Original Article INTRODUCTION. Ju-Young Hong 1, Keun-Young Park 1, Byung-Joon Kim 2, Won-Min Hwang 3, Dong-Ho Kim 1, Dong-Mee Lim 1

Similar documents
The Diabetes Epidemic in Korea

Characteristics of Body Composition and Muscle Strength of North Korean Refugees during South Korean Stay

Elevated Serum Levels of Adropin in Patients with Type 2 Diabetes Mellitus and its Association with

Relationship between Low Muscle Mass and Metabolic Syndrome in Elderly People with Normal Body Mass Index

Relation of Muscle Indices with Metabolic Parameters and C-Peptide in Type 2 Diabetes Mellitus

Abdominal volume index and conicity index in predicting metabolic abnormalities in young women of different socioeconomic class

Obesity and Insulin Resistance According to Age in Newly Diagnosed Type 2 Diabetes Patients in Korea

Changes and clinical significance of serum vaspin levels in patients with type 2 diabetes

The Indian subcontinent is undergoing epidemiological transition, as noncommunicable

The Metabolic Syndrome Update The Metabolic Syndrome Update. Global Cardiometabolic Risk

Impact of Physical Activity on Metabolic Change in Type 2 Diabetes Mellitus Patients

Cut-Off Values of Visceral Fat Area and Waist-to-Height Ratio: Diagnostic Criteria for Obesity-Related Disorders in Korean Children and Adolescents

Insulin Secretory Capacity and Insulin Resistance in Korean Type 2 Diabetes Mellitus Patients

Standardized Thyroid Cancer Mortality in Korea between 1985 and 2010

ANTHROPOMETRIC CHARACTERISTICS OF SOME LIMB AND BODY CIRCUMFERENCES IN MALES AND FEMALES WITH TYPE 2 DIABETES MELLITUS

A Study of relationship between frailty and physical performance in elderly women

Associations between Metabolic Syndrome and Inadequate Sleep Duration and Skipping Breakfast

Plasma fibrinogen level, BMI and lipid profile in type 2 diabetes mellitus with hypertension

2.5% of all deaths globally each year. 7th leading cause of death by % of people with diabetes live in low and middle income countries

Trends in the Diabetes Epidemic in Korea

Obesity and the Metabolic Syndrome in Developing Countries: Focus on South Asians

Relationship between Abdominal Fat Area Measured by Screening Abdominal Fat CT and Metabolic Syndrome

Sun-Young Kang, Gyeong Eun Lim, Yang Keun Kim, Hye Won Kim, Kayoung Lee, Tae-Jin Park, Jinseung Kim

Biomarkers and undiagnosed disease

The changes of subtypes in pediatric diabetes and their clinical and laboratory characteristics over the last 20 years

The Metabolic Syndrome Update The Metabolic Syndrome: Overview. Global Cardiometabolic Risk

Obesity, Insulin Resistance, Metabolic Syndrome, and the Natural History of Type 2 Diabetes

Soo LIM, MD, PHD Internal Medicine Seoul National University Bundang Hospital

A study of waist hip ratio in identifying cardiovascular risk factors at Government Dharmapuri College Hospital

Data from an epidemiologic analysis of

Original Article. 46 J Obes Metab Syndr 2018;27:46-52

Association of serum adipose triglyceride lipase levels with obesity and diabetes

Type 2 diabetes is associated with low muscle mass in older adults

OBESITY IN PRIMARY CARE

Relationship between Arterial Stiffness and the Risk of Coronary Artery Disease in Subjects with and without Metabolic Syndrome

Diabetes Day for Primary Care Clinicians Advances in Diabetes Care

Cardiovascular Complications of Diabetes

The Impact Of Adiposity And Insulin Resistance On Endothelial Function In Middle-Aged Subjects

Hypertension with Comorbidities Treatment of Metabolic Risk Factors in Children and Adolescents

Association of Current and Past Smoking with Metabolic Syndrome in Men

Metabolic Syndrome Update The Metabolic Syndrome: Overview. Global Cardiometabolic Risk

An Overview on Cardiovascular Risks Definitions by Using Survival Analysis Techniques-Tehran Lipid and Glucose Study: 13-Year Follow-Up Outcomes

Non alcoholic fatty liver disease and atherosclerosis Raul Santos, MD

Sarcopenic Obesity: Visceral Fat vs. Skeletal Muscle Syndrome. Seok Won Park, MD, PhD, DrPH Department of Internal Medicine

Internal and Emergency Medicine Official Journal of the Italian Society of Internal Medicine. ISSN Volume 8 Number 3

Original Article INTRODUCTION

Non-insulin treatment in Type 1 DM Sang Yong Kim

Treating Type 2 Diabetes by Treating Obesity. Vijaya Surampudi, MD, MS Assistant Professor of Medicine Center for Human Nutrition

Chief of Endocrinology East Orange General Hospital

METABOLIC SYNDROME IN REPRODUCTIVE FEMALES

3/25/2010. Age-adjusted incidence rates for coronary heart disease according to body mass index and waist circumference tertiles

Measures of Obesity and Cardiovascular Risk Among Men and Women

The Many Faces of T2DM in Long-term Care Facilities

Nutritional concerns of overweight / obese older persons. Gordon L Jensen, MD, PhD Dept Nutritional Sciences Penn State University

Established Risk Factors for Coronary Heart Disease (CHD)

Six-month Outcomes of Mobile Phone Application-based Self-management in a Patient with Type 2 Diabetes

Development of the Automated Diagnosis CT Screening System for Visceral Obesity

Association between arterial stiffness and cardiovascular risk factors in a pediatric population

Waist hip ratio in early pregnancy as a clinical indicator of serum lipid levels and predictor of pregnancy complications

Tolerability, effectiveness and predictive parameters for the therapeutic usefulness of exenatide in obese, Korean patients with type 2 diabetes

A: Epidemiology update. Evidence that LDL-C and CRP identify different high-risk groups

Metabolic Syndrome among Type-2 Diabetic Patients in Benghazi- Libya: A pilot study. Arab Medical University. Benghazi, Libya

ORIGINAL COMMUNICATION

Supplementary Online Content

300 Biomed Environ Sci, 2018; 31(4):

THE EFFECT OF VITAMIN-C THERAPY ON HYPERGLYCEMIA, HYPERLIPIDEMIA AND NON HIGH DENSITY LIPOPROTEIN LEVEL IN TYPE 2 DIABETES

Relationship of Body Mass Index, Waist Circumference and Cardiovascular Risk Factors in Chinese Adult 1

The Impact of High Intensity Interval Training On Lipid Profile, Inflammatory Markers and Anthropometric Parameters in Inactive Women

Multiple Factors Should Be Considered When Setting a Glycemic Goal

Prevalence of Sarcopenia Adjusted Body Mass Index in the Korean Woman Based on the Korean National Health and Nutritional Examination Surveys

Causes of Different Estimates of the Prevalence of Metabolic Syndrome in Korea

Dietary behaviors and body image recognition of college students according to the self-rated health condition

Advance Publication doi: /endocrj. EJ Endocrine Journal 2013

The Effect of Body Composition on Pulmonary Function

Welcome and Introduction

Changes in lipid indices and body composition one year after laparoscopic gastrectomy: a prospective study

Associations among Body Mass Index, Insulin Resistance, and Pancreatic ß-Cell Function in Korean Patients with New- Onset Type 2 Diabetes

1,5-Anhydro-D-Glucitol Could Reflect Hypoglycemia Risk in Patients with Type 2 Diabetes Receiving Insulin Therapy

SCIENTIFIC STUDY REPORT

Comparison of Age of Onset and Frequency of Diabetic Complications in the Very Elderly Patients with Type 2 Diabetes

Arterial Age and Shift Work

THE INFLUENCE OF WEIGHT LOSS ON ARTERIAL STIFFNESS IN OBESE AND OVERWEIGHT SUBJECTS

A Review of the Relationship between Dietary Glycemic Index and Glycemic Load and Type 2 Diabetes

Diabetes: Definition Pathophysiology Treatment Goals. By Scott Magee, MD, FACE

Sarcopenic Obesity in Elderly Korean Women: A Nationwide Cross-sectional Study

Module 2: Metabolic Syndrome & Sarcopenia. Lori Kennedy Inc & Beyond

Diabetes and Cardiovascular Risks in the Polycystic Ovary Syndrome

Unraveling the concealed and calculated cardiovascular risks in diabetes

Medical therapy advances London/Manchester RCP February/June 2016

Application of the Diabetes Algorithm to a Patient

Design of Bodyfat Measurement System based on the Android Platform

Targeted Nutrition Therapy Nutrition Masters Course

*Corresponding author: Mohammadreza Esmaelzadeh toloee, Assistance Professor of Exercise Physiology, Shomal University,

Energy Balance Equation

CORRELATION OF OBESITY, INSULIN RESISTANCE AND LIPID PROFILE IN WOMEN WITH PCOS IN KIMS HOSPITAL BANGALORE Shashikala H. Gowda 1, Mansi Dhingra 2

SYNOPSIS OF RESEARCH REPORT (PROTOCOL BC20779)

Abdominal fat distribution (subcutaneous vs. visceral abdominal fat compartments): correlation with gender, age, BMI and waist circumference

Internet diabetic patient management using a short messaging service automatically produced by a knowledge matrix system

Thermic Effects of Protein from Animal and Plant Sources on Postprandial Energy Expenditures in Healthy Female Adults

Age-adjusted plasma N-terminal pro-brain natriuretic peptide level in Kawasaki disease

Transcription:

Original Article Endocrinol Metab 2016;31:80-85 http://dx.doi.org/10.3803/enm.2016.31.1.80 pissn 2093-596X eissn 2093-5978 Effects of Short-Term Exenatide Treatment on Regional Fat Distribution, Glycated Hemoglobin Levels, and Aortic Pulse Wave Velocity of Obese Type 2 Diabetes Mellitus Patients Ju-Young Hong 1, Keun-Young Park 1, Byung-Joon Kim 2, Won-Min Hwang 3, Dong-Ho Kim 1, Dong-Mee Lim 1 1 Division of Endocrinology, Department of Internal Medicine, Konyang University College of Medicine, Daejeon; 2 Division of Endocrinology, Department of Internal Medicine, Gachon University Gil Medical Center, Gachon University College of Medicine, Incheon; 3 Division of Nephrology, Department of Internal Medicine, Konyang University College of Medicine, Daejeon, Korea Background: Most type 2 diabetes mellitus patients are obese and have obesity related vascular complications. Exenatide treatment is well known for both decreasing glycated hemoglobin levels and reduction in body weight. So, this study aimed to determine the effects of exenatide on body composition, glycated hemoglobin levels, and vascular stiffness in obese type 2 diabetes mellitus patients. Methods: For 1 month, 32 obese type 2 diabetes mellitus patients were administered 5 μg of exenatide twice daily. The dosage was then increased to 10 μg. Patients height, body weight, glycated hemoglobin levels, lipid profile, pulse wave velocity (PWV), body mass index, fat mass, and muscle mass were measured by using Inbody at baseline and after 3 months of treatment. Results: After 3 months of treatment, glycated hemoglobin levels decreased significantly (P=0.007). Triglyceride, total cholesterol, and low density lipoprotein levels decreased, while aspartate aminotransferase and alanine aminotransferase levels were no change. Body weight, and fat mass decreased significantly (P=0.002 and P=0.001, respectively), while interestingly, muscle mass did not decrease (P=0.289). In addition to, Waist-to-hip ratio and aortic PWV decreased significantly (P=0.006 and P=0.001, respectively). Conclusion: Effects of short term exenatide use in obese type 2 diabetes mellitus with cardiometabolic high risk patients not only reduced body weight without muscle mass loss, body fat mass, and glycated hemoglobin levels but also improved aortic PWV in accordance with waist to hip ratio. Keywords: Exenatide; Body composition; Pulse wave analysis INTRODUCTION Most of type 2 diabetes mellitus (T2DM) is characterized by Received: 13 May 2015, Revised: 29 June 2015, Accepted: 24 July 2015 Corresponding author: Dong-Mee Lim Division of Endocrinology, Department of Internal Medicine, Konyang University College of Medicine, 158 Gwanjeodong-ro, Seo-gu, Daejeon 35365, Korea Tel: +82-42-600-9169, Fax: +82-42-600-9090, E-mail: mdldm@hanmail.net obesity-related disease [1,2]. So, diet and physical activity might appear to be obvious aspects of the initial treatment for an obese T2DM patient to maintain properly weight and con- Copyright 2016 Korean Endocrine Society This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/ licenses/by-nc/4.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. 80 www.e-enm.org

Exenatide Treatment for Type 2 Diabetes trol of hyperglycemia, but, it is very difficult to achieve ideal body weight (BW) and maintain body composition in T2DM patients. Moreover, traditional blood glucose-lowering agents do not maintain adequate glycemic control in most T2DM patients. In addition, several classes of anti-hyperglycemic medications used in the treatment of T2DM are associated with weight gain and an increased risk of cardiovascular events [3]. Therefore, T2DM treatment without the side effect of weight gain is required because obesity in T2DM is a major concern, as its high incidence, prevalence, and associated risk for cardiovascular disease, cancer, dyslipidemia and endothelial cell dysfunction collectively constitute a serious global problem [4,5]. Studies of obese adults have shown sustained improvement in cardiovascular risk with the maintenance of 10% to 15% weight loss. To maintain a healthy BW, reduction of body fat, especially visceral fat, while maintaining muscle mass, helps to improve metabolic complications such as elevated blood glucose levels, high blood pressure, pro-inflammatory cytokines, dyslipidemia, and disturbed endothelial cell function. This is particularly important in obese T2DM patients because muscle mass is typically reduced, especially in the lower extremities, and ectopic fat and upper extremity fat mass are typically increased; this anthropometry induces insulin resistance, making the regulation of blood glucose levels challenging. Body composition, strength, and function are intimately associated with health, aging, and disease, and low muscle mass, increased fat mass, and poor muscle strength are robust predictors of disability and mortality in T2DM patients with sarcopenia. Exenatide, a glucagon-like peptide 1 (GLP-1) receptor agonist, has been shown to improve glycemic control in patients, without weight gain [6]; in addition, it is reported to affect blood pressure and have vascular protective effects. However, additional research is required to confirm an association between GLP-1 and weight loss or vascular protective effects. The effects on the vascular system can be assessed by measuring arterial stiffness using pulse wave velocity (PWV), which is an indicator of early stages of atherosclerosis and an independent predictor of cardiovascular risk in the general population [7]. The aim of the present study was to assess the effects of exenatide treatment on glycemic control, BW, PWV, and body composition in obese T2DM patients. METHODS The study was approved by the Institutional Review Board of Konyang University Medical Center. All participants provided written informed consent before participation. Patients and treatment protocol Patients with T2DM were recruited from the diabetes center at Konyang University Hospital. In the patients with a body mass index (BMI) >25 kg/m 2, participants treated with a combination of exenatide, metformin, and sulfonylurea. A 5 µg exendin-4 was initially administered for a month, 1 hour prior to a meal twice a day; then, the dosage was increased to 10 μg. Participants received subcutaneous injection for 12 weeks. Data collection Height (cm), BW (kg), and waist circumference (WC; cm) were measured, and BMI was calculated by dividing the weight (kg) by the height squared (m 2 ). WC was measured midway between the lowest rib and iliac crest while the subjects were standing. To determine the contributors to changes in BW and BMI, skeletal muscle mass (kg, %), and body fat mass (kg, %) were estimated using bioelectrical impedance values measured using the Inbody 720 (Biospace Inc., Seoul, Korea). Study subjects were instructed to stand upright and grasp the handles of the analyzer, putting both palms, thumbs, and the anterior and posterior aspects of the soles of the feet in contact with the electrodes. Impedance values were measured at frequencies of 1, 5, 20, 50, 500, and 1,000 Hz. Blood was drawn for metabolic and biochemical parameters after a 10- to 12-hour overnight fast. Fasting plasma glucose (FPG), total cholesterol (TC), triglycerides (TGs), and high density lipoprotein cholesterol were measured using a chemistry analyzer (Hitachi 747, Hitachi, Tokyo, Japan). Low density lipoprotein cholesterol (LDL-C) levels were calculated using the Friedewald formula. Glycated hemoglobin (HbA1c) was measured using high performance liquid chromatography. PWV, which is an indicator of arterial stiffness, was measured using a pulse wave unit (PP-1000) after participants rested in a supine position. Six signals collected from electrocardiography, phonocardiogram and pressure sensor straping at four different arterial sites (carotid, radial, femoral, dorsalis pedis). Patients waited about 10 seconds to collect pulse wave. A pressure pulse wave is measured using a pressure sensor in combination with a traveling wave and the reflected wave which passed along the artery wall. Brachial-ankle PWV and carotidfemoral PWV offer the simplest reproducible and noninvasive evaluation of regional stiffness. In this study, PWV was calculated as the mean of the left and right values: Copyright 2016 Korean Endocrine Society www.e-enm.org 81

Hong JY, et al. Calculated PWV: Carotid-femoral PWV=L(c-f)/T(c-f) Femoral-dorsalis PWV=L(f-d)/T(f-d) Carotid-radial PWV=L(cr)/T(c-r) (L, length; T, time) Table 1. Characteristics of Study Subjects with Type 2 Diabetes Mellitus at Baseline (n=32) Characteristic Mean±SD Age 49.0±11.2 Diabetes mellitus duration, yr 6.0±3.1 Height, cm 162.0±9.0 Weight, kg 87.3±14.4 Body mass index, kg/m² 32.9±4.7 Arm circumference, cm 37.4±2.6 Percent body fat, % 40.4±7.0 Waist-hip ratio 0.99±0.1 Skeletal muscle mass, kg 28.5±6.4 Body fat mass, kg 35.6±8.2 Glycated hemoglobin, % 8.7±1.7 Fasting blood glucose, mg/dl 153±47.8 Statistical analysis Clinical and anthropometric data are expressed as mean±sd. Statistical analysis was conducted using R 3.2, and P<0.05 was considered statistically significant. Values are reported as mean±sd and were compared between baseline and 3 months using paired t tests. Values are reported as a relationship between improvement of PWV and weight and waist-hip ratio (WHR) changes compared between baseline and 3 months using Spearman rho. RESULTS Baseline characteristics The demographic characteristics and baseline metabolic parameters of the 32 study subjects (mean age, 48.8 years) are shown in Table 1. Effects of three months of exenatide treatment on blood glucose and chemistry After 3 months of exenatide treatment, the HbA1c levels significantly decreased from 8.7% at baseline to 7.8% (P<0.007), while FPG levels did not significantly change (P=0.8) (Table 2). There were also no significant reductions in the levels of the liver injury biomarkers aspartate aminotransferase and alanine aminotransferase. While there were improvements in TC, TG, and LDL-C levels following exenatide treatment, they were not significant. In addition, there were no significant changes in C- peptide levels or homeostatic model assessment insulin resistance values (data not shown) following treatment. After 3 months of exenatide treatment, mean BW significantly decreased by 0.9 kg (P<0.002). Similarly, there was a significant decrease in BMI from 32.9±4.5 to 32.4±4.2 kg/m 2 (P=0.002). Effects of 3 months of exenatide treatment on regional fat distribution Following treatment, total fat percentage and body fat mass decreased significantly, from 40.4%±7.0% to 38.2%±6.9% (P=0.002) and from 35.8±8.2 to 33.5±8.3 kg (P=0.001), re- Table 2. Changes in Glycemic Values, Body Weight, Chemistry Findings and Body Mass Index Following 3 Months of Exenatide Treatment Variable Pre Post P value a Body mass index, kg/m² 32.9±4.5 32.4±4.2 0.020 Weight, kg 87.4±14.4 86.4±13.9 0.002 Glycated hemoglobin, % 8.7±1.7 7.8±1.5 0.007 Fasting blood glucose, mg/dl 153.5±48.0 165.2±71.4 0.829 Low density lipoprotein, ng/ml 105.2±33.5 100.2±27.6 0.353 Triglyceride, mg/dl 200.6±113.8 172.9±69.4 0.253 Total cholesterol, mg/dl 168.1±46.0 155.2±34.5 0.053 Aspartate aminotransferase, U/L 30.8±18.4 32.5±21.4 0.178 Alanine aminotransferase, U/L 36.5±21.1 39.0±36.7 0.274 Values are expressed as mean±sd. a Compared between baseline and 3 months using paired t tests. 82 www.e-enm.org Copyright 2016 Korean Endocrine Society

Exenatide Treatment for Type 2 Diabetes Table 3. Changes in Body Composition and Endothelial Cell Function Following 3 Months of Exenatide Treatment Variable Pre Post P value a Body fat percentage, % 40.4±7.0 38.2±6.9 0.002 Body muscle mass, kg 28.5±6.4 29.75±5.8 0.289 Body fat mass, kg 35.6±8.2 33.5±8.3 0.001 Abdominal circumference, cm 37.4±2.6 36.6±2.8 0.008 Arm muscle circumference, cm 31.0±2.0 30.5±2.0 0.087 Waist-hip ratio 0.997±0.1 0.986±0.1 0.006 PWV aorta, m/sec 7.2±2.2 5.1±0.1 0.001 PWV arm, m/sec 7.43±1.9 7.31±1.2 0.530 PWV leg, m/sec 6.36±0.9 6.25±0.4 0.250 Values are expressed as mean±sd. PWV, pulse wave velocity. a Compared between baseline and 3 months using paired t tests. Table 4. Improvement of PVW according to Weight and WHR Changes Weight over 3 months WHR over 3 months Age 45 Aorta PWV 0.34 0.93 a Age 45 > Aorta PWV 0.04 0.05 Correlation coefficient is reported as a relationship between improvement of PWV and weight and WHR changes compared between baseline and 3 months using Spearman rho. PWV, pulse wave velocity; WHR, waist-hip ratio. a P<0.01. spectively. The mean WHR decreased significantly from 0.997±0.061 to 0.986±0.059 (P=0.006). Body muscle mass and arm muscle circumference did not change significantly (Table 3). Effects of 3 months of exenatide treatment on vascular variables In the study subjects that did not have vascular disease, aortic PWV significantly improved from 7.2±2.2 m/sec at baseline to 5.1±0.1 m/sec after treatment (P=0.001). There was no significant improvement in PWV of the extremities (Table 3). Improvement of arterial stiffness according to weight and WHR changes The use of exenatide results in BW reduction and improvement of arterial stiffness. So, we investigate whether the improvement of arterial stiffness was correlated with simply weight loss or loss of visceral fat which was associated with cardiometabolic risk factor. We used Spearman s rho to assess the improvement of vascular variable according to weight and WHR changes. The patients with under 45 years of age showed only significant enhancement of aortic PWV according to WHR (Table 4). DISCUSSION This study demonstrated that 3 months of exenatide treatment significantly improved glycemic control, BW reduction, and body fat mass, without losing body muscle mass. The exenatide treatment might have resulted in reduced food intake through anorexigenic effects that were mediated by the GLP-1 receptor, which is widely distributed in the brain, gastrointestinal tract, and pancreas [8]. Sarcopenic obesity is defined by increased fat mass and reduced muscle mass. Skeletal muscle makes up a large percentage of body mass and plays an important role in the maintenance of systemic glucose metabolism. However, adipose tissue expansion is associated with ectopic lipid accumulation in skeletal muscle, resulting in the development of metabolic syndrome. Thus, loss of muscle may result in the reduction of available insulin-responsive target tissues, promoting insulin resistance and metabolic syndrome. An inverse association between thigh muscle mass and metabolic syndrome [9] as well as a close association between metabolic syndrome and the ratio of lower appendicular skeletal muscle mass to weight [10] have been shown. Furthermore, in the third National Health and Nutrition Examination Survey, there was an association between the highest quintile of the skeletal muscle index (ratio of total skeletal muscle mass to total BW) with improved insu- Copyright 2016 Korean Endocrine Society www.e-enm.org 83

Hong JY, et al. lin sensitivity and a lower risk of transitional or overt diabetes [11]. The present study showed improvements in glycemic control without a reduction on skeletal muscle mass with exenatide treatment. Notably, the loss of body fat is attributed to a viseral fat, but not peripheral subcutaneous fat. T2DM patients have twice the risk of vascular disease of healthy individuals [12]. Current treatment recommendations for T2DM include both glycemic control and treatment of cardiometabolic comorbidities. In addition, recent study [6] showed that patients treated with exenatide over 52 weeks had improvements in TC levels, LDL levels, and blood pressure. In contrast, we did not observe significant improvements in conventional cardiovascular risk factors, although reductions in TC, LDL, and TG were observed. However, significant improvements in aortic PWV, but not PWV of the extremities, were observed. We speculated that the difference between aortic PWV and extremities PWV was as to visceral fat reduction. The aortic PWV is a predictor of cardiovascular events, with the pooled relative risks for total cardiovascular events and cardiovascular mortality significantly increased in patients with high aortic PWV when compared to patients with low aortic PWV [13]. A line of studies have consistently documented the increased risk of aortic arterial stiffness due to abdominal obesity [14]. Using dual-energy X-ray absorptiometry or computed tomography, several cross sectional studies have explored the more relationship between visceral fat and elevated arterial stiffness than other peripheral fat [15]. In addition to, WHR also showed significantly positive relationship with the risk of PWV as well as WC. Several reasons may account for this finding. Although the WC has been widely accepted indicator for abdominal obesity in western countries, whether the predictive power of WC may be extrapolated into Asian countries still remains controversial [16]. Instead, several population studies in Asian countries such as Japan and Iran have advocated WHR rather than WC for determining abdominal obesity. According to Health Professionals Study, a 3-year prospective study among 29,122 US men aged 40 to 75 years, WHR was more strongly associated with coronary heart disease among those aged 65 and older [17], whereas WC was more closely related with cardiovascular disease risk factors mainly among younger white populations [18]. This study had certain limitations. First, the study sample was relatively small. Second, the study period was short, limiting the evaluation of the side effects of exenatide and the effects of other factors that might affect the outcomes, such as dietary habits, exercise, and additional medical therapy. In addition, the lack of a control group prevented us from distinguishing the effects of exenatide from confounding factors such as lifestyle modification. Thus, further studies are required for the evaluation of the long-term effects of exenatide. In summary, we demonstrated that subcutaneous administration of exenatide for 3 months resulted in improved glycemic control, improved PWV, and reduced BW and body fat, especially visceral fat mass, without losing body muscle mass in patients with T2DM. Therefore, exenatide may be a therapeutic option for obese T2DM patients who also require a reduction in BW and fat without a reduction in muscle, while improving cardiometabolic characteristics. CONFLICTS OF INTEREST No potential conflict of interest relevant to this article was reported. ACKNOWLEDGMENTS This work was supported in part by the Konyang University Myunggok Research Fund of 2012. ORCID Ju-Young Hong http://orcid.org/0000-0001-8876-9890 Dong-Mee Lim http://orcid.org/0000-0001-9073-0872 REFERENCES 1. Mokdad AH, Ford ES, Bowman BA, Nelson DE, Engelgau MM, Vinicor F, et al. Diabetes trends in the U.S.: 1990-1998. Diabetes Care 2000;23:1278-83. 2. Mokdad AH, Ford ES, Bowman BA, Dietz WH, Vinicor F, Bales VS, et al. Prevalence of obesity, diabetes, and obesity-related health risk factors, 2001. JAMA 2003;289:76-9. 3. Turner RC, Cull CA, Frighi V, Holman RR. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). UK Prospective Diabetes Study (UKPDS) Group. JAMA 1999;281:2005-12. 4. Bray GA. Medical consequences of obesity. J Clin Endocrinol Metab 2004;89:2583-9. 5. Yki-Jarvinen H, Westerbacka J. The fatty liver and insulin resistance. Curr Mol Med 2005;5:287-95. 84 www.e-enm.org Copyright 2016 Korean Endocrine Society

Exenatide Treatment for Type 2 Diabetes 6. Bergenstal RM, Li Y, Porter TK, Weaver C, Han J. Exenatide once weekly improved glycaemic control, cardiometabolic risk factors and a composite index of an HbA1c < 7%, without weight gain or hypoglycaemia, over 52 weeks. Diabetes Obes Metab 2013;15:264-71. 7. Baumgartner RN, Chumlea WC, Roche AF. Bioelectric impedance phase angle and body composition. Am J Clin Nutr 1988;48:16-23. 8. Yu JH, Kim MS. Molecular mechanisms of appetite regulation. Diabetes Metab J 2012;36:391-8. 9. Londono FJ, Calderon JC, Gallo J. Association between thigh muscle development and the metabolic syndrome in adults. Ann Nutr Metab 2012;61:41-6. 10. Lim S, Kim JH, Yoon JW, Kang SM, Choi SH, Park YJ, et al. Sarcopenic obesity: prevalence and association with metabolic syndrome in the Korean Longitudinal Study on Health and Aging (KLoSHA). Diabetes Care 2010;33:1652-4. 11. Srikanthan P, Karlamangla AS. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third National Health and Nutrition Examination Survey. J Clin Endocrinol Metab 2011;96:2898-903. 12. Buse JB, Ginsberg HN, Bakris GL, Clark NG, Costa F, Eckel R, et al. Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association. Diabetes Care 2007;30:162-72. 13. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 2010;55:1318-27. 14. Ko MJ, Kim MK, Shin J, Choi BY. Relations of pulse wave velocity to waist circumference independent of hip circumference. Epidemiol Health 2010;32:e2010004. 15. Snijder MB, Henry RM, Visser M, Dekker JM, Seidell JC, Ferreira I, et al. Regional body composition as a determinant of arterial stiffness in the elderly: the Hoorn Study. J Hypertens 2004;22:2339-47. 16. Esmaillzadeh A, Mirmiran P, Azizi F. Waist-to-hip ratio is a better screening measure for cardiovascular risk factors than other anthropometric indicators in Tehranian adult men. Int J Obes Relat Metab Disord 2004;28:1325-32. 17. Rimm EB, Stampfer MJ, Giovannucci E, Ascherio A, Spiegelman D, Colditz GA, et al. Body size and fat distribution as predictors of coronary heart disease among middle-aged and older US men. Am J Epidemiol 1995;141:1117-27. 18. Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference, and health risk: evidence in support of current National Institutes of Health guidelines. Arch Intern Med 2002;162:2074-9. Copyright 2016 Korean Endocrine Society www.e-enm.org 85