What Is a Seizure? Insights From Human Single-Neuron Recordings

Similar documents
Neuronal Firing in Human Epileptic Cortex: The Ins and Outs of Synchrony During Seizures

EEG Wave of the Future: The Video-EEG and fmri Suite?

Better Resolution and Fewer Wires Discover Epileptic Spiral Waves

B(I)RD Watching: A Way to Stratify Seizure Risk?

Are HFOs Still UFOs? The Known and Unknown About High Frequency Oscillations in Epilepsy Surgery

Treatment of Super-Refractory Status Epilepticus: The Sooner the Better with Less Adverse Effects

Tolner EA, Hochman DW, Hassinen P, Otáhal J, Gaily E, Haglund MM, Kubová H, Schuchmann S, Vanhatalo S, Kaila K. Epilepsia 2011;52(1):

Distinct Mechanisms Mediate Interictal and Pre-Ictal Discharges in Human Temporal Lobe Epilepsy

Current Literature In Clinical Science. Temporal Lobectomies in Children: More Than Just for Seizure Control?

Stay, Hit, or Fold? What Do You Do If the Treatment May Be as Bad as the Problem Results of a Q-PULSE Survey

Neurostimulation for Epilepsy: Do We Know the Best Stimulation Parameters?

SUDEP: Sudden Unexpected Death in Epilepsy on Placebo?

Changing Name of Epilepsy in Korea; Cerebroelectric Disorder (noi-jeon-jeung,,): My Epilepsy Story.

Difficult-to-Localize Intractable Focal Epilepsy: An In-Depth Look

Can Status Epilepticus Sometimes Just Be a Long Seizure?

Early Influences: Seizures During Infancy Influence Behavior in Young Adult Mice

Glowing Feet Control the Blood of Seizures

Turning Up the Heat on the Impact of Febrile Status Epilepticus

License to Ill: Playing the Odds After Withdrawing and Restarting Antiepileptic Drugs

Ghee Whiz! The Growing Evidence for the Benefits of the Modified Atkins Diet

A Shot in the Arm for Prehospital Status Epilepticus: The RAMPART Study

Dravet in the Dish: Mechanisms of Hyperexcitability

Zonisamide Should Be Considered a First-Line Antiepileptic Drug for Patients with Newly Diagnosed Partial Epilepsy

Rapamycin Attenuates the Development of Posttraumatic Epilepsy in a Mouse Model of Traumatic Brain Injury.

Using Multi-electrode Array Recordings to detect unrecognized electrical events in epilepsy

The Heat is On: L-type Calcium Channels and Febrile Seizures

Current Literature In Clinical Science. Seizures and Strokes for Certain Folks. Incidence and Predictors of Acute Symptomatic Seizures After Stroke.

The Role of EEG After Cardiac Arrest and Hypothermia

Chloride s Exciting Role in Neonatal Seizures Suggests Novel Therapeutic Approach

Perampanel: Getting AMPed for AMPA Targets

Febrile Seizures Research Is Really Heating Up!

Mechanisms of Seizure-Induced Inflammation of the Brain: Many Possible Roles for Neuronal COX-2

Neuropathology of the Blood-Brain Barrier in Epilepsy: Support to the Transport Hypothesis of Pharmacoresistance

StEPing EP2 to Prevent Status Epilepticus Induced Mortality and Inflammation

Stereotypical activation of hippocampal ensembles during seizures

Current Literature In Clinical Science. Predicting Seizures: Are We There Yet?

Cognitive and Behavioral Comorbidities in Epilepsy: The Treacherous Nature of Animal Models

Sudden Unexpected Death in Dravet Syndrome

The Fat Is in the Fire: Ketogenic Diet for Refractory Status Epilepticus

Accepted Manuscript. Editorial. Responsive neurostimulation for epilepsy: more than stimulation. Jayant N. Acharya

Voltage-Gated Ion Channel Accessory Subunits: Sodium, Potassium, or Both?

Pretreatment EEG in Childhood Absence Epilepsy: Associations With Attention and Treatment Outcome.

Female Hormones Prevent a Catastrophic Epilepsy in Male Mice

Improving Patient-Centered Care Coordination for Children With Epilepsy: Version 2.0 Upgrade Required

Paradox Lost: Exploring the Clinical-Radiologic Dissociation Seen in Anti-NMDA Receptor Encephalitis

Interictal High Frequency Oscillations as Neurophysiologic Biomarkers of Epileptogenicity

Confirmed! Durable Benefits of Epilepsy Surgery

Optical Control of Focal Epilepsy in vivo with Caged Gamma-Aminobutyric Acid.

Anxiety Disorders in Epilepsy: The Forgotten Psychiatric Comorbidity

Neuregulation: NRG1 Tames Interneurons and Epilepsy

Galanin Receptor 1 Deletion Exacerbates Hippocampal Neuronal Loss After Systemic Kainate Administration in Mice.

Degrading Epilepsy: The Role of Extracellular Proteases and the Extracellular Matrix

Levetiracetam: More Evidence of Safety in Pregnancy

How Do Clinicians Adjust Lamotrigine Doses and Use Lamotrigine Blood Levels? A Q-PULSE Survey

Supplementary Figure 2. Inter discharge intervals are consistent across electrophysiological scales and are related to seizure stage.

A Lesson from The Brodie Ultimatum : The Locus of Control for Epilepsy is Outside the Therapeutic Alliance

Recipes for Making Human Interneurons from Stem Cells Require Multiple Factors, Careful Timing, and Long Maturation Periods

Introduction to EEG del Campo. Introduction to EEG. J.C. Martin del Campo, MD, FRCP University Health Network Toronto, Canada

Feasibility Study of the Time-variant Functional Connectivity Pattern during an Epileptic Seizure

Cortico-Thalamic Connections and Temporal Lobe Epilepsy: An Evolving Story

Hope for New Treatments for Acute Repetitive Seizures

Intracranial Studies Of Human Epilepsy In A Surgical Setting

Pharmacoresistance and Cognitive Delays in Children: A Bidirectional Relationship

Chopping Out CHOP Chops the Fate of Neurons

doi: /brain/awq112 Brain 2010: 133;

Spatial and Temporal Analysis of Interictal Activity in the Epileptic Brain

This Is Your Brain on Drugs: Predicting Anticonvulsant Effect Using Transcranial Stimulation

How Deactivating an Inhibitor Causes Absence Epilepsy: Validation of a Noble Lie

Sudden Unexpected Death in the Epilepsy Monitoring Unit

Monotherapy in Newly Diagnosed Epilepsy: Levetiracetam Versus Standard Anticonvulsants

EEG workshop. Epileptiform abnormalities. Definitions. Dr. Suthida Yenjun

Toward a more accurate delimitation of the epileptic focus from a surgical perspective

The Sonification of Human EEG and other Biomedical Data. Part 3

Deep White Matter Track Record of Functional Integrity in Childhood Absence Epilepsy

EMG, EEG, and Neurophysiology in Clinical Practice

Cortical Interneurons Join the Mix in Absence Seizures

Influence of paroxysmal activity on background synchronization in epileptic records

Diagnosing Complicated Epilepsy: Mapping of the Epileptic Circuitry. Michael R. Sperling, M.D. Thomas Jefferson University Philadelphia, PA

EEG Source Imaging in Epilepsy Evaluations

PRESURGICAL EVALUATION. ISLAND OF COS Hippocrates: On the Sacred Disease. Disclosure Research-Educational Grants. Patients with seizure disorders

Early seizure propagation from the occipital lobe to medial temporal structures and its surgical implication

Findings from the FEBSTAT Study: Can Observations After a Provoked Seizure Occurrence Have Broad Implications for Epileptogenesis?

Implantable Microelectronic Devices

Epileptic seizure detection using linear prediction filter

Common Ictal Patterns in Patients with Documented Epileptic Seizures

Strain- and Age-Dependent Hippocampal Neuron Sodium Currents Correlate With Epilepsy Severity in Dravet Syndrome Mice.

High Frequency Oscillations in Temporal Lobe Epilepsy

Less is More: Reducing Tau Ameliorates Seizures in Epilepsy Models

Cognitive Activation of Hyperexcitable Cortex in JME: Can It Trigger Seizures?

Transitions between dierent synchronous ring modes using synaptic depression

Interictal epileptiform discharges and phasic phenomena of REM sleep

Invasive Evaluation for Epilepsy Surgery Lesional Cases NO DISCLOSURES. Mr. Johnson. Seizures at 29 Years of Age. Dileep Nair, MD Juan Bulacio, MD

Autoimmune Epilepsy: Are We Seeing the Tip of the Iceberg... or the Whole Thing?

Primum Non Nocere: Are Seizure Medications Safe in Neonates?

Electrophysiological and firing properties of neurons: categorizing soloists and choristers in primary visual cortex

Is the Hemodynamic Response to Scalp Interictal Epileptic Discharges the Onset Zone of Intracerebral Interictal Discharges?

Seizure: the clinical manifestation of an abnormal and excessive excitation and synchronization of a population of cortical

Entrainment of neuronal oscillations as a mechanism of attentional selection: intracranial human recordings

Electroencephalography

Current Literature In Clinical Science. Epilepsy Is Not Resolved. A Practical Clinical Definition of Epilepsy.

Transcription:

What Is a Seizure? Insights From Human Single-Neuron Recordings Current Literature In Clinical Science Single-Neuron Dynamics in Human Focal Epilepsy. Truccolo W, Donoghue JA, Hochberg LR, Eskandar EN, Madsen JR, Anderson WS, Brown EN, Halgren E, Cash SS. Nat Neurosci 2011;14:635 641. Epileptic seizures are traditionally characterized as the ultimate epression of monolithic, hypersynchronous neuronal activity arising from unbalanced runaway ecitation. Here we report the first eamination of spike train patterns in large ensembles of single neurons during seizures in persons with epilepsy. Contrary to the traditional view, neuronal spiking activity during seizure initiation and spread was highly heterogeneous, not hypersynchronous, suggesting comple interactions among different neuronal groups even at the spatial scale of small cortical patches. In contrast to earlier stages, seizure termination is a nearly homogenous phenomenon followed by an almost complete cessation of spiking across recorded neuronal ensembles. Notably, even neurons outside the region of seizure onset showed significant changes in activity minutes before the seizure. These findings suggest a revision of current thinking about seizure mechanisms and point to the possibility of seizure prevention based on spiking activity in neocortical neurons. Commentary Countless articles in the field of epilepsy begin with a statement such as: Epileptic seizures are caused by an imbalance of cerebral ecitation and inhibition. This seems to be a fundamental truth that is rarely questioned. The International League Against Epilepsy (ILAE) defines seizures as ecessive or synchronous neuronal activity (1). Truccolo et al. report on single-neuron activity in humans before, during, and after seizures by utilizing microelectrode recordings. They find that neuronal firing during seizures is much more heterogeneous than we assumed and can probably not be eplained based on a simple model of ecitation and inhibition. They implanted a 96-channel, tightly spaced microelectrode array in the neocorte of four patients (Neuroport, Blackrock Microsystems Inc., Salt Lake City, UT). The array was placed in an area that was likely to be resected in epilepsy surgery. It covered an area of 4 mm 2 and recorded at a depth of 1 mm. They investigated single-neuron firing during eight seizures by routine intracranial EEG prior to epilepsy surgery. They distinguished between the interictal, preictal, ictal, and postictal periods. They found that neuronal firing rate increased in 45.5% of all recorded neurons and decreased in 9.9%. Firing patterns were heterogeneous and followed no uniform pattern. Epilepsy Currents, Vol. 12, No. 4 (July/August) 2012 pp. 135 137 American Epilepsy Society What is the Beginning and the End? At the onset of the seizure, neuronal firing did not uniformly increase as epected in a purely ecitatory event. Heterogeneity of firing patterns increased at seizure onset, as reflected by a measure of variance, the Fano Factor (Figure 1). The authors suggest their findings argue against homogeneous runaway ecitation or widespread paroysmal depolarization as the primary mechanism underlying seizure initiation. However, firing patterns within patients seemed reproducible but neuronal recordings over prolonged periods of time are often too unstable to assess with certainty. The authors determine seizure onset as classically defined by intracranial electrocorticography via visual inspection (Figure 1) and show that in the preictal period, there is already a modulation in baseline firing as compared with the interictal state. Preictal firing rate changes are seen less frequently than ictal firing changes. Preictal firing could increase (11.8% of all neurons) or decrease (7.5% of neurons). These findings raise the question of whether there is a clear-cut seizure onset at all. Where does the preictal period end and the seizure start? Seizure onset may not be a single event in time but rather a continuum. The authors propose that the changes in preictal firing may ultimately lead to a viable seizure prediction algorithm. After decades of searching for a reliable seizure prediction algorithm, this may be another venue to pursue. Rightly, the authors caution that their data are too premature to be conclusive. More single-unit recordings of seizures are necessary to test whether this is a workable algorithm. We may have an easier time with determining the end of a seizure. The authors second major observation is the abrupt 135

What Is a Seizure? FIGURE (a) Locations of the microelectrode array in participant A (red square), and subdural ECoG electrodes OccS2 and GR50 in occipital and middle temporal cortices, respectively. (b) ECoG traces recorded at the locations shown in Figure 1a during seizure 1. The ECoG-based onset area was identified to be under the occipital electrode OccS2. Seizure onset is at time 0. The local field potential (LFP) recorded from a single channel in the microelectrode array and the corresponding spectrogram (in db) are shown below. (c) Neuronal spike raster plot including all recorded neurons (n = 149). Each hash mark represents the occurrence of an action potential. Neurons were ranked (vertical ais) in increasing order according of their mean spiking rate during the seizure. (This ranking number is unrelated to physical location.) Toward the end of the seizure, activity across the population became more homogeneous, until spiking was abruptly interrupted at seizure termination. With the eception of a few neurons, spiking in the recorded population remained suppressed for about 20 seconds. (d) The mean population rate, the percentage of active neurons, and the Fano factor (FF) of the spike counts across different neurons at a given time (determined in 1-second time bins). These were roughly stationary during the several minutes preceding the seizure onset. An increase in the FF, reflecting the heterogeneity in neuronal spiking, is observed around seizure onset and precedes an increase in the mean population rate. and widespread suppression of neuronal action potentials at seizure end. This is a very striking and consistent finding (Figure 1). There is neuronal silencing for 20 to 30 seconds after seizure termination. Seizure termination is thought to be a result of depolarization block owing to changing ion concentrations in the etracellular space (2). However, amplitude of action potentials did not decrease towards the end of the seizure as epected if depolarization block had occurred. The authors argue that depolarization block is not the primary local factor responsible for the observed marked suppression [of neuronal] spiking ; thus introducing another shift in conventional thinking about the generation and termination of seizures. Which Cells Do What? A consistent finding in the study is that neurons that are active interictally have increased firing rates during the ictal and preictal period. Neurons were divided into principal neurons and interneurons in one patient. Both types of cells showed modulation of neuronal firing during the ictal and preictal periods, but in the preictal period, interneurons seemed to be more involved. In models of seizures, interneurons and pyramidal cells seem to play very distinct roles (3). As it is difficult to record a sufficient number of interneurons and principal cells, the role of these distinct cells needs further investigation. At the termination of seizure, both interneurons and principal cells were silenced, and the authors hypothesize that subcortical structures may initiate seizure termination. This hypothesis is certainly not easy to confirm in humans. The Sampling Error in Human Neurophysiology Truccolo et al. investigated single neurons in four patients, and in only one patient the recordings were performed in what is traditionally called the seizure-onset zone. This patient had a reduction of seizures but was not seizure free after seizureonset zone resection. This raises the question of whether recordings performed in the seizure-onset zone would show different results and would be more homogeneous. Single units were only recorded over a small cortical area, so conclusions about greater seizure dynamics may be premature. Recording from a small cortical patch does not account for the spatial sampling error, which is inherent in human electrophysiology. It was also demonstrated that neuronal recordings can be 136

What Is a Seizure? quite diverse depending on the cortical depth of the microelectrode (4). This could mean that findings in layer III, which reflects the depth of the microelectrode array, could be different than in deeper layers of the corte such as layer IV or V. Another problem with single-unit recordings is certainly the problem of sheer numbers. Of the estimated many billion neurons of the human brain, recording from 241 cells represents a minuscule amount. Any conclusions could be over- or underestimating the effect. Single-Neuron Recordings Single-neuron recordings are technically difficult to perform. Artifact contamination and the limited number of neurons that show any firing pose significant hurdles. In addition, neuronal firing in humans is not consistent over time, so comparisons even within patients in recordings days apart are difficult to interpret. Newer technology on a submillimeter scale may allow for further insights into seizure dynamics, such as spiral waves during feline seizures, but may take time to implement in humans (5). Truccolo et al. certainly made a significant contribution to understanding human single-neuron dynamics during seizures. Their investigation during spikes showed similarly interesting results and also speaks to the heterogenicity of epileptiform activity (6). Certainly, further investigation of single units in humans will help us to further investigate the question What is a seizure? with the ultimate goal to find more effective treatments. by Barbara C. Jobst, MD References 1. Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Engel J Jr. Epileptic seizures and epilepsy: Definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 2005;46:470 472. 2. Bragin A, Penttonen M, Buzsaki G. Termination of epileptic afterdischarge in the hippocampus. J Neurosci 1997;17:2567 2579. 3. Ziburkus J, Cressman JR, Barreto E, Schiff SJ. Interneuron and pyramidal cell interplay during in vitro seizure-like events. J Neurophysiol 2006;95:3948 3954. 4. Ulbert I, Heit G, Madsen J, Karmos G, Halgren E. Laminar analysis of human neocortical interictal spike generation and propagation: Current source density and multiunit analysis in vivo. Epilepsia 2004;45(suppl):48 56. 5. Viventi J, Kim DH, Vigeland L, Frechette ES, Blanco JA, Kim YS, Avrin AE, Tiruvadi VR, Hwang SW, Vanleer AC, Wulsin DF, Davis K, Gelber CE, Palmer L, Van der Spiegel J, Wu J, Xiao J, Huang Y, Contreras D, Rogers JA, Litt B. Fleible, foldable, actively multipleed, high-density electrode array for mapping brain activity in vivo. Nat Neurosci 2011;14:1599 1605. 6. Keller CJ, Truccolo W, Gale JT, Eskandar E, Thesen T, Carlson C, Devinsky O, Kuzniecky R, Doyle WK, Madsen JR, Schomer DL, Mehta AD, Brown EN, Hochberg LR, Ulbert I, Halgren E, Cash SS. Heterogeneous neuronal firing patterns during interictal epileptiform discharges in the human corte. Brain 2010;133(pt 6):1668 1681. 137

American Epilepsy Society Epilepsy Currents Journal Disclosure of Potential Conflicts of Interest Section #1 Identifying Information 1. Today s Date: 06/13/11 2. First Name _Barbara Last Name Jobst Degree MD 3. Are you the Main Assigned Author? Yes No If no, enter your name as co-author Manuscript/Article Title: What is a Seizure? Insights from human single-neuron recordings 4. Journal Issue you are submitting for: 12.4 Section #2 The Work Under Consideration for Publication Did you or your institution at any time receive payment or services from a third party for any aspect of the submitted work (including but not limited to grants, data monitoring board, study design, manuscript preparation, statistical analysis, etc.)? Complete each row by checking No or providing the requested information. If you have more than one relationship just add rows to this table. Type No Money Paid to You Money to Your Institution* Name of Entity Comments** 1. Grant 2. Consulting fee or honorarium 3. Support for travel to meetings for the study or other purposes 4. Fees for participating in review activities such as data monitoring boards, statistical analysis, end point committees, and the like 5. Payment for writing or reviewing the manuscript 6. Provision of writing assistance, medicines, equipment, or administrative support. 7. Other * This means money that your institution received for your efforts on this study. ** Use this section to provide any needed eplanation.

Section #3 Relevant financial activities outside the submitted work. Place a check in the appropriate boes in the table to indicate whether you have financial relationships (regardless of amount of compensation) with entities as described in the instructions. Use one line for each entity; add as many lines as you need by clicking the Add bo. You should report relationships that were present during the 36 months prior to submission. Complete each row by checking No or providing the requested information. If you have more than one relationship just add rows to this table. Type of relationship (in alphabetical order) No Name of Entity Comments** Money Paid to You Money to Your Institution* 1. Board membership Lundbeck. Inc Advisory Committee and PI for vigabatrin for comple partial seizures in adults not for infants 2. Consultancy 3. Employment 4. Epert testimony 5. Grants/grants pending 6. Payment for lectures including service on speakers bureaus 7. Payment for manuscript preparation. 8. Patents (planned, pending or issued) 9. Royalties 10. Payment for development of educational presentations 11. Stock/stock options 12. Travel/accommodations/meeti ng epenses unrelated to activities listed.** 13. Other (err on the side of full disclosure) * This means money that your institution received for your efforts. ** For eample, if you report a consultancy above there is no need to report travel related to that consultancy on this line. Section #4 Other relationships Are there other relationships or activities that readers could perceive to have influenced, or that give the appearance of potentially influencing, what you wrote in the submitted work? No other relationships/conditions/circumstances that present a potential conflict of interest. Yes, the following relationships/conditions/circumstances are present: One of the coauthors (Rod Scott) has since then joined one of basic science research labs at Dartmouth on sabbatical, however he is not involved in clinical care. The study above had absolutely no relationship to research Page 2 10/3/2012

performed at Dartmouth. Thank you for your assistance. Epilepsy Currents Editorial Board Page 3 10/3/2012