Response of Zinc Fertilization to Wheat on Yield, Quality, Nutrients Uptake and Soil Fertility Grown In a Zinc Deficient Soil Keram, Komal Singh

Similar documents
EFFECT OF ZINC FERTILIZATION ON GROWTH, YIELD AND QUALITY OF WHEAT GROWN UNDER AGRO-CLIMATIC CONDITION OF KYMORE PLATEAU OF MADHYA PRADESH, INDIA

Effect of N, Zn and Fe application on N, P, K content and total uptake in parmal rice (Oryza sativa L.)

Response of Okra (Abelmoschus esculentus L.) to Various Levels of Nitrogen and Potassium at Different Crop Growth Stages

Influence of High-P-Chelated Micronutrients on Nutrient Uptake of Chickpea Under Vertisols

Effect of Micronutrients Application on Availability of Zn, Fe and B of Sunflower (Helianthus annus L.) in Inceptisol

Effect of High-P-Chelated Micronutrient Foliar Spray on Yield and Quality of Chickpea

Assessment of Secondary and Micro Nutrient Status under Long-Term Fertilizer Experiment on Vertisol

Yield and quality of cumin as influenced by FYM enriched micronutrients

International Journal of Science, Environment and Technology, Vol. 5, No 5, 2016,

UPTAKE OF NUTRIENTS BY WHEAT AS INFLUENCED BY LONG- TERM PHOSPHORUS FERTILIZATION

Effect of nitrogen, zinc and boron on growth, yield attributes and yield of wheat under mid hill conditions of Himachal Pradesh

ANALYSIS OF RESPONSE OF DIFFERENT CHELATED ZINC SOURCES ON MICRO AND MACRO NUTRIENTS UPTAKE IN MOONG PLANT AND SEED (VIGNA RADIATA)

RESPONSE OF GROUNDNUT (ARACHIS HYPOGAEA L.) TO BALANCED FERTILIZATION UNDER SUB-HUMID SOUTHERN PLAIN ZONE OF RAJASTHAN

INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCES Volume 3, No 1, Copyright by the authors - Licensee IPA- Under Creative Commons license 3.

IM PACT OF DIF FER ENT LEV ELS OF ZN ON YIELD, QUAL ITY AND SOIL PROP ER - TIES OF SOY BEAN IN A VERTISOL

RESPONSE OF BIO FERTILIZERS IN CONJUNCTION WITH INORGANIC FERTILIZERS IN KHARIF PADDY

STUDIES ON IMPACT OF UREA, THIOUREA AND ZINC APPLICATION ON GROWTH YIELD QUALITY AND ECONOMIC OF WHEAT (Triticum aestivum L.)

EFFECTS OF ZINC AND BORON ON YIELD, NUTRIENT UPTAKE AND ECONOMICS OF MUSTARD (BRASSICA JUNCEA L.) IN MUSTARD-MAIZE CROPPING SEQUENCE

Interaction Effect of Phosphorus and Sulphur on Yield and Quality of Soybean in a Vertisol

Distribution of Available Macro and Micronutrients in Soils of Dewas District of Madhya Pradesh

Response of Nitrogen, Phosphorus and Potassium Levels on Linseed (Linum usitatissimum L.)

Ni and N sources (Urea and ammonium sulphate) affecting growth, yield and quality in maize plant (Zea mays)

The Effect of Zinc Fertilization on Rice Productivity and Economics in Acid Alfisol of Jharkhand, India

Role of Potassium and Sulphur on the Growth, Yield and Oil Content of Soybean (Glycine max L.)

LIST OF ABBREVIATIONS USED

How to Develop a Balanced Program for Pecan and Chili. Robert R Smith

Effect of Fly Ash application on Microbial Population in Acid Soil

5. Plant Physiology/Chemistry Section

Effect of Phosphorous and Zinc Fertilisation on the Productivity of Transplanted Aromatic Rice

Journal of Applied and Natural Science 6 (2): (2014)

Nitrophoska. Cereals, fodder beet, horticulture, maize and vegetables. Precise nutrition for superior plant performance

Interpreting Soils Report. Beyond N P K

Effect of Nutrient Combinations on Plant Pigments and Yield of Bt Cotton Under Rainfed Condition

Effect of the graded levels of potassium with recommended NP on soil properties under maize cultivation in alfisols of Mandya, Karnataka

Effect of Different Levels of Zinc and Sulphur on Yield and Yield Attributing Characters of Indian Mustard

Kinetics of decomposition of wheat straw and mineralisation of micronutrients in zinc-treated rice field

Effect of different application method of humic acid on nodulation and seed yield of soybean

Nutrient Use Strategies for Coconut Based Cropping System in Onattukara Sandy Tract, Kerala

Assessment of Soil Properties of Central Farm - B - Block of MKV, Parbhani

The 1 th International and The 4 th National Congress on Recycling of Organic Waste in Agriculture April 2012 in Isfahan, Iran

Enhancing productivity and quality of fodder maize through soil and foliar zinc nutrition

EFFECT OF SOIL AND FOLIAR APPLICATIONS OF ZINC AND IRON ON THE YIELD AND QUALITY OF ONION (Allium cepa L.) Abstract

Quality and yield of Indian mustard genotypes as influenced by different fertility levels

Effect of Iron Application and Rhizobium Inoculation on Uptake of Nutrients in Grain and Stover of Chickpea (Cicer arietinum L.)

Evaluation of Quality and Nutrient Status of Enriched Compost

The effect of nano-micronutrients seed priming on germinability of Kabuli chickpea

Dynamics of potassium fractions in a calcareous Vertic Haplustepts under AICRP-LTFE soils

Effect of Different Micronutrient Treatments on Rice (Oriza sativa L.) Growth and Yield under Saline Soil Conditions

Effect of FYM, biofertilizers and zinc on phosphorus uptake by maize

Effect of Boron and Sulphur Application on Plant Growth and Yield Attributes of Potato (Solanum tuberosum L.)

Distribution of Micronutrients in Soil of Garhi Tehsil, Banswara District of Rajasthan, India

Total zinc was determined by digesting the soil ZnSO 4

ISSN International Journal of Advanced Research (2013), Volume 1, Issue 10, RESEARCH ARTICLE

Effect of nitrogen, phosphorus and potassium on growth and yield of fenugreek (Trigonella foenum-graecum L.)

Estimating Micronutrient Status and their Relationship with Other Soil Properties of Rewa District in Fiji

Potassium and Phosphorus as Plant Nutrients. Secondary Nutrients and Micronutrients. Potassium is required in large amounts by many crops

HIND AGRICULTURAL RESEARCH AND TRAINING INSTITUTE

COMPARISON THE EFFECTS OF SPRAYING DIFFERENT AMOUNTS OF NANO ZINCOXIDE AND ZINC OXIDE ON, WHEAT

Variability in Grain Physico-Chemical Composition in Different Sorghum [Sorghum bicolor (L.) Moench] Genotypes

Alleviation of root zone constraints through foliar application of zinc and boron for grapes

Response of Zinc and Sulphur on Growth and Yield of Rice (Oryza sativa L.) under Sodic Soil

EFFECT OF COPPER LEVELS ON COPPER CONTENT IN SOIL NUTRIENT UPTAKE AND YIELD OF SOYBEAN (GLYCINE MAX) VARIETIES

Plant Food. Nitrogen (N)

Influence of Different Planting Material and Major Nutrient Application on Yield Attributes of Turmeric (Curcuma longa L.)

Role of Chelated Micronutrient and their Salts for Improving Crop Production of Wheat (Triticum aestivum L.)

Importance of fertigation scheduling

Understanding a Soil Report

Eeffect of biofertilizers and foliar application of organic acids on yield, nutrient uptake and soil microbial activity in soybean

Nutrition of Horticultural Crops. Monica Ozores-Hampton University of Florida/IFAS/SWFREC Spring 2013

Maize (Zea mays L.) is one of the third most important

AVAILABLE Cd CONTENT OF SALT AFFECTED AND NORMAL SOILS OF HALASTRA KALOHORI AREA

Int.J.Curr.Microbiol.App.Sci (2017) 6(5):

ZINC AS A PLANT NUTRITIONAL PROBLEM IN THE EASTERN CROATIA

Department of Agronomy, N.D. University of Agriculture and Technology, Faizabad (Uttar Pradesh), India. 2

The importance of potassium to tree crops and nuts especially pistachio. Dr Jianlu Zhang

Varietal influence on the nutrient contents and their uptake by wheat

Nutrition. Grain Legume Handbook

Division of Agronomy, Indian Agricultural Research Institute, New Delhi, India

Micronutrient Management. Dorivar Ruiz Diaz Soil Fertility and Nutrient Management

REMEMBER as we go through this exercise: Science is the art of making simple things complicated!

Soil fertility status and nutrient recommendations based on soil analysis of Jaisalmer district of western Rajasthan

Soil Composition. Air

Third International Scientific Symposium "Agrosym Jahorina 2012"

Micronutrient status in soils of Shirpur tehsil of Dhule district (M.S.) India

Evaluation of AB - DTPA Extractant for Multinutrients Extraction in Soils

Fertility management in soybean

Studies on the effect of Zinc levels, and methods of boron application on growth, yield and protein content of Wheat (Triticum aestivum L.

MARGAM SUNITHA, KANWAR L. SAHRAWAT, AND SUHAS P. WANI. Introduction

EconovaPlus Fertiliser

FERTIGATION 24 FERTIGATION WITH DRIPPERS

Principles of Orchard Nutrition. Kevin Manning and Ross Wilson AgFirst

Rec Alkaline Presentation. Jarmo Pudas, Development Director

Indo Asian Journal of Multidisciplinary Research (IAJMR) ISSN:

Effect of Zinc and Iron Ferti-Fortification on Growth, Pod Yield and Zinc Uptake of Groundnut (Arachis hypogaea L.) Genotypes

MAGIC RECIPES? Strawberry Fertigation in the UK. John Atwood Senior Horticultural Consultant.

PRIMARY (MACRO) NUTRIENTS

Study of Zinc effects on quantitative and qualitative traits of winter wheat in saline soil condition

Greenhouse Horticulture

MICRO NUTRIENTS AND SECONDARY NUTRIENTS

Mineral Nutrition of Fruit & Nut Trees. Fruit & Nut Tree Nutrition 3/1/2013. Johnson - Nutrition 1

Transcription:

ISSN: 2183-1904 www.euroessays.org Response of Zinc Fertilization to Wheat on Yield, Quality, Nutrients Uptake and Soil Fertility Grown In a Zinc Deficient Soil Keram, Komal Singh Department of Soil Science and Agricultural Chemistry, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur-482 004 (M.P.), India. Email: keramsoils@gmail.com Abstract: A field investigation was conducted during winter (rabi) season 2010-11 and 2011-12 in Vertisol to study the response of wheat yield, nutrient uptake, protein content and effect on soil properties to zinc application. The recommended doses of N, P and K were applied @ 120 N : 60 P 2 O 5 : 40 K 2 O kg ha -1 in combination with @ 0, 1.25, 2.50, 5.00, 10.00 and 20.00 kg ha -1 as zinc sulphate at the time of sowing in all the treatments. Pooled analysis of data revealed that yield, harvest index, nutrient (N, K and ) uptake and quality increased significantly with the application of recommended NPK+ @ 20.00 kg ha -1 by wheat as compare to NPK alone. In general, yield, harvest index, total nutrient uptake and quality increased up to highest level of, except total P uptake. The maximum yield (grain - 4.66 and straw - 5.44 t ha -1 ), harvest index (46.07), total nutrient uptake (N - 123.19 kg ha -1, K - 90.86 kg ha -1 and - 327.74 g ha -1 ), total carbohydrate (70.37%) and gluten (12.37%) content was achieved by the application of 20.00 kg ha -1 with recommended NPK as compare to control and other treatments, while the total P uptake was decline with increasing levels. There is no appraisal change in soil ph, EC, organic carbon and CaCO 3, but the status of DTPA-extractable of soil was improved remarkably due to rational fertilization combined with recommended NPK. Keywords: Zinc deficiency, Wheat, Nutrient uptake, Soil properties. 1. Introduction Wheat (Triticum aestivum L.) is an important cereal crop, source of staple food and thus the most important crop in food security prospective. India occupies second position next to China in the world with regard to area (27.7 million hectares) and production (77.6 million tonnes) of wheat. It is the second most important food grain crop in India ranking next to rice (Oryza sativa L.) contributing about 35% of the food grain production. India is now one of the major world's importers of wheat. Besides its tremendous significance, average yield is far below than developed countries [1], although the genetic potential of local varieties is not less than any country in the region. Nutrient deficiency is one of the important yield limiting factors includes delayed sowing, high weeds infestations, water shortage at critical growth stages, intensive cultivation and imbalance and nonjudicious fertilizers use. The universal deficiency of nitrogen and phosphorus is followed by deficiency. Almost 50% of the world soils used for cereal production is deficient [2]. is known to have an important role either as a metal component of enzymes or as a functional, structural or regulatory co-factor of a large number of enzymes in many important biochemical pathways and essential for the normal healthy growth [3]. The main factors which affect the amount of zinc in soil are ph, carbonate content, organic matter, soil texture and interaction between zinc and other microelements, such as iron [4]. Zinc is important to membrane integrity and phytochrome activities [5]. Zinc fertilizers are used in the prevention of deficiency and in the biofortification of cereal grains [6]. Keeping this in view, the present investigation was therefore conducted to evaluate the response of wheat to fertilization. 2. Materials and methods This research work was carried out on a Typic Haplustert at the Research Farm of Department of Soil Science and 22 Corresponding Author: Keram, Komal Singh, Email: keramsoils@gmail.com

Agricultural Chemistry, J. N. Krishi Vishwa Vidyalaya, Jabalpur (M.P.) which lies between 23 o 10 N latitude and 79 o 57 E longitude, during the successive years 2011 and 2012. The experiment was laid out in randomized complete block design with four replications. The experimental soil (0-15 cm depth) was analyzed for initial soil physicochemical properties by adopting standard laboratory procedure. The soil of the experimental site falls under Vertisol and belongs to Kheri-series of fine montmorillonite, Hyperthermic family of Typic Haplusterts popularly known as medium black soil. The textural class of soil is clayey, neutral in reaction (ph-7.1), non-saline (EC-0.27 ds m -1 ), non-calcareous (2.70%), medium in organic carbon content (0.63%), low in available nitrogen (217.5 kg ha -1 ), medium in available P (18.5 kg ha -1 ) and K (330.1 kg ha -1 ) and deficient in DTPA-extractable (0.54 mg kg -1 ). Wheat (Var. GW-273) was sown during rabi season, 2010-11 and 2011-12 on 15 th and 20 th December, respectively, with hand drill using seed rate 120 kg ha -1. A basal dose of 60 N: 60 P 2 O 5 : 40 K 2 O kg ha -1 was applied before sowing of wheat, through urea, super phosphate and muriate of potash fertilizers. Remaining 60 kg N was applied to wheat crop in two split doses during crop growth. The doses of @ 0, 1.25, 2.50, 5.00, 10.00 and 20.00 kg ha -1 were given through zinc sulphate fertilizer before sowing of wheat alongwith basal dose of N, P 2 O 5 and K 2 O. All crop management and protection measures were followed. Weed control practices were included physical method i.e., hoeing along with weedicides. The crop was harvested at maturity (120 days after sowing). Grain and straw yield were recorded and analyzed for N, P, K and content by adopting standard procedure for calculating the total nutrient uptake by wheat. Estimation of gluten content in grain was obtained by hand washing method [7]. Total carbohydrate content in grain was determined by Phenol sulphuric acid method [8]. The data generated from the present study were analyzed statistically and to draw suitable inference as per standard ANOVA technique [9]. 3. Results and discussion The results obtained from the present investigations as well as relevant discussion have been presented under following heads. 3.1. Yield and harvest index The pooled mean of two consecutive years in Table 1 revealed that the maximum grain (4.66 t ha -1 ) and straw (5.44 t ha -1 ) yield as well as harvest index (46.19 per cent) were observed in treatment consisting NPK+20 kg ha -1, which was significantly higher than the control at maturity stage. The treatment with 10.00 kg ha - 1 was statistically at par to 20.00 kg ha -1 in grain (4.62 t ha -1 ) and straw (5.42 t ha -1 ) yield and harvest index (46.07). The lowest grain (3.88 t ha -1 ) and straw (4.76 t ha -1 ) yield as well as harvest index (44.97) were recorded in control. The treatments consisting 1.25, 2.50 and 5.00 kg ha -1 which were at par with to control in grain and straw, respectively, whereas the harvest index was inferior insignificant with all the treatments. Generally, it was observed that the importance of fertilization with recommended NPK in terms of yield (grain and straw) and harvest index profile assorted as: Grain yield (t ha -1 ): 3.88 > 3.93 > 4.04 > 4.42 > 4.62 > 4.66 Straw yield (t ha -1 ): 4.76 > 4.81 > 4.88 > 5.09 > 5.42 > 5.44 Harvest index: 44.97 > 44.98 > 45.15 > 45.37 > 46.07 > 46.19 The increase in grain and straw yield as well as harvest index due to fertilization might be the fact that plays an important role in biosynthesis of the IAA and intiation of primodia for reproductive parts and a result of favourable effect of zinc on the metabolic reactions within the plants [10]. 3.2. Total nutrient (N, P, K and ) uptake The perusal of pooled mean data of two consecutive years (Table 1) showed that the increasing levels application combined with recommended dose fertilizer (RDF) increase total N, K and uptake by wheat over RDF alone, except total P uptake. The maximum and significant total N (123.19 kg ha -1 ), K (90.96 kg ha -1 ) and (327.74 g ha -1 ) uptake were recorded with treatment comprising application of 20.00 kg ha -1 alongwith recommended dose of NPK, 23

which was significantly higher than the control, except total P uptake. The treatment with application of 5.00 and 10.00 kg ha -1 was at par to 20.00 kg ha -1 on total N, K and uptake, whereas the highest total P uptake (19.27 kg ha - 1 ) was recorded in control. The increase in total N, K and uptake could be attributed to synergistic effect between N and and due to the positive interaction of K and, respectively [11]. A linear decrease and non-significant result in total P uptake was noted with increasing levels of application as compare to control. It might be due to antagonistic effect of P with. was found to inhabit the translocation of P from roots to the tops [12]. The minimal total N (88.68 kg ha -1 ), K (64.75 kg ha -1 ) and (214.39 g ha -1 ) uptake by wheat was recorded in control, which was statistically at par to the treatments with the application of 1.25 and 2.50 kg ha -1 on total N, K and uptake by wheat, while lowest total P uptake (18.71 kg ha -1 ) was recorded in treatment with application of 1.25 kg ha -1 with recommended NPK. 3.3. Quality parameters The quality of wheat viz. total carbohydrate and wet gluten depends on their inherent chemical compositions, which have a response function in various enzymatic activities in grain.the pooled mean of two consecutive years (Table 1) revealed that total carbohydrate and wet gluten content on wheat grain (70.37 and 12.37 %, respectively) were recorded with treatment comprising 20.00 kg ha -1, which was significantly higher than the control. The treatment with application of 2.50, 5.00 and 10.00 kg ha -1 were at par to 20.00 kg ha -1 on both total carbohydrate and wet gluten content on wheat grain. The minimal total carbohydrate and wet gluten content on wheat grain (60.01 and 10.05 %, respectively) were recorded in control, which was statistically at par to the treatments with the application of 1.25 kg ha -1 on total carbohydrate and wet gluten content on wheat grain. This indicates that there is value to increase level more than 1.25 kg ha -1 for obtaining high total carbohydrate and wet gluten, of grains. This might be due to contributed in photosynthesis, chlorophyll, metabolism of starch formation and enzyme carbonic anhydrase accelerating carbohydrate formation, the maximum requirements were enough to accumulate suitable carbohydrate contents. It also activate glutamic dehydrogenase enzyme, synthesis of RNA and DNA enhancing gliadin and glutenin content, which are main protein components of gluten accumulated in the later stages of grain filling [13]. 3.4. Post-harvest soil properties of experimental site The two years pooled values pertaining to soil properties of Vertisol after harvesting of wheat viz. ph, EC, OC, CaCO 3 and DTPA- status are present in Table 2. A perusal values indicate that the effect of different increasing fertilizers treatments @ 1.25, 2.50, 5.00, 10.00 and 20.00 kg ha -1 on soil chemical parameters, which was neutral and non-saline condition. Soil was found to be medium in organic carbon content and non-calcareous in respect to CaCO 3 content. The significant and highest DTPA- status (0.97 mg kg -1 ) of soil was recorded with the application of 20.00 kg kg -1 alongwith RDF. The treatment comprising fertilization @ 10.00 kg ha -1 was at par with 20.00 kg kg -1 alongwith RDF. Post-harvest soil properties of experimental site remain unchanged due to buffering capacity of soil. The minimal DTPA- (0.82 mg kg -1 ) was found in control i.e. application of NPK alone, which was at par with the application of fertilizer @ 1.25, 2.50 and 5.00 kg ha -1 alongwith RDF [14]. 4. Conclusion The present studies indicated that the application of 10.00 and 20.00 kg ha -1 alongwith recommended dose of NPK on wheat crop enhanced both grain and straw yields, total nutrients uptake (N, P, K and ) and quality like total carbohydrate and wet gluten of produce as well as maintained its chemical composition and restored soil fertility in terms of ph, EC, OC, CaCO 3 and DTPA- status in a -deficient soil. 24

Table 1: Effect of application on yield, harvest index, total nutrient (N, P, K and ) uptake by wheat in Vertisol (Pooled data of two year) Levels of Yield Harvest index Total uptake Total uptake Total Carbohydrate Wet gluten Grain Straw N P K (g ha -1 ) (%) (%) 0 (Control) 3.88 4.76 44.97 88.68 19.27 64.75 214.39 60.01 10.05 1.25 3.93 4.81 44.98 90.88 18.71 66.17 222.70 61.15 10.30 2.50 4.04 4.88 45.15 97.55 18.86 71.22 246.19 64.37 10.93 5.00 4.24 5.09 45.37 106.39 19.15 77.45 271.56 65.60 11.89 10.00 4.62 5.42 46.19 115.22 19.25 84.64 295.93 69.20 12.19 20.00 4.66 5.44 46.07 123.19 19.18 90.96 327.74 70.37 12.37 Mean 4.23 5.06 45.45 103.65 19.07 75.86 263.08 65.12 11.28 C.D. (5%) 0.45 0.56 1.70 12.52 NS 9.14 35.33 4.35 0.86 Table 2: Effect of application on soil properties of Vertisol after harvesting of wheat (Pooled data of two year) Levels of ph Soil properties parameters EC (ds m -1 ) List of Abbreviations S. No. Abbreviations Expansion 1 N Nitrogen 2 P Phosphorus 3 K Potassium 4 Zinc 5 kg ha -1 Kilogram per hactare 6 g ha -1 Gram per hactare 7 mg kg -1 Miligram per kilogram 8 ph Soil acidity 9 EC Electrical conductivity 10 OC Organic carbon 11 CaCO 3 Calcium carbonate 12 DTPA- Available Zinc OC (%) CaCO 3 (%) DTPA- (mg kg -1 ) 0 (Control) 6.98 0.23 0.63 2.00 0.82 1.25 6.90 0.19 0.68 1.63 0.83 2.50 7.03 0.21 0.69 1.75 0.84 5.00 7.03 0.23 0.67 1.63 0.87 10.00 6.90 0.22 0.65 1.88 0.93 20.00 7.05 0.23 0.70 1.88 0.97 Mean 6.98 0.21 0.67 1.79 0.88 C.D. (5%) NS NS NS NS 0.06 Reference [1] FAO, Scaling Soil Nutrient Balances: Enabling Meso-Level Applications for African Realities, Fertilizer and Plant Nutrition Bulletin 15 Rome, 2010. [2] R. S. Gibbson, Zinc: The Missing Link in Combating Micronutrient Malnutrition in Developing Countries, Proceedings of the Nutrition Society, University of East Anglia, Norwich, June 28-July 1, 2005. 25

[3] N. Grotz and M. L. Guerinot, Molecular Aspects of Cu, Fe and Homeostasis in Plants, Biochemistry and Biophysics Acta, 17: 595 608, 2006. [11] A. Morshedi and H. Farahbakhsh, Effects of Potassium and Zinc on Grain Protein Contents and Yield of Two Wheat Genotypes Under Soil and Water Salinity and Alkalinity Stresses, Plant Ecophysiology, 2: 67-72, 2010. [4] G. Bukvic, M. Antunovic, S. Popovic and M. Rastija, Effect of P and Fertilization on Biomass Yield and its Uptake by Maize (Zea mays L.), Journal of Plant, Soil and Environment, 49: 505-510, 2003. [5] J. Shkoinik, Zinc Uptake by Rice as Affected by Metabolic Inhibitors and Competing Cations, Plant and Soil, 51: 637 646, 1984. [6] B. J. Alloway, Soil Factors Associated with Zinc Deficiency in Crops and Humans, Environmental Geochemistry. Health (DOI 10.1007/s10653-009- 9255-4). 2002. Available from: <http://www.cropresearch.org>. Accessed: May 12, 2011. [7] P. I. Payne, K. G. Corfield and J. A. Blackman, Identification of a High Molecular Weight Subunit of Gluten in Whose Presence Correlates with Bread Making Quality in Wheat of Related Pedigree, Theory and Applied Genetics, 55: 153 159, 1979. [12] S. M. Alam, I. Zafar and A. Latif, Effect of P and Application by Fertigation on P Use Efficiency and Yield of Wheat, Tropical Agriculture Research and Extension, 3: 17-20. 2000. [13] A. Soleymani and M. H. Shahrajabian, The Effects of Fe, Mn and Foliar Application on Yield, Ash and Protein Percentage of Forage Sorghum in Climatic Condition of Esfahan, International Journal of Biology, 4: 12-20, 2009. [14] D. D. Rathod, M. C. Meena and K. P. Patel, Evaluation of Different Zinc-Enriched Organics as Source of Zinc Under Wheat-Maize (Fodder) Cropping Sequence on Zinc-Deficient Typic Haplustepts, Journal of the Indian Society of Soil Science, 60: 50-55, 2012 Author Profile Dr. Keram, Komal Singh has Completed his B.Sc. (Horticulture) and then completed his M.Sc. (Soil Science) concurrently he also completed his Ph.D. (Soil Science) and he is very much interested in the field of soil fertility [8] A.O.A.C., Official Methods of Analysis of Association of Official Agricultural Chemists, 9 th Edition, Washington D.C., 1965. [9] K. A. Gomez and A. A. Gomez, Statistical Procedures for Agricultural Research, John Wiely and Sons, New York, pp: 680, 1984. [10] O. Singh, S. Kumar and Awanish, Productivity and Profitability of Rice as Influence by High Fertility Levels and Their Residual Effect on Wheat, Indian Journal of Agronomy, 57: 143-147, 2012. 26