I. Introduction. Unit One. PROKARYOTIC CELL (bacterium Escherichia coli) TYPICAL PLANT CELL ANIMAL CELL CELLS OF THE SIX KINGDOMS

Similar documents
Chapter 3: Cells 3-1

Chapter 3: Cytology. Cytology is the study of cells. Cells are the basic units of life. We are made up of trillions of cells.

Cytoskeleton. Provide shape and support for the cell. Other functions of the cytoskeleton. Nucleolus. Nucleus

Overview of the Cellular Basis of Life. Copyright 2009 Pearson Education, Inc., publishing as Benjamin Cummings

Hole s Human Anatomy and Physiology Tenth Edition. Chapter 3

Cells and Tissues 3PART A. PowerPoint Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College

LIFE IS CELLULAR. Cell Theory. Cells Are Small. Prokaryotic Cell 10/4/15. Chapter 7 Cell Structure and Function

The Study of Cells The diversity of the cells of the body The following figure shows the proportion of cell size of the variety of cells in the body

Cell Structure and Function

Chapter 3: Cells. I. Overview

What did Robert Hooke call the boxes that he observed in cork? Cells

Chapter Seven. A View of the Cell

Modern Cell Theory. Plasma Membrane. Generalized Cell Structures. Cellular Form and Function. Three principle parts of a cell

Chapter Seven. A View of the Cell

Cell Structure & Interactions

The Cell. Biology 105 Lecture 4 Reading: Chapter 3 (pages 47 62)

Chaffey College: Anatomy and Physiology Chapter 3: Cells - The Living Units

Cell Theory. Cells are the basic unit of life.

Title: Sep 10 7:59 PM (1 of 36) Ch 3 Cell Organelles and Transport

Cell Category? Prokaryote

CELL PARTS TYPICAL ANIMAL CELL

basic unit structure and function

Cells. Unit 3 Cell Structure and Function. Cells. Plasma Membrane

Cell and Cell Membrane Structure and Function

Organelles. copyright cmassengale 1

Ch. 3 CELLS AND TISSUES. Copyright 2010 Pearson Education, Inc.

1.3 - Cells. Chapter 3 - Cells

Notes Chapter 7 Cell Structure and Function Hooke looked at cork under a simple microscope and found tiny chambers he named cells.

Chapter 7. (7-1 and 7-2) A Tour of the Cell

Biology 12 Cell Structure and Function. Typical Animal Cell

Anatomy Chapter 2 - Cells

6 functions of membrane proteins integral & peripheral proteins Membrane Junctions

The Cell. BIOLOGY OF HUMANS Concepts, Applications, and Issues. Judith Goodenough Betty McGuire

Biology 218 Human Anatomy

CELLS.

Modern Cell Theory. Plasma Membrane. Generalized Cell Structures. Cellular Form and Function. Three principle parts of a cell

Cell Theory. Passive Transport

Structures in Cells. Lecture 5, EH1008: Biology for Public Health, Biomolecules.

Objectives. By the end of the lesson you should be able to: State the 2 types of cells Relate the structure to function for all the organelles

Basic Cell Info. Cell diameter range: 7.5 micrometers (RBC) 150 micrometers (ovum)

Structures in Cells. Cytoplasm. Lecture 5, EH1008: Biology for Public Health, Biomolecules

Ch 2: The Cell. Goals: Anatomy of a typical cell Cell Membrane Discussion of internal structure of a cell with emphasis on the various organelles

8/7/18. UNIT 2: Cells Chapter 3: Cell Structure and Function. I. Cell Theory (3.1) A. Early studies led to the development of the cell theory

Chapter 4 Organization of the Cell

Cell Structure and Function Cell Structure and function

Basrah University Pharmacy College. Human Biology. Cells: The Basic Units of Life Dr. Rawaa Salim Hameed

3UNIT. Photosynthesis and. Cellular Respiration. Unit PreQuiz? General Outcomes. Unit 3 Contents. Focussing Questions

A. Major parts 1. Nucleus 2. Cytoplasm a. Contain organelles (see below) 3. Plasma membrane (To be discussed in Cellular Transport Lecture)

Human Epithelial Cells

10/13/11. Cell Theory. Cell Structure

The Cell and Cellular transport

WELCOME TO BIOLOGY 11. Mr. Gandha

Lab 3: Cellular Structure and Function

Study Guide for Biology Chapter 5

A Tour of the Cell. reference: Chapter 6. Reference: Chapter 2

(d) are made mainly of lipids and of proteins that lie like thin sheets on the membrane surface

BIOLOGY 12 - CELL STRUCTURE & FUNCTION: Chapter Notes THE CELL THEORY

Cell. ~ 75 trillion make up adult Living cells ~ 60% water Carry materials for exchange

CH 03 CELLS: THE LIVING UNITS

History of the Cell. History of the Cell 10/24/2013. Unit 3: Cellular Structure and Function. Robert Hooke (1665) Robert Hooke (1665)

Lesson 1. Cell Theory - Statements - Exceptions. Categorizing Cells - Prokaryotes vs Eukaryotes

Cells. Prokaryotic vs. Eukaryotic Euakryotic cells are generally one to one hundred times bigger than prokaryotic cells

Cellular Structure and Function. Chapter 7

First discovered in 1665 since then every organism observed with microscopes shows cells

First to View Cells. copyright cmassengale

Cell Structure and Function

A TOUR OF THE CELL 10/1/2012

CELL PART OF THE DAY. Chapter 7: Cell Structure and Function

CELL (PLASMA) MEMBRANE

Chapter 7: Cell Structure and Function

Cytology. Cell Anatomy. Cell Theory - A good place to start! The generalized cell contains: Cell membrane Cytoplasm. Nucleus. Cytosol Organelles

CHAPTER 3 1/21/2016. Typical Bacteria Cell. The Cell

Chapter 3: The Living Units

THE CELL Cells: Part 1

Think About it. Prokaryotic v. Eukaryotic Cells. The Discovery of the Cell. The cell theory states: Exploring the Cell 10/10/2016

Chapter 4: Cell Membrane Structure and Function

(impermeable; freely permeable; selectively permeable)

Plant Cells. Chapter 3

STRUCTURE AND FUNCTION OF THE CELL

A Tour of the Cell. Ch. 7

BIOSC 041. v Today s lecture. v Today s lab. v Note- Monday is a holiday good time to do some reading!

Cell Structure and Function. Biology 12 Unit 1 Cell Structure and Function Inquiry into Life pages and 68-69

Peroxisomes. Endomembrane System. Vacuoles 9/25/15

Basic Structure of a Cell. copyright cmassengale

Cell Theory Vocabulary Flashcards

Cell Structure and Function

Unit 2: More on Matter & Energy in Ecosystems. Macromolecules to Organelles to Cells

CELL STRUCTURE AND FUNCTION. Chapter 7

Human height. Length of some nerve and muscle cells. Chicken egg. Frog egg. Most plant and animal cells Nucleus Most bacteria Mitochondrion

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Cell Theory Vocabulary Flashcards

BIOLOGY 111. CHAPTER 3: The Cell: The Fundamental Unit of Life

Cytosol the fluid Cytoplasm cell interior, everything outside the nucleus but within the cell membrane, includes the organelles, cytosol, and

Chapter 1 Plasma membranes

Chapter 02 Cytology-The Study of Cells

Biology Structures in Cells. 1.3 Structures in Cells

3. Endomembrane System: It s all integrated!

Bio10 Cell Structure SRJC

Outline. Membrane Structure and Function. Membrane Models Fluid-Mosaic. Chapter 5

Transcription:

3 CELLS OF THE SIX KINGDOMS ARCHAEA EUBACTERIA PROTISTA Karen Webb Smith Unit One FUNGI PLANTAE ANIMALIA PROKARYOTIC CELL (bacterium Escherichia coli) TYPICAL PLANT CELL nucleoid cytoplasm cell wall ANIMAL CELL I. Introduction A. The human body consists of 70 trillion cells. B. Human cells vary considerably in shape and size. *Cells are the smallest unit of life. *Cells are the basic unit of an organism C. The size of cells is measured in micrometers; most cells range from 7.5 to 140 micrometers. D. Differences in the shapes of cells make different functions in the body possible.

The next 2 slides show different cell shapes. This enables them to perform different functions. Note the differences in sizes: red blood cell - 7.5 um in diameter white blood cell 10-12 um human egg cell 140 um smooth muscle cell 20-500 um in length II. A Composite Cell A. A composite cell includes many known cell structures. B. A cell consists of three main parts the nucleus, the cytoplasm, and the cell membrane. C. Within the cytoplasm are specialized organelles that perform specific functions for the cell.

Cell (plasma) membrane - outer cell layer that protects the cell; acts as a selective barrier; composed of a lipid bilayer that has proteins and carbohydrates associated with it MEMBRANE - a thin sheet of lipids and proteins that surrounds the cell or its organelles, separating them from their surroundings plasma membrane - the cell s gatekeeper; allows specific substances in and out; passes chemical messages from the external environment to the cell s interior; it defines the limits of a cell, it regulates the cell s internal environment by selectively admitting and excreting specific molecules ***Membranes do have different parts that make up different structures.*** MEMBRANE STRUCTURE: 1. Lipids - determine the function of the membrane 2. Proteins - regulate the exchange of substances & communicate with the environment 3. Carbohydrates a small quantity (only) PLASMA MEMBRANE carbohydrate Lipid bilayer proteins

ALL CELLS ARE SURROUNDED BY H2O CYTOPLASM - lies inside the plasma membrane; houses the organelles of the cell Phospholipid bilayer: a thin, stable fluid film 1. Polar hydrophilic heads 2. A pair of nonpolar hydrophobic tails (Hydrophilic heads line the outer border & the hydrophobic tails provide the inside border.) *Most substances that contact a cell are H2O soluble (ex.) salts, amino acids, and sugars. They can t get past the bilayer hydrophobic layer. *Molecules like O2, CO2, & steroid hormones can pass through the nonpolar tails *selectively permeable - cell membrane controls the entrance and exit of substances *signal transduction the process in which cells can can receive and respond incoming messages *Phospholipid layer also contains cholesterol it makes the bilayer stronger, more flexible so cells do not become stiff or dry out;also helps make membrane impermeable PROTEINS in the Cell Membrane: (classified according to their shape) 1. fibrous proteins tightly coiled, embedded in the lipid bilayer, can extend outward, act as receptors that bind with specific kinds of molecules like hormones Carbohydrates stud the outer membrane and transmembrane proteins pass through the lipid bilayer. carbohydrate Outside of cell 2. integral proteins globular,embedded in interior, help small molecules to permeate cell membrane, form pores or channels to let water and ions pass 3. peripheral proteins on cell membrane surface, act as enzymes, are part of signal transduction 4. glycoproteins help cells recognize & bind to each other to form tissues; enables the immune system to distinguish between self & nonself cell surfaces cytosol inside of cell cholesterol phospholipid protein protein INTERCELLULAR JUNCTIONS: structures that connect cell membranes together 1. tight junction adjacent cell membranes fuse;form sheetlike layers, tight with no space; line digestive tract & tiny blood vessels 2. desmosome form rivets; adjacent skin cells 3. gap junction form channels, heart muscle & muscle of the digestive tract, allow substances to move between them CELL ADHESION MOLECULES (CAMs) guide cells on the move; (ex.) when white blood cell must travel to site of infection 1. selectin coats white blood cell, allows for traction 2. integrin grabs the white blood cell and directs it to the injury site

THE AMAZING CELL **Schleiden & Schwann - All living organisms are composed of individual, self-reproducing structures called CELLS. (Cell Theory) 70-75 trillion cells in the body EUKARYOTES: true nucleus 1. larger than prokaryotes (cells without a nucleus) 2. cytoskeleton - network of protein fibers that give shape and organization 3. plant cells differ from animal cells; each has organelles specific to it 4. ***cell shapes make various functions possible. *cytoplasm - clear, thick, jelly-like (water, salts, organic molecules, enzymes); fills space between cell membrane & nucleus; organelles suspended in it cytosol the clear liquid of the cytoplasm The cytoplasm also contains: *cytoskeleton - protein rods that provide cellular support for eukaryotic cells; 3 major classes of filaments: 1. microtubules - hollow, tube-like, are bundles in cytoplasm, give support to cell surface centrioles - microtubules that aid in cell division 2. intermediate filaments - help determine cell shape 3. microfilaments - help stabilize cell shape - the structures in the cytoplasm *endoplasmic reticulum membrane bound flattened sacs, canals, & vesicles, interconnected & communicate with cell membrane & nuclear envelope, can synthesize lipid & protein molecules for new cell membranes *rough - ribosomes on outside; can synthesize proteins that can move through the canals of the ER to the Golgi apparatus for further processing *smooth - embedded enzymes are site of lipid synthesis for membrane formation; enzymes can detoxify harmful drugs in liver cells

***synthesize proteins that move to Golgi apparatus **site of lipid synthesis *ribosomes some are scattered freely, some on endoplasmic reticulum & some in the nucleus, made of protein & RNA, provide structural support & enzymes required to link amino acids to produce proteins *consists of membranous sacs that continually receive vesicles from the endoplasmic reticulum & produce vesicles for secretion *Golgi apparatus composed of cisternae flat membranous sacs, assembles, stores & delivers proteins synthesized by the ribosomes associated with the rough ER *vesicles - membrane bound sacs that carry protein cargo (when it is needed) to Golgi apparatus (vesicle trafficking) *** vesicle trafficking *mitochondria -elongated, fluid-filled sacs. Contain DNA for encoding proteins & RNA, inner membrane folds to form cristae (partitions) that have embedded enzymes which control reactions that release energy from glucose, energy is transformed into ATP adenosine triphosphate, 1700 mitochondria (at least) in a typical cell *lysosomes -produced by Golgi complex, filled with digestive enzymes that can break down proteins, carbohydrates, & nucleic acids, also eat up waste materials of cell & old worn out cell parts. (lysosomes serve as the cell s digestive system)

MITOCHONDRIA: SITE OF AEROBIC METABOLISM They extract energy from food molecules and store it in the bonds of ATP. The inner membrane forms deep folds called cristae. *peroxisomes membranous sacs, found in liver & kidney cells, contain enzymes called peroxidases catalyze reactions to release H2O2, contain the enzyme catalase which decomposes hydrogen peroxide, the outer membrane contains about 40 enzymes that can catalyze: 1- bile acids for fat digestion 2- breakdown lipids 3- degrade rare biochemicals 4- detoxify alcohol ***When peroxisomal enzymes are not present, health is affected. *centrosome located in cytoplasm near Golgi apparatus & nucleus, consists of 2 hollow centrioles which are made of proteins microtubules, function in cellular reproduction, distribute chromosomes which carry DNA to new cells, also found in cilia & flagella *cilia & flagella consist of microtubules, projections *cilia - found on skin s outer epithelial cells, help propel mucus over lining of respiratory tract, cigarettes destroy cilia *flagellum forms tail of sperm cell and causes the sperm s swimming movements

*vesicles membranous sacs form when cell membrane folds inward and pinches off, Golgi apparatus and ER also form vesicles *microfilaments made of protein actin, can cause cellular movements (ex.) myofibrils in muscle cells cause cells to contract, can aid cell motility *microtubules composed of globular protein tubulin, form cytoskeleton and give shape to cell, can move organelles within the cell *cytoplasmic inclusions lifeless chemicals stored glycogen, lipids, and pigment (melanin) found in skin Organelles of the nucleus: 1. nuclear envelope - consists of 2 lipid bilayers (2 membranes) with nuclear pores so water, ions, ATP, & RNA can pass 2. nucleoplasm fluid inside nucleus THE CELL MANAGER Stores DNA - information needed to construct the cell & direct chemical reactions necessary to life & reproduction 3. nucleolus - dark stained (genes are clustered there) composed of RNA & proteins, site where ribosomes are produced (ribosomes synthesize proteins) 4. chromatin - composed of DNA wrapped around clusters of proteins & form long strands called chromosomes when cell division begins III. Movement Into and Out of the Cell) A. The cell membrane controls what passes through it. B. Mechanisms of movement across the membrane may be passive, requiring no energy from the cell (diffusion, facilitated diffusion, osmosis, and filtration) or active mechanisms, requiring energy (active transport, endocytosis, and exocytosis).

III. Movement Into and Out of the Cell PHYSICAL (PASSIVE) PROCESSES: C. Diffusion D. Facilitated Diffusion E. Osmosis F. Filtration PHYSIOLOGICAL (ACTIVE) MECHANISMS: G. Active Transport H. Endocytosis I. Exocytosis J.Transcytosis PHYSICAL/PASSIVE PROCESSES: 1. DIFFUSION - movement of molecules in a fluid down a concentration gradient (dye in a glass of water) net diffusion when diffusing particles move from regions of high concentrations to regions of low concentration concentration gradient the differences in concentrations of a substance causes this concentration - # of molecules in a given unit volume gradient - physical difference between 2 regions of space; concentration gradient - difference in concentration between one region & another Ex. sugar (solute) in a glass of water (solvent), net diffusion moves the sugar molecules down the concentration gradient until equilibrium is reached. Concentration Gradient: A raisin skin is like a semipermeable membrane raisins sugar molecules hot water raisin skin is like a semipermeable membrane water In a concentrated sugar solution the water in the swollen raisin flows outward. swollen raisins highly concentrated sugar solution Substances like O2, CO2, steroids, and anesthetics cross the cell membrane by net diffusion. H2O molecules are small enough that they also move into the cell by simple diffusion. 2. Facilitated Diffusion occurs with the help of proteins (protein channels & protein carrier molecules); is slower than simple diffusion, is important for large water-soluble molecules (glucose and amino acids) Factors that determine diffusion rate: number of carrier molecules limits facilitated diffusion, distance, concentration gradient, & temperature

Remember: *Various proteins are embedded within/attached to the surface of a membrane s phospholipid bilayer. They: 1. regulate movement of substances through the membrane 2. communicate with the environment 3. transport, receptor, and recognition proteins differentially permeable - plasma membranes allow some molecules to pass (permeate) through and prevent other molecules from passing (impermeable) *cell membranes are semi-permeable 3. OSMOSIS - movement of H2O across a selectively permeable membrane. (a special case of diffusion) The higher the concentration of dissolved substances, the lower concentration of H2O. (Because cells contain high concentrations of dissolved material surrounded by a cell membrane osmosis can cause water to move into or out of the cell.) osmotic pressure ability of osmosis to generate enough pressure to lift a volume of water The greater the concentration of nonpermeable solute particles in a solution, the lower the water concentration of that solution and the greater the osmotic pressure. Effects of osmotic pressure: isotonic - when equilibrium in a solution concentration is reached and movement of water stops (cells are normal size and shape) hypertonic solution - when a solution on one side of a membrane has a higher concentration of solute than the solution on another side (causes cells to shrink) hypotonic - solution with a lower concentration of dissolved material (osmotic pressure), (causes cells to swell) Red blood cells in iso, hyper, and hypo salt solution 4. FILTRATION process which forces molecules through membranes hydrostatic pressure created by the weight of water due to gravity Blood pressure forces water through the thin walls of blood capillaries. isotonic hypertonic hypotonic

ACTIVE TRANSPORT net movement of particles from a region of lower concentration to a region of higher concentration Active transport - cell uses energy of ATP to move substances against a concentration gradient; also uses carrier molecules (proteins) that have binding sites that combine with the particles needing to be transported across the cell membrane *sugars, amino acids, Na, K, Ca, & H ions are transported as passenger molecules by carrier proteins Passive transport - substances move into or out of cells down concentration gradients ENDOCYTOSIS process in which cells use energy to move particles across cell membrane by forming a vesicle from the cell membrane for transporting molecules (occurs without crossing cell membrane) 3 forms of endocytosis: 1. pinocytosis cell membrane invaginates, seals off, produces a small vesicle for liquids that detaches & moves into the cytoplasm 2. phagocytosis cell membrane takes in solids phagocytes cells that take in particles (dust) combine with lysosomes to get rid of vesicular contents 3. receptor-mediated endocytosis moves specific kinds of particles which bind to proteins into cells, cholesterol enters cells this way low-density lipoproteins (LDL) (made in the liver), enter cell by binding to protein apoprotein-b receptor-mediated endocytosis provides specificity, only cells with specific receptors can remove and process specific kinds of substances from their surroundings (cont. next slide)

EXOCYTOSIS reverse process(endocytosis) in which substance made inside cell are packaged in a vesicle that fuses with the cell membrane so can be released to outside TRANSCYTOSIS transports a particle from one side to another in a cell, substances can cross barriers made by tightly connected cells as a result, HIV virus uses this method

IV. The Cell Cycle A. A series of changes a cell undergoes from the time it is formed until it divides, or reproduces, is called the cell cycle. B. The cell cycle consists of interphase, mitosis, and cytokinesis. C. Interphase D. Mitosis E. Cytoplasmic Division F. Cell Differentiation CELL DIVISION A B C INTERPHASE period in which cells mature & prepare for division, a time of synthetic activity, & chromosomes are copied 3 phases: S phase = DNA replicates G1 and G2 = gap & growth periods A cut on the arm, the next day (A). The cut after 10 days (B) After 20 days, the cut is nearly healed (C). includes division of nucleus & cytoplasm, mitosis is continuous in its steps PROPHASE 2 centrioles move to sides of cell, nuclear envelope & nucleolus disappear, microtubules are formed that move centrioles apart METAPHASE chromosomes are aligned midway between centrioles ANAPHASE separated chromosomes move in opposite directions TELOPHASE (final stage) - chromosomes become threadlike, nuclear envelope surrounds each one, nucleoli appear with new nuclei CYTOPLASMIC DIVISION cell membrane constricts around middle and forms 2 new identical cells

CELL DIFFERENTIATION cells specialize into different cell types by genetic control All cells contain the same DNA information. differentiation the process by which cells develop different structures and specialized functions All cells contain a complete collection of information but only some of that information is accessed. V. Control of Cell Reproduction A. Most human cells divide up to 50 times in the laboratory, but can divide no further. B. A physical basis for this limitation in number of cell divisions appears to be the telomeres lost from the chromosome tips with each cell division. C. Proteins called kinases and cyclins appear to control the rate and timing of cell division. D. External controls of cell division include hormones, growth factors, and space availability (contact inhibition). E. Health Consequences of Loss of Cell Reproduction Control tumor caused by too frequent mitosis, benign can interfere with healthy tissue malignant can metastasize to other sites genes that cause cancer: oncogenes activate other genes to increase cell reproduction tumor suppressor genes genes that hold mitosis in check Good Health depends upon both the quality and quantity of the cells that comprise the human body.

Remember At the end of the chapter is a Chapter Summary that is your Study Guide for the Chapter 3 test.