The lipid profile of the pallid emperor moth Cirina forda Westwood (Lepidoptera: Saturniidae) caterpillar

Similar documents
Total Lipid, Triglyceride and Cholesterol Contents in Oecophylla Smaragdina, Fabricius Consumed in Upper Assam of North East India.

FATTY ACIDS COMPOSITION OF FISH, LINSEED AND RAPESEED OILS

ESSENTIAL FATTY ACIDS - RED CELL

SEASONAL CHANGES OF AVOCADO LIPIDS DURING FRUIT DEVELOPMENT AND STORAGE

INTEGRATIVE MEDICINE BLOOD - EDTA Result Range Units

Replacement Of Partially Hydrogenated Soybean Oil By Palm Oil In Margarine Without Unfavorable Effects On Serum Lipoproteins

Dietary fat supplies essential body tissue needs, both as an energy fuel and a structural material.

Coach on Call. Thank you for your interest in understanding the new Nutrition Facts labels. I hope you find this tip sheet helpful.

Facts on fats: The basics

Dietary Fats & Health

The most concentrated source of food energy. There are 9 calories in every gram of fat

Base ration components (forages and grains) will average about 3% fat. Use Supplemental Fats. DIETARY FAT AND MILK COMPOSITION Milk fat:

Lipids do not like water! (aka: hydrophobic) Generally insoluble

Dietary Reference Values: a Tool for Public Health

LIPIDOMIC PROFILE MEMBRANE Assessment of the lipidomic profile of the erthyrocyte membrane

Understanding Ingredients. Fats and Oils

General Biochemistry-1 BCH 202

FAT. Dr. Shamsul Azahari Zainal Badari Department of Resource Management and Consumer Studies Faculty of Human Ecology

Omega-3 fatty acids in clinical nutrition

Lipids Types, Food Sources, Functions

Fat & Human Health. Types of Fats & their effect on Human Health

Fats = Lipids Organic compounds- mostly carbon Found in animals & plants Don t dissolve well in H20 Dissolve in organic solvents: ether, chloroform,

DETERMINATION OF FATTY ACIDS IN EDIBLE OILS BY CAPILARY GC

Fatty Acid Methylation Kits

Lipid & Fat: Overview

Nutritional Content of Game Meat

Overview of the food science behind fatty acid technology

Lipid & Fat: Overview

You Bet Your Weight. Karah Mechlowitz

Key Statements. May 13, 2005

reticulo-endothelial cells in rat lymph nodes has been further investigated

FATTY ACID ANALYSIS OF PECAN IN LOW & HIGH INPUT ENVIRONMENTS. Tom Warren September 21, 2017

Free food = 20 calories per serving

Diet, nutrition and cardio vascular diseases. By Dr. Mona Mortada

Use natural fish oil with 2g daily dose? Yes Use other omega-3? Replicate test? Date of birth

1. FAT IS. The most CONCENTRATED source of food energy. There are 9 calories in every gram of fat. EAT SPARINGLY from the Fats & Oils Food Group

CHANGE IN THE FATTY ACID COMPOSITION OF AVOCADO FRUIT DURING ONTOGENY, COLD STORAGE AND RIPENING

The Lipids: Triglycerides, Phospholipids and Sterols

MAJOR FATTY ACID COMPOSITION OF COMMERCIAL SEMI-SWEET BISCUIT. Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia.

Forages, fat, fitness and flavour

Lipids are used to store and excess energy from extra carbohydrates in animals

Feeding Oilseeds To Beef Cattle

Cardiovascular risk potential of dietary saturated fats: an update and some implications

PALM OLEIN BLENDING FOR TEMPERATE MARKET L/O/G/O

FATS The Facts. compiled by the Nestlé Research Center

ANSC 619 PHYSIOLOGICAL CHEMISTRY OF LIVESTOCK SPECIES. Lipid Chemistry NO. OF CARBONS COMMON NAME GENEVA NAME STRUCTURE

UGRC 145: FOOD AND NUTRITION IN EVERYDAY LIFE

Importance of Nutrition

Fats and Lipids (Ans570)

Fatty Acids and Their Importance for Human Health

Composition and Structure of Oil and Fats and its Relationship to Health and Nutrition

Fatty Acids: The Basics

MCQS ON LIPIDS. Dr. RUCHIKA YADU

Chem 5 PAL Worksheet Lipids Smith text Chapter 15

The Council for Disability Awareness

UNIVERSITY OF CAMBRIDGE. Fatty acids and heart disease. Kay-Tee Khaw

NORDIC NATURALS NORDIC PET

A New Method for the Early Detection of Edible Oil Oxidation

Lipids. PBHL 211 Darine Hachem, MS, LD

The Effects of Lipids on the Body

Determination of Triglycerides and Waxes in Food Products Using Cool On-Column Injection and the MET- Biodiesel Capillary Column

: Overview of EFA metabolism

Fatty acids and cardiovascular health: current evidence and next steps

Base ration components (forages and grains) will average about 3% fat. Use Supplemental Fats. Fat Feeding. Production Responses to Supplemental Fat

Classification, functions and structure

Introduction to Lipid Chemistry

Comparative Study of Fat (Total Cholestrol and Fatty acids) Profile in Farm cultivated and river water fishes communities of Labeo rohita

A MODIFICATION OF GAS CHROMATOGRAPHY METHOD FOR THE DETERMINATION OF FATTY ACID COMPOSITION OF MILK FAT

OBJECTIVE. that carbohydrates, fats, and proteins play in your body.

Genetic Analysis of Fatty Acid Composition of Milk: Basis for Improvement of the Healthfulness of the U.S. Milk Supply

Feeding Feedlot Steers Fish Oil Differentially Enhances the Fatty Acid Composition of Muscle Tissue 1

Quick Guide to the Fixed Oils

Soybean Oil Facts: HIGH OLEIC and INCREASED OMEGA-3 SOYBEAN OILS

Animal fats. High quality fats for high quality feeds

UNRAVELLING & UNDERSTANDING OILS

HEÆRT HEÆLTH. Cardiovascular disease is

K.Premavalli, A.V.Omprakash, S.Ezhilvalavan, M.Babu, R.P.Senthil kumar and A.Natarajan. Poultry Research Station TANUVAS Chennai

Fats & Fatty Acids. Answer part 2: 810 Cal 9 Cal/g = 90 g of fat (see above: each gram of fat provies 9 Cal)

3.9 Carbohydrates. Provide building materials and energy storage. Are molecules that contain carbon, hydrogen and oxygen in a 1:2:1 ratio

BIOB111_CHBIO - Tutorial activity for Session 12

NUTRITIONAL QUALITY OF EGGS FROM HENS FED WITH DDGS

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

A Review on Causes and Risk Factors of Hyperlipidemia

Module 1 Nutrition Basics. Exam 1 B

Heart Health and Fats

Estimated mean cholestero intake. (mg/day) NHANES survey cycle

DAFA Strategisches Forum Lebensmittel von morgen Science & Fiction? Insekten als Lebensmittel und Futter

Compositional analyses of traditionally fire-treated and dried Mopane worms harvested in Northern and Central regions of Zambia

1. GENERAL INFORMATION 2. PHYSICAL-CHEMICAL CHARACTERISTICS* 1 CASA OILIO SPERLONGA Olive pomace oil technical file (rev

Fats Can Be Good For You!

July 13, Dear Ms. Davis:

ECUOMEGA THE BEST BALANCE

Experiment 12 Lipids. Structures of Common Fatty Acids Name Number of carbons

Maintain Cholesterol

13/09/2012. Dietary fatty acids. Triglyceride. Phospholipids:

OBESITY, WEIGHT MANAGEMENT AND DIETARY ANALYSIS IN MICRONESIAN KINGFISHERS (HALCYON CINNAMOMINA CINNAMOMINA).

Effects of dietary fats and vitamin E on the fatty acid composition of egg yolk of fresh and refrigerated table eggs

STUDY QUESTIONS, Chapter 5: The Lipids: Fats, Oils, Phospholipids and Sterols

REP15/FO Appendix III 1. PROPOSED DRAFT CODEX STANDARD FOR FISH OILS (at Step 5 of the Procedure)

The WorkCare Group, Inc. Content used with permission. StayWell is a registered trademark of The StayWell Company. All rights reserved.

Transcription:

BIOKEMISTRI 13: 37-41 (January 2003) Printed in Nigeria The lipid profile of the pallid emperor moth Cirina forda Westwood (Lepidoptera: Saturniidae) caterpillar Adeolu.T. ANDE Department of Biological Sciences,University of Ilorin, P.M.B. 1515, Ilorin. Nigeria. Received 17 November 2002 MS/No BKM/2002/026, 2003 Nigerian Society for Experimental Biology. All rights reserved. -------------------------------------------------------------------------------------------------------------------------------------------- Abstract The phospholipid, cholesterol and triglyceride levels, as well as, the fatty acid profile of the caterpillar of Cirina forda, a pallid emperor moth, known for its popularity as a food insect in Nigeria, were elucidated and compared with other popular sources of lipids. C. forda had 554.96mg/100g, 201.01mg/100g and 244.03mg/100g of phospholipid, cholesterol and triglyceride, respectively. It proved to be a rich source of unsaturates, surpassing other popular lipid sources as a source of polyunsaturates. It is rich in fatty acids such as Linolenic acid (33.84%), Linoleic acid (7.81%) and Oleic acid (12.93%). The possible nutritional implications of the consumption of C. forda caterpillar on the human nervous system are highlighted. Key words: lipid profile, Cirina forda, caterpillar --------------------------------------------------------------------------------------------------------------------- E-mail: andeolu@yahoo.com 37

INTRODUCTION The pallid emperor moth, Cirina forda Westwood (Lepidoptera: Saturniidae) caterpillar, is a lesser known but readily acceptable food insect in kwara state, Nigeria (Fasoranti and Ajiboye, 1986; Ande, 1991). Like other animal sources, such as fish, shellfishes and beef (Jay, 1978), C. forda has a desirably high crude protein content of 64.49% on dry weight basis (Ande, 2002), hence it is a reliable protein food source to peasants. Lipid quality varies widely in plants and animal foods (Swaminathan, 1986). In insects it ranged from 10% in Honeybees (Apis mellifera) to 58% in wax moth caterpillars (Galleria mellonella) (Dierenfield, 1993). Dunkel (1998) observed that insects have a good fatty acid content and low cholesterol level and concluded that they may be a better nutritional source to man. A commendable ether extract proportion of 21.45% (dry weight basis) was recorded in C. forda caterpillar (Ande, 2002), but its quality has not been reported. This dearth of information has been standing in the way of the utilization of this relatively rich lipid source to the benefit of man and the assessment of the extent to which the lipid component fits into the human dietary requirements. This study therefore attempts to determine the phospholipid, cholesterol and triglyceride levels, as well as, the fatty acid profile of the lipid available in C. forda caterpillar, and to compare these values with reports on other popular plant and animal lipid sources. MATERIALS AND METHODS Dried processed C. forda caterpillar procured from Ipata market, Ilorin, Nigeria were pulverized and sifted through a 20- mesh size sieve. 1.5g of each sample were weighed into a 25ml test tube and 20ml of Chloroform: Methanol (2:1v/v) was added (Folch et al., 1957). The extraction was done in three replicates. The tubes were corked and shaken intermittently and left overnight at room temperature. The extracts were purified using the method described by Amenta (1964). The phospholipid and cholesterol levels were quantified using the method of Abell et al. (1958).Triglyceride values were calculated by difference as: 100 (phospholipid + cholesterol). The fatty acid profile was determined using the Gas Liquid Chromatographic technique. The Capillary Gas Chromatograph (Schimadzu GC-14B) fitted with fused Silica Capillary Column (2.5m x 0.25m ID) with GREA integrator was used. The fatty acid quantity and quality were obtained by comparing their retention time with those of standards obtained from Nocheck preparation, USA. RESULTS AND DISCUSSION C. forda Westwood caterpillar had a phospholipid, cholesterol and triglyceride composition of 554.96mg/100g, 201.01mg/100g and 244.03mg/100g, respectively. The relatively higher phospholipid content is understandable, as this forms a basic constituent of cell membranes, and lipoproteins, which are abundant in animal samples (Swaminathan, 1989). The cholesterol content (201.01mg/100g) though higher than anticipated, is comparable to values in beef, pork, liver and butter, but lower than that of egg yolk, and it falls in the range described as good (Swaminathan, 1989). Ritter (1990) observed that sterol composition of insect tissues might change when they feed on a different diet. Thus the cholesterol level of C. forda may be 38

Table 1: The proportions of various fatty acid components of C. forda caterpillar as compared with other popular edible plant and animal sources Fatty acid component Animal sources Concentration (%) Plant sources *C. forda 1 Beef 1 Pork 1 Cow milk 2 Palm oil 3 G/nut oil 4 Melon oil Myristic (14:0) 0.66-14 10 2.0 - - Palmitic (16:0) 17.15 13 6 30 46.8 8.6 12.8 Palmitoleic (16:1) 0.32 - - 2 - - - Stearic (18:0) 27.42 65 10 10 4.8 3.7 16.8 Oleic (18:1) 12.93 20 43 30 34.6 61.8 18.1 Linoleic (18:2) 7.81-10 2 11.8 19.7 52.3 Linolenic (18:3) 33.84 - - - - - - Saturated acids 45.23 78.0 30.0 50.0 53.6 12.3 29.6 Unsaturated acids 54.90 20.0 53.0 34.0 46.4 81.5 70.4 Polyunsaturated acids 41.65-10.0-11.8 19.7 52.3 * Values are means of 6 replicates: 1 Alais and Linden (1999), 2 Umoh (1998), 3 Elegbede (1998), 4 Achinewhu (1998) modified by offering a special diet wherein 5-sterols are replaced with 7-, 5,7- or 0-sterols (Ritter, 1984). The encouragingly high triglyceride composition of C. forda may be the resultant effect of the need for the mature larva/prepupa to store energy for metabolism during the prolonged 9-month pupal duration, which is devoid of feeding activity (Ande, 1991). Although plant oils are generally richer in unsaturates (Alais and Linden, 1999), C. forda oil proved to be richer than all animal sources considered in Table 1, as well as, palm oil; a plant source. The relative proportion of unsaturates to saturates in C. forda is approximately 1:1. As a source of polyunsaturates (PUFA), C. forda surpasses all except soybean in which 85% has been reported (Elegbede, 1998) and melon oil (Table 1). Going by the rating suggested by Swaminathan (1989), C. forda is a rich source of Essential Fatty Acid (EFA), with 41.65% unsaturates. Of particular interest is Linolenic acid (33.84%), which is essential for the functioning of the retina and nerve formation and whose occurrence along with 39

Linoleic acid presupposes a balanced fatty acid diet. The considerably higher Linolenic acid value may however inhibit transformation of Linoleic acid into Arachidonic acid (Alais and Linden, 1999), another desirable EFA not found in C. forda. The occurrence of Oleic acid in C. forda may be an advantage, as it could be readily converted to either -Linolenic or - Linolenic or both which are EFAs. C. forda therefore is a good source of unsaturated fatty acids, particularly Linolenic acid. Thus it may be good in the diet of old people since the activity of 6desaturase enzyme falls with age. The oil can also find ready use in pharmaceutical and other industries apart from its food value. AKNOWLEDGEMENT The provision of a bench space and financial assistance by the Council for Scientific and Industrial Research (CSIR), India is acknowledged. REFERENCES Abell, L. L., B. B. Levy, B. M. Brodie and F. E. Kendall (1958) A simplified method for estimation of total cholesterol in the serum and determination of its specificity.. J. Biol. Chem. 195: 358 363. Achinewhu, S. C. (1998) Nuts and seeds. In: Nutritional quality of plant foods (Osagie, A. U. and Eka, O. U. eds). Post Harvest research unit, University of Benin, Benin City. 134-159. Alais, C. and G. Linden (1999) Food Biochemistry. Aspen Publishers, Inc. Maryland. 2nd Ed. 222pp. Amenta, J. S. (1964) A rapid chemical method for estimating lipids separated by thin layer chromatography. J. Lipid Res. 5: 270 272. Ande, A. T. (1991) Some aspects of the biology of Cirina forda Westwood (Lepidoptera: Saturniidae). PhD thesis, Department of Biological Sciences, University of Ilorin, Nigeria. 320pp. Ande, A. T. (2002) The influence of local harvesting and processing methods on some nutrient Cirina forda Westwood (Lepidoptera: Saturniidae) caterpillar in Nigeria. Nigerian Journal of Pure and Applied Science, 17: 1165 1168. Dierenfield, E. S. (1993) Insects and the feeding of zoo animals. The food insect Newsletter Vol. VI, No. 3. Dunkel, E. (1998) Insects and the Society; Course Notes. State University-Bozeman, 200pp Elegbede, J. A. (1998) Legumes. In: Nutritional quality of plant foods (Osagie, A. U. and Eka, O. U. eds). Post Harvest research unit, University of Benin, Benin City. Folch, J. L., M. Lees and G. H. S. Stanley (1957) A simple method for isolation and purification of total lipid from animal tissue. J. Biol. Chem. 226: 479-509. Fasoranti, J. O. and D. O. Ajiboye (1986) Some edible insects of Kwara State Nigeria. American Entomologist, 39(12): 113-116. Jay, J. M. (1978) Modern Food Microbiology. Litton Educational publishing Inc., D. van Nostrand Company, New York. 479pp Ritter, K. S. (1984) Metabolism of 0-, 5- and s7- sterols by larvae of Heliothis zea. Arch. Insect Biochem. Physiol. 1:218-296. Ritter, K. S. (1990) Cholesterol and insects. The food insect Newsletter, Vol. III, No. 1. Swaminathan, M. (1986) Principles of Nutrition and Dietetics. Bangalore printing and publishing Co. Ltd., Bangalore, India. 528pp. 40

Umoh, I. B. (1998) Commonly used fruits in Nigeria. In: Nutritional quality of plant foods (Osagie, A. U and Eka, O. U. eds). Post Harvest research unit, University of Benin, Benin City 41