mixture for a while. Appearance of brick red coloration showed the positive result. Test for Cardiac glycosides To.5 ml of sample extract added 1 ml of glacial acetic acid having one drop of FeCl 3 solution. Then added 1 ml of concentrated sulfuric acid. A violet or brown colored ring formed showing the presence of Cardiac glycosides. Test for Alkaloids Put a drop of plant extract solution on the origin of TLC plate, then poured few drops of Dragondorff reagent on this spot and waited for the appearance of red color. Antioxidant activity ABTS + Assay An improved version of ABTS assay, as devised by (Re et al., 1999), was employed to assess the antioxidant potential of ML extract. ABTS.+ radical cation was generated by reacting 7mM ABTS solution with 2.45 mm solution of Potassium persulfate and this mixture was allowed to stand in dark at room temperature for 12-16 hours before use. The ABTS + stock solution was diluted with PBS buffer of ph 7.4 or methanol to an absorbance of.7+.2 at 734 nm. For the evaluation of antioxidant activity, added 1μl of sample to 2.99ml of diluted solution of ABTS + (A=.7+.2) and noted the change in absorbance after every 1 min interval for 8 mins. Appropriate solvent blank was run in parallel. All the were run in triplicate and mean values of absorbance were calculated. Percentage inhibition is calculated by using following formula: percentage inhibition (at 734nm) = (1-A f /A ) 1 DPPH radical scavenging activity DPPH (1, 1-diphenyl-2-dipicryl-hydrazyl) radical cation scavenging activity of ML extracts was evaluated as described by (Shimada et al. 1992). To a 2.5 ml of methanolic solution of DPPH (25 mg/l) having an absorbance of 1. +.2 at 515 nm, appropriate volumes of sample extracts were mixed. The reaction progress of the mixture was monitored at 515 nm for 3 minutes. The percentage of DPPH remaining was calculated as: %DPPH rem= [DPPH] t=t/ [DPPH] t= 1 Where [DPPH] t=t and [DPPH] t= were the absorbance of DPPH solution remaining at time t and t =. Ferric reducing antioxidant power (FRAP assay) The ferric reducing ability of plant extracts was evaluated by protocol described by Benzie and Strain (1996). The FRAP reagent contained 3 mm acetate buffer of ph 3.6, 1 mm TPTZ (2, 4, tripyridyl-s-triazine) solution in 4 mm HCl and 2 mm FeCl 3.6H 2O solution. The fresh working solution was prepared by mixing 25 ml acetate buffers, 2.5 ml TPTZ solution, and 2.5 ml FeCl 3. 6H 2O solution and then warmed at 37 C before use. To 3 ml of freshly prepared FRAP reagent added 3 ul of double distilled water and 1 ul of sample extract and noted its absorption at 593 nm for 4 m. Metal chelating activity Total phenolic content determination Total phenolic contents of ML extracts were determined using Folin-Ciocalteu (FC) reagent according to the method of (Slinkard and Singleton, 1997). An aliquat of 4 μl was pipetted into separate cuvettes, and to each 3.16 ml of double distilled water was added. Folin Ciocalteu reagent (2 μl) was added and mixed well. After 8 min, 6 μl of sodium carbonate solution was mixed thoroughly in the solution. The solution was allowed to stand at 4 C for 3 min and absorbance of each solution was determined at 765 nm against the blank. A concentration versus absorbance linear plot was thus obtained. The concentration of total phenolic compounds of each fraction was expressed as Gallic acid equivalents. Total Flavonoid Content The total flavonoid content was determined with aluminium chloride (AlCl 3) according to a known method described by (Dewanto et al., 22) using Quercetin as a standard. An aliquot of 25 µl of sample extract or quercetin standard solutions was mixed with 1.25 ml of distilled water in a test tube followed by addition of 75 µl of 5% NaNO 2 solution. After 6 min 15 µl of 1% AlCl 3.6H 2O solution was added and allowed to stand for 5 m. Added 5 µl of 1 M NaOH and the volume of the mixture was raised to 2.5 ml with distilled water and mixed well. The absorbance was recorded at 51 nm. The amount of total flavonoid was expressed as milligrams of quercetein equivalents per gram of extract. RESULTS AND DISCUSSION Phytochemical screening Phytochemical screening involved the qualitative identification of plant s constituents. This type of screening helped us a lot to recognize the class of plant s constituents and to exploit such important phytochemicals commercially. The results showed that

TEAC (mm Trolox) Percentage scavenging Rehman et al. 57 n Hexane Ethyl Acetate Chloroform Methanol Water Trolox BHA blank 14 12 1 8 6 4 2 12 1 8 6 4 2 5 1 15 2 25 3 Time (min) SAMPLES Figure 3. DPPH Assay for ML. Figure 2. TEAC Value of ML. the phyto constituents originally present in methanol extracts segregated in organic solvents of different polarity. The results demonstrated that methanol extract of ML was full of Tannins, Flavanoids, Reducing sugars, anthraquinones, Cardiac glycosides, terpenoids, and saponins. Alkaloids were absent in all fractions (methanol, aqueous, n-hexane, chloroform, ethyl acetate) of ML (Table 1). Likewise, Saponins, reducing sugars and Flavanoids were present in all extracts of ML. Terpenoids also showed a positive response for methanol, n-hexane, and chloroform extracts of ML but a negative response for n- hexane extract. Cardiac glycosides were only present in methanol, n-hexane, and chloroform extracts of ML. Tannins were present in methanol, chloroform and aqueous extracts of ML. Anthraquinones were present in methanol, chloroform and water extracts of ML. The reducing sugars, flavanoids and saponins were present in all the extracts of leaves. ABTS.+ assay The ABTS.+ assay was calibrated by using an alph Tocopherol analogus to Trolox as standard. All the fractions of leaves of Monotheca buxifolia exhibited antioxidant potential as they all scavenged the ABTS radical cation. All the extracts showed a near-linear variance between fall in absorbance and the corresponding concentration of sample extract added. The results of ABTS assay were expressed in terms of TEAC value and shown in Figure 2. As TEAC is the measure of effective antioxidant activity of the substance. A higher TEAC value referred to a greater antioxidant potential. The TEAC value was calculated for each extract. As all the extracts had a great antioxidant potential, but the aqueous extract of leaves of Monotheca buxifolia showed relatively large potential of antioxidant activity having the TEAC value of 19.2 m Mol of Trolox equivalence.while the n-hexane and ethyl acetate extracts of ML had slightly less antioxidant potential in terms of TEAC values.the methanol and chloroform extracts of ML had the least TEAC value. The overall trend of TEAC values of leaves of Monotheca buxifolia is following: Aqueous>nhexane>Ethylacetate>Chloroform>Methanol DPPH free radical scavenging assay DPPH is a stable and commercially exploited nitrogen based organic radical having a lambda maximum of 515 nm. On reduction, its original purple color solution fades away, which show the antioxidant activity of the sample. The results of DPPH free radical scavenging activity were represented as percentage DPPH remaining. The results of DPPH assay showed that aqueous extract of ML had the least EC 5 value and a large antioxidant potential. The chloroform and methanol extracts had larger values of EC 5 and lesser antioxidant potential. While the Ethyl acetate and n- hexane extracts showed comparatively higher values of EC 5 and least antioxidant potential. The trend of EC 5 values of ML is following: acetate>n- Aqueous>Chloroform>Methanol>Ethyl hexane The results of DPPH assay are shown in Figure 3.

TPC(mg/l of GAE) FRAP Value (mm FeSO4) TFC(mg/l QE) 58 E3 J. Biotechnol. Pharm. Res. 4 35 3 25 2 15 1 12 1 8 6 4 2 5 Figure 4. The FRAP values of ML Figure 6. TFC contents of ML. Total Phenolic Contents determination 16 14 12 1 8 6 4 2 The Folin-ciocalteu reagent is employed for the determination of total phenolic contents. Under basic conditions, poly phenols give rise to phenolate anion which has the ability to reduce F.C reagent. A blue colored complex formed for this assay and results are expressed as Gallic acid equivalents. It is thought that Phenolic compounds can attribute to the total antioxidant activity. The chloroform extract of ML showed the highest phenolic contents (Figure 5). The increasing order of phenolic contents of ML is following: Chloroform>Methanol>n-hexane> Water>Ethyl acetate Figure 5. TPC Contents of ML. FRAP (Ferric reducing antioxidant power) The FRAP assay employed Fe (III)-(TPTZ) 2 Cl 3 (pale yellow in color) as an oxidizing agent, When it came in contact with an antioxidant, it gets reduced to Fe (II)- (TPTZ) 2 Cl 3 (Blue in color) and absorbs at 593 nm. The results of FRAP assay are often expressed in Mm of FeSO 4. A FRAP unit can be defined as the reduction of ferric (III) to ferrous (II). The aqueous extract of ML showed the highest FRAP value, referring to highest antioxidant potential (Figure 4). Then here came the Methanol and chloroform extract having comparatively less antioxidant potential. The ethyl acetate and n- hexane extracts showed the least antioxidant potential. The order of increasing FRAP value is following: Aqueous>Methanol>chloroform>ethyl acetate>n-hexane Total Flavanoid contents determination Flavanoids are one of the most important natural products that impart antioxidant potential and other medicinal properties to the plant. The total Flavanoids contents of leaves of Monotheca buxifolia were evaluated and the results revealed high concentration level of Flavanoids. The total flavanoid content of plant is expressed in terms of Quercetin equivalents. The ethyl acetate extract of ML showed a high concentration of Flavanoids, other fractions contained significant but slightly less quantities of Flavanoids (Figure 6). The increasing order of flavanoid contents of ML is as follows: Ethyl acetate>water>methanol>n hexane>chloroform Superoxide radical scavenging activity This assay employed an in-vitro generation model [PMS/NADH/O 2 ] of superoxide radical anions and Nitro

%age bound Iron percent scavenging activity Rehman et al. 59 14 12 1 8 6 4 2 Figure 7. % scavenging of superoxide radical anion of ML. 74 72 7 68 66 64 62 6 58 56 Figure 8. Metal chelating activity of ML. blue tetrazolium (NBT) as a probe. The results of this assay showed that percentage scavenging of superoxide radical anion is maximum for n-hexane fraction of ML. The ethyl acetate fraction of ML showed a slightly less percentage scavenging of superoxide radical anion, but the water and chloroform fractions show similar scavenging levels. The methanol extract showed a slightly less percentage scavenging of superoxide radical anion (Figure 7). The increasing order of percentage scavenging of superoxide radical anion is following: n hexane>ethyl acetate>water> chloroform>methanol Fraction showed the maximum value of percentage of bound iron. Other fractions also show metal chelating activity but the value of percentage of bound iron is less than the ethyl acetate (Figure 8). The trend representing the order of percentage of bound iron is shown below: Ethyl acetate>n hexane>chloroform>water>methanol Metal chelating activity The chelation of Iron (II) is usually determined by ferrozine assay. The results of this assay are expressed as percentage of bound iron. Iron (II) forms a colored complex with ferrozine which can be determined at 562 nm. The Ethyl acetate fraction of ML showed the maximum value of percentage of bound iron. Other fractions also show metal chelating activity but the value of percentage of bound iron is less than the ethyl acetate (Figure 8 and Table 1). The trend representing the order of percentage of bound iron is shown below: Ethyl acetate>n hexane>chloroform>water>methanol

6 E3 J. Biotechnol. Pharm. Res. Table 1. Results of phytochemical screening. Name of the Reducing Cardiac Tannins Anthraquinones Saponins Alkaloids Flavonoid Terpenoids sample extract sugar glycosides n-hexane + - - + - - - + Methanol + + + + - + + + Ethyl acetate + + - + - + + - Chloroform + + + + - + + + water + - + + - + + - Conclusion The results of phytochemical constituents revealed that leaves of Monotheca buxifolia are chemically enriched with flavanoids, terpenoids, saponins, anthraquinones, cardiac glycosides, tannins and reducing sugars. The obtained results showed that the aqueous fraction has highest Trolox equivalant antioxidant activity (TEAC value), percent inhibition of DPPH and FRAP value while the ethyl acetate fraction showed highest metal chelating activity and total flavonoid contents. n-hexane and chloroform showed the highest superoxide anion radical scavenging activity and total phenol contents respectively. Due to the presence of such compounds the aqueous fraction showed excellent antioxidant activity, the ethyl acetate fraction showed moderate activity, methanol fraction has lowest and methanol fraction has very low values of antioxidant activity due to lower amounts of such compounds. Hence, it was concluded that aqueous fraction is rich in strong antioxidants. REFERENCES Ayoola GA, Coker HAB, Adesegun SA, Adepoju-Bello AA, Obaweya K, Ezennia EC, Atangbayila TO (28). Phytochemical Screening and Antioxidant Activities of Some Selected Medicinal Plants Used for Malaria Therapy in Southwestern Nigeria. Trop. J. Pharm. Res., 7(3): 119-124. Benzie IFF, Strain JJ (1996). Ferric reducing/antioxidant power assay: Direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Anal. Biochem., 239: 7-76. Demiray S, Pintado ME, Castro PML (29). Evaluation of phenolic profiles and antioxidant activities of Turkish medicinal plants: Tilia argentea Crataegi folium leaves and Polygonum bistorta roots. World Academy of Science, Engineering and Technology, 54:312-317 Dewanto V, Wu X, Adom KK, Liu RH (22). Thermal processing enhances the Nutrition value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem., 5: 31-314. Dinis TCP, Madeira VMC, Almeida LM (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5- aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys., 315: 161-169. Gan RY, Xu XR, Song FL, Kuang L, Li HB (21). Antioxidant activity and total phenolic content of medicinal plants associated with prevention and treatment of cardiovascular and cerebrovascular diseases. J. Med. Plants Res., 4(22): 2438-2444. Khalil MY, Moustafa AA, Naguib NY (27). Growth, Phenolic Compounds and Antioxidant activity of Some medicinal plants Grown under Farming Condition, World J. Agric. Sci., 3(4): 451-457. Khan N, Ahmed M, Wahab M, Ajaib M, Hussain SS (21). Studies along an altitudinal gradient in Monotheca Buxifolia (Falc.) A.D, Forest, District Lower Dir, Pakistan, Pak. J. Bot., 42(5): 329-338. Nikishimi M, Rao N, Yagi K (1972). The occurrence of superoxide anion in the reaction of reduced phenazine methosulfate and molecular oxygen. Biochem. Biophys. Res. Commun., 46: 849-854. Pourmorad F, Hosseinimehr SJ, Shahabimajd N (26). Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Biotechnol., 5(11): 1142-1145. Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice- Evans C (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Radic. Biol Med., 26: 1231-1235. Shimada K, Fujikawa K, Yahara K, Nakamura T (1992). Antioxidative properties of xanthan on the autoxidation of soyabean oil in cyclodextrin emulsion. J. Agric. Food Chem., 4: 945-948. Slinkard K, Singleton VL (1997). Total Phenol Analysis: Automation and Comparison with Manual Methods. Am. J. Enol. Viticulture, 28: 49-55.