Risk Factors for Complications in Hospitalized Young Infants Presenting With Uncomplicated Pertussis abstract

Similar documents
TEXAS CHILDREN S HOSPITAL EVIDENCE-BASED OUTCOMES CENTER Pertussis Infection in Infants Evidence-Based Practice Course Evidence Summary

Trends in Hospitalizations and Resource Utilization for Pediatric Pertussis

Pedro Plans-Rubió 1,4 Encarna Navas. Angela Domínguez 3,4 Mireia Jané

PAEDIATRIC ACUTE CARE GUIDELINE. Pertussis. This document should be read in conjunction with this DISCLAIMER

Considerations for Public Health on Pertussis Case and Contact Management

Critical Review Form Clinical Prediction or Decision Rule

Supplementary Appendix

California Pertussis Epidemic October John Talarico, D.O., M.P.H. Immunization Branch California Department of Public Health

SARASOTA MEMORIAL HOSPITAL NURSING PROCEDURE

Pertussis. Information for Physicians. Disease Information. Diagnostic Testing of Suspect Cases. Infectious Disease Epidemiology Program

Clinical characteristics of febrile seizures and risk factors of its recurrence in Chiang Mai University Hospital

SAGE Working Group on Pertussis Vaccines. Introduction and Session Overview

CHAMPIONS for LUNG Health. Learn About Pertussis PERTUSSIS

Estimating RSV Disease Burden in the United States

PERTUSSIS The Unpredictable Burden of Disease. Lawrence D. Frenkel, MD, FAAP AAP/Novartis Grand Rounds Webinar February 7, 2013

pneumonia 2015;6:48 56

Author's response to reviews

Pertussis: Trends, Prevention and Challenges Flor M. Munoz, MD Associate Professor Pediatric Infectious Diseases

Pertussis: Clinical Review and Colorado s Epidemic

Late diagnosis of influenza in adult patients during a seasonal outbreak

SIB Chart Review Tool

Top Ten Articles in Pediatric Hospital Medicine: Breaking Traditions

No :

Original Article. Emergency Department Evaluation of Ventricular Shunt Malfunction. Is the Shunt Series Really Necessary? Raymond Pitetti, MD, MPH

California 2010 Pertussis Epidemic. Kathleen Winter, MPH Immunization Branch California Department of Public Health

Pertussis: An Emerging Infection. Holly K. Ehrke. Ferris State University

Pertussis Testing and Treatment Guidelines

Recommendations for Hospital Quality Measures in 2011:

Age as a Predictor of Functional Outcome in Anoxic Brain Injury

Circumcision bleeding complications: Neonatal intensive care infants compared to. those in the normal newborn nursery

Supplementary Online Content

Clinical Features And Correlates Of Bacteremia Among Urban Minority New Yorkers Hospitalized With Community Acquired Pneumonia

Summary of Key Points

Diagnosis of Ventilator-Associated Pneumonia: A Pilot, Exploratory Analysis of a New Score Based on Procalcitonin and Chest Echography

Chronic Lung Disease in vertically HIV infected children. Dr B O Hare Senior Lecturer in Paediatrics and Child Health, COM, Blantyre

Syncytial Virus. Surveillance: A. Respiratory (RSV) New Initiative for NM

Objectives 3/3/2017. Disease Reporting in Georgia: The School Nurse s Role. Georgia Department of Public Health

FACTS ABOUT PERTUSSIS (WHOOPING COUGH)

Retention in HIV care predicts subsequent retention and predicts survival well after the first year of care: a national study of US Veterans

Clinical and Laboratory Features of Pertussis in Hospitalized Infants with Confirmed Versus Probable Pertussis Cases

2013 About Pertussis (Whooping Cough)

Disclosures. Objectives. Epidemiology. Enterovirus 68. Enterovirus species 9/24/2015. Enterovirus D68: Lessons Learned from the Frontline

Quality of End-of-Life Care in Patients with Hematologic Malignancies: A Retrospective Cohort Study

Community Acquired Pneumonia

Pertussis: should we improve intensive care management or vaccination strategies?

Facilitating EndotracheaL Intubation by Laryngoscopy technique and Apneic Oxygenation Within the Intensive Care Unit (FELLOW)

Page 126. Type of Publication: Original Research Paper. Corresponding Author: Dr. Rajesh V., Volume 3 Issue - 4, Page No

Diphtheria, Tetanus, and Pertussis. DTaP/DT and Tdap/Td Vaccines

2/4/2019. GOLD Objectives. GOLD 2019 Report: Chapters

ESCMID Online Lecture Library. by author

Quick Literature Searches

Lecture Notes. Chapter 16: Bacterial Pneumonia

AEROSURF Phase 2 Program Update Investor Conference Call

EDUCATIONAL COMMENTARY PERTUSSIS

FACTORS ASSOCIATED WITH DIAGNOSIS OF BACTERIAL PNEUMONIA IN CHILDREN OF NORTHERN THAILAND

Running head: INCREASING RATES OF VACCINATION WITH TDAP 1

Reviewing the recent literature to answer clinical questions: Should I change my practice?

Research Article Timing of Caffeine Therapy and Neonatal Outcomes in Preterm Infants: A Retrospective Study

Ischemic Stroke in Critically Ill Patients with Malignancy

Review of Neonatal Respiratory Problems

Tetanus, Diphtheria, and Pertussis (Tdap) Vaccination Uptake among Pregnant Women: Influenza Season, United States

NYS Trends in Vaccine Preventable Disease Control

Disclosure. Co-investigators 1/23/2015

Answer keys for Assignment 4: Measures of disease frequency

Decline of CD3-positive T-cell counts by 6 months of age is associated with rapid disease progression in HIV-1 infected infants

COHORT STUDY OF HIV POSITIVE AND HIV NEGATIVE TUBERCULOSIS in PENANG HOSPITAL: COMPARISON OF CLINICAL MANIFESTATIONS

Revision of the pertussis surveillance case definition to more accurately capture the burden of disease among infants <1 year of age

Pertussis. West Virginia Electronic Disease Surveillance System

Supplementary Online Content

Fever in neonates (age 0 to 28 days)

Pertussis. Gary Reubenson 10 September 2014

Microbiology Laboratory Directors, Infection Preventionists, Primary Care Providers, Emergency Department Directors, Infectious Disease Physicians

Clarification of Drug Allergy Information Using a Standardized Drug Allergy Questionnaire and Interview

SPECTRUM OF DISEASE. Rogelio Perez-Padilla MD National Institute of Respiratory Diseases, Mexico

Protecting Infants and Children from Pertussis and Influenza

11/9/2012. Group B Streptococcal Infections: Consensus and Controversies. Prevention of Early-Onset GBS Disease in the USA.

Exclusion Criteria 1. Operator or supervisor feels specific intra- procedural laryngoscopy device will be required.

3.5. Background - CAP. Disclosure. Goal. Why Guidelines

er of Cas ses Numb Mid 1940s: Whole cell pertussis vaccine developed *2010 YTD 2008: Tdap pphase- in for grades 6-12 started

How do we define pneumonia?

Cover Page. The handle holds various files of this Leiden University dissertation

Dipstick Urinalysis as a Test for Microhematuria and Occult Bladder Cancer

Pediatric influenza-associated deaths in Arizona,

By: Armend Lokku Supervisor: Dr. Lucia Mirea. Maternal-Infant Care Research Center, Mount Sinai Hospital

Shabir A. Madhi Possibilities for reducing neonatal and young infant mortality through Maternal immunization

Effectiveness of rotavirus vaccination Generic study protocol for retrospective case control studies based on computerised databases

Cost effectiveness of pertussis vaccination in adults Lee G M, Murphy T V, Lett S, Cortese M M, Kretsinger K, Schauer S, Lieu T A

Chapter 22. Pulmonary Infections

3. Rapidly recognize influenza seasons in which the impact of influenza appears to be unusually severe among children.

Hypothermia at Birth and its Associated Complications in Newborns: a Follow up Study

the use of a combination of diphtheria, tetanus, and whole-cell pertussis vaccine (DTwP); and

Pertussis Toolkit for Schools

Community-Acquired Pneumonia OBSOLETE 2

Frequently Asked Questions Pertussis (Whooping Cough) in the School Setting

Quality Care Innovation lead clinician for integrated respiratory service georges ng* man kwong

What all moms should know about protecting themselves and their children against pertussis CALLING ALL NEW MOMS

Low birthweight and respiratory disease in adulthood: A population-based casecontrol

Risk Factors Predicting Mortality in Spinal Cord Injury in Nigeria

Research Article Identifying Prognostic Criteria for Survival after Resuscitation Assisted by Extracorporeal Membrane Oxygenation

Outcomes of Patients with Preoperative Weight Loss following Colorectal Surgery

Transcription:

RESEARCH ARTICLE Risk Factors for Complications in Hospitalized Young Infants Presenting With Uncomplicated Pertussis abstract OBJECTIVE: We sought to identify risk factors for complications in hospitalized young infants with uncomplicated pertussis. METHODS: Retrospective cohort study of hospitalized infants 0 to 6 months of age with confirmed pertussis from 2005 to 2009. Subjects presenting without complications or need for initial intensive care admission were deemed to have uncomplicated pertussis. Complications during hospitalization were defined as apnea, pneumonia, seizures, or encephalopathy. Univariate analysis was performed by estimating odds ratios (OR) and 95% confidence intervals (CI) for the association between each variable and the occurrence of complications. Multivariable analysis was performed using logistic regression. Clinical variables included demographics, historical, laboratory, and imaging data. RESULTS: Of 126 study subjects, 46 (36.5%) developed complications in the hospital: 43 with apnea (two required endotracheal intubation), seven with pneumonia, and three with seizures; there were no cases of encephalopathy and no deaths. Age less than 60 days (OR, 2.71; 95% CI, 1.08-6.82), cough duration less than 7 days (OR, 5.38; 95% CI, 1.79-16.18), history of color change (OR, 5.24; 95% CI, 1.14-24.07), parental intervention (OR, 10.05; 95% CI, 1.67-60.39), and need for oxygen in the emergency department (OR. 3.94; 95% CI. 1.37-11.36) were associated with development of complications. The median duration of cough at the time of complication was 9 days (range 2-30 days). Initial complete blood cell count and radiographic findings were not associated with complications. CONCLUSIONS: Infants with uncomplicated pertussis may be at low risk for developing respiratory failure or death. Historical information may assist practitioners in determining risk for serious complications. AUTHORS Sowdhamini S. Wallace, DO 1,2, Andrea T. Cruz, MD, MPH 1,3, Ricardo A. Quinonez, MD 1,2, A. Chantal Caviness, MD, MPH, PhD 1 1 Section of Pediatric Emergency Medicine 2 Section of Pediatric Hospital Medicine 3 Section of Pediatric Infectious Diseases Department of Pediatrics, Baylor College of Medicine, Houston, Texas KEY WORDS Pertussis, whooping cough, apnea, hospitalization, complications, risk factors doi:10.1542/hpeds.2011-0007 Address correspondence to Sowdhamini Wallace, DO, 6621 Fannin, Suite A210/ MC 1-1481, Houston, TX 77030. Tel: 832-824- 5447, Fax: 832-825-5424, E-mail: sswallac@ texaschildrens.org HOSPITAL PEDIATRICS (ISSN Numbers: Print, 0031-4005; Online, 1098-4275). Copyright 2011 by the American Academy of Pediatrics FINANCIAL DISCLOSURE: None CONFLICT OF INTEREST: None Introduction Pertussis continues to be a serious illness in young infants with increasing incidence and high rates of hospitalization. 1-4 While young infants are more likely than older children to suffer from severe complications such as apnea, pneumonia, seizures, and encephalopathy, 5-10 a spectrum of disease expression exists. 8,10 Many young infants appear well between paroxysmal coughing episodes. The well-appearing infant with pertussis poses challenges to the emergency medicine physician as to which children would benefit from admission, and to the hospitalist physician as to the level of monitoring required for admitted patients. Previous studies have sought to characterize entire cohorts of young infants with pertussis and those specifically requiring intensive care. It is known that infants 16 VOLUME 1 ISSUE 1

with severe pertussis who require intensive care tend to be less than 6 weeks of age, born prematurely, have a short duration of cough, and cardiorespiratory comorbidities. 11 However, little is known about the characteristics of infants who initially present without signs of complications. In this study, we focus on infants with uncomplicated pertussis because this is the subset of infants most commonly treated by pediatric hospitalists outside the intensive care unit and the cases that pose the greatest management dilemma. Because these infants present with no evidence of complications, the practitioner must try to anticipate which infants will develop more severe disease and determine the appropriate level of monitoring and length of observation needed. In this study, we attempt to identify clinical and laboratory predictors for the development of severe complications during hospitalization. As a secondary outcome, we aim to delineate the time between onset of cough and development of complications during hospitalization. Methods STUDY DESIGN This was a retrospective cohort study of infants admitted to Texas Children s Hospital from January 1, 2005, through May 31, 2009. Subjects with and without complications were compared based on clinical variables as noted on chart review to determine their risk of developing complications during hospitalization. SUBJECTS Subjects were included if they were younger than 7 months old, had a positive polymerase chain reaction (PCR) for Bordetella pertussis or parapertussis, and were admitted to the hospital during the study period. PCR was the sole diagnostic test used at our institution. Subjects were identified by International Classifi cation of Diseases, 9 th Revision (ICD-9) discharge code for pertussis and by the microbiology database for positive results on PCR testing for pertussis. Medical records were reviewed by the principal investigator (SW) to determine study eligibility. Subjects were deemed to have uncomplicated pertussis if they did not have evidence of complications or required intensive care on initial presentation. Exclusion criteria were created for infants who presented with evidence of serious complications to isolate a subgroup of infants with uncertain prognosis for progression of disease. Subjects were excluded if they met any of the following conditions: initial admission to pediatric intensive care unit, need for mechanical ventilation, history of recent seizure, encephalopathy, or apnea before admission. Apneic events were excluded only if witnessed by health care providers because it was uncertain whether parental description of events represented true apnea. IRB approval was obtained before initiating the study. DATA COLLECTION Medical records were reviewed by the principal investigator (SW) and data were extracted using a standardized data collection form. Demographic information included age at the time of hospitalization, gender, and race/ethnicity. Clinical information included a history of premature birth (defined as <37 weeks gestation), low birthweight (<2,500 g), vaccination status (defined as complete or incomplete by parental report or vaccination record), number of diptheria-tetanus-acellular pertussis (DTaP) vaccines (defined as documentation of having received the 2-month, 4-month, or 6-month series), use of a macrolide antibiotic before admission (any duration of therapy), breastfeeding (exclusive or supplemented), environmental tobacco smoke exposure (indoor or outdoor smokers), contact with an ill person (anyone with respiratory symptoms), and history of any chronic cardiac or respiratory medical problem. Signs and symptoms included cough duration, parental description of apnea (defined as pause in breathing or absence of chest rise for any period), parental description of any color change, need for any parental intervention for apnea, or color change before arrival at the emergency department (ED; eg, cardiopulmonary resuscitation, tactile stimulation, or blowing on face), fever (temperature 100.4 F by history or ED vital signs), and need for supplemental oxygen in the ED before admission. Chest radiography findings were interpreted by the radiologists and were considered abnormal if they were reported to have any findings except normal chest. Abnormal findings were categorized as infiltrate, effusion, atelectasis, perihilar opacities, or pneumothorax. Viral coinfections were defined as isolation of a respiratory viral pathogen via any diagnostic test used to analyze upper or lower respiratory tract secretions. Bacterial coinfections were defined as isolation of a bacterial strain from blood, spinal fluid, or respiratory tract. The hospital location to which the patient was admitted was determined and the clinical course in the hospital was evaluated for the occurrence of any complication. Complications 17

during hospitalization included the following: apnea, pneumonia, seizures, or encephalopathy. The hospital units included the ED observation unit, the floor, the level II nursery, and intermediate care unit. We included subjects admitted to intermediate care unit or level II nursery because most of our infants under 3 months of age are preferentially admitted to these units regardless of illness severity. Because of varying monitoring capabilities in our hospital units, apnea was defined as breathing cessation that required intervention. Pneumonia, seizures, and encephalopathy were defined as clinician diagnosis of those conditions as documented in daily progress note and/or discharge summary. STATISTICAL ANALYSIS In anticipation of the use of regression analyses, sample size was estimated to include at least 10 subjects per clinical variable studied for a total of 120 subjects. We used the statistical software SPSS version 18 (SPSS Inc., Chicago Ill) to perform the analysis. Categorical and continuous variables related to subjects with and without complications were compared using chi-square and Mann Whitney U tests, respectively. Univariate analysis was performed by estimating odds ratios (OR) and 95% confidence intervals (CI) for the association between each variable and the occurrence of complications. Age and duration of cough were categorized to maximize the magnitude of their associations with the occurrence of complications. The optimal categorization was as follows: age younger than 60 days and 60 days or older, duration of cough 0 to 7 days and more than 7 days. Because of the small numbers of patients, all types of interventions and all types of color changes were grouped together for univariate and multivariate analyses. Multivariate analysis was performed using logistic regression. Interactions between patient age and duration of cough were explored as well as those between patient age and hospital unit, and no interactions were found. Logistic regression then proceeded in a stepwise forward manner where variables were included in the model if they were statistically significant (P<.20) and/or if they changed the regression coefficients by more than 10%. Patient outcomes and bacterial coinfections were then described and statistically compared between the groups with and without complications. Receiver operating curve (ROC) techniques were used to analyze the usefulness of white blood cell (WBC) count and absolute lymphocyte count (ALC) in predicting complications. Results Two hundred and eight young infants were hospitalized with pertussis during the study period and 126 of these patients were eligible for the study (Figure 1). The median subject age was 63 days (range, 16 to 170 days). Four of the seven neonates (aged 0-28 days) experienced complications. Of 126 study subjects, 46 (36.5%) developed at least one complication in the hospital: 42 subjects developed apnea, seven pneumonia, three seizures, three apnea and seizures, three apnea and pneumonia, and no patients developed encephalopathy. Of the patients with complications, eight required transfer to a higher level of care, two developed respiratory failure, and none died. None of the six patients with Bordetella parapertussis experienced complications. FIGURE 1 Subject selection process. PCR = polymerase chain reaction PICU = pediatric intensive care unit. Patients who developed complications were significantly younger than those who did not experience a complication (Table 1). At initial ED evaluation, the median duration of cough was 10 days (range 0-49 days): 7 days for subjects with complications and 10 days for subjects without complications (P=.001 by Mann Whitney U test). The median duration of cough at the time of complication was 9 days (range 2-30 days). Fifteen patients required an intervention for apnea before admission: four required cardiopulmonary resuscitation (rescue breaths only), eight tactile stimulation, and three blowing on face. Complications occurred in the hospital for 50%, 75%, and 67% of these patients, respectively. Most patients (n=107) experienced color changes before ED evaluation: cyanosis (n=48), multiple colors (n=30), red (n=14), 18 VOLUME 1 ISSUE 1

TABLE 1 Demographic Characteristics Associated with the Development of Complications in 126 Hospitalized Infants With Pertussis Characteristic No Complication During Hospitalization, (%) (N=80) purple (n=12), white/pallor (n=2), and missing (n=1). The frequencies of complications in the hospital were similar across these color change types (33%-53%) and were all higher than the frequency seen in infants without reported color changes (12%). No infant younger than 60 days of age had been vaccinated with DTaP. Of the 72 infants aged 60 days or older, 46 (64%) had received one dose of DTaP, none had received more than one DTaP dose, and one was missing information about previous vaccinations. The infants who received DTaP were as likely to experience a complication as the infants who did not receive DTaP (OR, 1.11; 95% CI, 0.33-3.71). Twenty-eight patients required supplemental oxygen before admission and an additional 10 patients required supplemental oxygen during their hospitalization. The median duration of supplemental oxygen administration was 4 days (range, 1 to 15 days) for all patients requiring supplemental oxygen: 5 days for subjects with complications and 3 days for subjects without complications (P=.157 by Mann Whitney U test). Data on environmental tobacco exposure were available for 40 patients, and was not associated with an increased Complication During Hospitalization, (%) (N=46) P Value Median (range) age in days 67 (26-161) 49 (16-170) <.0001* Gender 0.438 Male 44 (55) 22 (48) Female 36 (45) 24 (52) Race/ethnicity 0.728 Hispanic 54 (68) 29 (63) White 9 (11) 9 (20) African-American 11 (14) 5 (11) Other 5 (6) 2 (4) Missing 1 (1) 1 (2) * Mann Whitney U test. Chi-square test. risk of experiencing a complication in the hospital (OR, 0.49; 95% CI, 0.09-2.76). Absolute lymphocyte count and WBC count were poor predictors of the occurrence of a complication in the hospital. Using ROC techniques, the area under the curve was 0.57 (95% CI, 0.46-0.68) for ALC and 0.60 (95% CI, 0.48-0.71) for WBC. For the univariate analysis, ALC was considered elevated if greater than 9,000, in accordance with standard definitions for absolute lymphocytosis. 12 On univariate analysis, age less than 60 days, cough duration less than 7 days, parental description of patient color change, the need for an intervention at home, the need for supplemental oxygen before admission, and admission to a non-floor bed were all associated with the subsequent occurrence of a complication in the hospital (Table 2). After adjusting for other variables, age less than 60 days, cough duration less than 7 days, use of a macrolide antibiotic before ED evaluation, the need for TABLE 2 Univariate Analysis of Clinical, Laboratory, and Radiologic Features Associated with Complications in 126 Hospitalized Infants With Pertussis Characteristic No Complication During Hospitalization (N=80) Complication During Hospitalization (N=46) OR (95% CI)* Patient characteristics Age <60 days 24 30 4.38 (2.02-9.47) Born prematurely 13 5 0.60 (0.20-1.82) Preventive measures Macrolide PTA 19 5 0.38 (0.13-1.10) Breastfeeding 24 22 2.06 (0.97-4.38) Signs and symptoms Cough duration <7 days 8 17 5.28 (2.05-13.57) Apnea PTA 26 18 1.34 (0.63-2.84) Color change PTA 63 44 5.24 (1.14-24.07) Intervention PTA 5 10 4.17 (1.33-13.09) Fever PTA 16 5 0.49 (0.17-1.43) Oxygen PTA 12 16 3.02 (1.28-7.16) Laboratory and radiographic features ALC > 9000 50 30 1.09 (0.51-2.33) CXR abnormal 44 23 0.61 (0.27-1.37) Respiratory virus 8 9 2.19 (0.78-6.14) Hospitalization Unit NICU2, PCU, EDOU 43 39 4.79 (1.92-11.99) * Parameters reaching statistical significance are shown in bold. Compared with age of 60 days or more. Compared with cough duration of 7 days or longer. Compared with floor bed. ALC= absolute lymphocyte count; CI = confidence interval CXR= chest radiograph; EDOU= emergency department observation unit; NICU2= level II neonatal intensive care unit; PCU= intermediate care unit; PTA= prior to admission; OR = odds ratio. 19

an intervention and supplemental oxygen before admission, and admission to a non-floor bed were significantly associated with the occurrence of a complication in the hospital (Table 3). Of note, when chest radiography findings were added to the logistic regression model, all variables remained significant except admission to a nonfloor bed. However, chest radiography findings themselves were not independently associated with the occurrence of complications in the hospital. When viral coinfections were added to the multivariate model, they were not significantly associated with the occurrence of complications and they had no effect on the association between the other variables and complications. Subjects with complications had longer lengths of stay than subjects without complications. The median length of stay was 8 days versus 3 days, respectively (P<.0001 by Mann Whitney U test). No significant difference in bacterial coinfections was noted between the two groups, with one subject in the no complication group and two subjects in the group with complications having any coinfections (P=.553). Once discharged from the hospital, the frequency of readmission was similar between subjects with and without complications (4 versus 8, P=1.000 by Fisher exact test). Discussion This study differs from previous studies, which have focused on entire cohorts of infants with pertussis or infants solely requiring intensive care. We focused on infants presenting with uncomplicated pertussis because these children comprise the majority of cases and pose the most vexing questions about management. We found that this subgroup of infants had several distinguishing characteristics, including lower rates of respiratory failure and death than seen in previous US cohorts 4,13 and lower percentages of patients with classic comorbidities, such as prematurity and chronic cardiorespiratory conditions. 1,4,11,14,15 We found several clinical predictors for complicated hospital course, which include younger age, shorter cough duration, parental report of color changes, parental interventions, or supplemental oxygen administration before hospital arrival. Our study reaffirms that younger age and shorter duration of cough are risk factors for development of severe, complicated illness. A study based on hospital surveillance data in France showed that age less than 2 months was associated with higher rates of admission to the intensive care unit, assisted ventilation, and death. 16 Surridge et al 11 also showed that most infants requiring intensive care were younger than 3 months of age with almost half being younger than 6 weeks TABLE 3 Multivariate Analysis to Determine Independent Clinical Features Associated With Complications in 126 Hospitalized Infants With Pertussis Characteristic Adjusted* OR (95% CI) Age <60 days 2.71 (1.08-6.82) Duration of cough <7 days 5.38 (1.79-16.18) Macrolide before admission 0.19 (0.04-0.98) Intervention required prior to admission 10.05 (1.67-60.39) Supplemental oxygen required prior to admission 3.94 (1.37-11.36) Admitted to NICU2, PCU, or EDOU 3.30 (1.09-10.04) * Adjusted for age, duration of cough, intervention, and supplemental oxygen before admission. CI = Confidence interval; EDOU: emergency department observation unit; NICU2= level II neonatal intensive care unit; PCU: intermediate care unit; OR = odds ratio. of age. Shorter duration of cough has also been described to be associated with more severe illness. 11,16 Intensive care admissions had a median duration of cough of 7 days. 11 Another study showed that symptom duration of more than 15 days had lower odds of developing severe pertussis. 16 Given the high risk for complications in infants younger than 2 months of age with short duration of cough, we recommend closely observing these young infants with cardiorespiratory monitoring even if they appear well initially. Our study reveals several parental concerns that may be markers for more severe illness. Parents describing color change during or after paroxysmal episodes is associated with higher odds of experiencing apnea in the hospital. Also, any type of parental intervention, whether minor or major, was significantly associated with higher odds of apnea during multivariate analysis. To our knowledge, these findings have not been reported previously. It will be important to closely monitor these infants when parents raise such concerns. In addition, infants receiving oxygen before admission had higher odds of developing a complication during hospitalization. Because of the short duration of oxygen requirement and low rates of assisted ventilation, it is unlikely that this oxygen requirement was the result of pulmonary abnormality such as pneumonia or pulmonary hypertension. Oxygen placed by transport or ED providers is likely because more profound desaturations are seen in those settings, which may herald a higher risk for development of complications during hospitalization. More than 80% of our subjects had complete blood count (CBC) with differential and chest radiograph obtained, but 20 VOLUME 1 ISSUE 1

few of our subjects with uncomplicated pertussis had test results known to be associated with adverse outcome. Only two subjects (1%) had an elevated WBC count higher than 55,000/µL (5.5 10 9 /L) 17,18 and only eight subjects (6%) had radiographic pneumonia. 9,15,18 In addition, elevated ALC was not associated with complications in our analysis. Our study suggests that CBC with differential and chest radiography may not be useful to determine the risk of adverse events in infants with uncomplicated pertussis. However, larger studies are needed to confirm these findings. A CBC with differential and chest radiographs may still be useful in a different instance, when the diagnosis of pertussis is uncertain. ALC has been shown to be a predictor of the diagnosis of pertussis. 5 In infants with lower respiratory tract findings, chest radiography may be used to evaluate infants for other abnormalities, such as community-acquired pneumonia. Further studies are needed to fully elucidate the benefit of early macrolide treatment. Our study suggests that macrolides may be a protective factor against the development of complications during hospitalization, but it is difficult to assess the true effect on morbidity and mortality because our study excluded the most severely ill patients. Further studies also are needed to evaluate the association of viral coinfection with the development of complications during hospitalization because our study contained only a few subjects with isolated viral respiratory pathogens. Lastly, it would be prudent to examine the duration of cough before the onset of complications in a larger prospective study. Our data for this variable lacked precision because of the small sample size. Further analysis of this variable may allow us to delineate a safe time for discharge for those infants who remain asymptomatic during hospitalization. Our study contains limitations inherent to retrospective studies. A selection bias exists, because many infants with pertussis are usually discharged from the ED, and the characteristics of these children in our study were unknown. There may have been a classification bias, in that some critically ill infants who were admitted to intermediate care units or transferred to a higher level of care were included in the study, but did not develop complications. The low frequency of medical comorbidities and low pertussis morbidity and mortality argue against this. However, by inadvertently including a few critically ill infants, we may still be able to draw the most conservative conclusions regarding the infant presenting with uncomplicated illness. A potential confounder in our study is that infants were admitted to hospital units with different monitoring capabilities. It is possible that certain patients may have been admitted to a unit with a higher level of monitoring because of a more ill appearance. To account for this varying level of monitoring, we defined apnea as a cessation in breathing that required intervention. We postulated that apneic events requiring intervention would be documented in the chart in any unit, whereas self-resolving episodes may go unnoticed in units with a lower level of monitoring. Of note, floor patients did experience fewer complications than those in other units with higher levels of monitoring. This remained true even after adjusting for age and other possible confounders in multivariate analysis. Readmission rates were the same for subjects with and without complications, thus suggesting that floor patients did not progress to more severe disease than those in other units. Conclusions Young infants with uncomplicated pertussis may be at low risk for respiratory failure and death during hospitalization. Traditional screening via CBC and chest radiography may not be useful to predict the risk of inhospital complication in this uncomplicated population; however, younger age, shorter cough duration, parental report of color changes, and parental interventions or supplemental oxygen administration before hospital arrival may be associated with complicated hospital courses. Prospectiv e studies are needed to confirm these findings and develop a risk-stratification tool and evidence-based management guideline for these young infants. References 1. Somerville RL, Grant CC, Grimwood K, et al. Infants hospitalized with pertussis: estimating the true disease burden. J Pediatr Child Health. 2007;43:617-622. 2. Edwards KM, Halasa N. Are pertussis fatalities in infants on the rise? what can be done to prevent them [editorial]? J Pediatr. 2003;143:552-553. 3. Raguckas SE, VandenBussche HL, Jacobs C, Klepser ME. Pertussis resurgence: diagnosis, treatment, prevention and beyond [review]. Pharmacotherapy. 2007;27(1):41-52. 4. Cortese MM, Baughman AL, Zhang R, et al. Pertussis hospitalizations among infants in the United States, 1993 to 2004. Pediatrics. 2008;121:484-492. 5. Guinto-Ocampo H, Bennett JE, Attia MW. Predicting pertussis in infants. Pediatr Emerg Care. 2008;24:16-20. 6. Elliott E, McIntyre P, Ridley G, et al. National study of infants hospitalized with pertussis in the acellular vaccine era. Pediatr Infect Dis J. 2004;23:246-252. 21

7. Hoppe JE. Neonatal pertussis. Pediatr Infect Dis J. 2000:19:244-247. 8. Heininger U, Klich K, Stehr K, Cherry JD. Clinical findings in bordetella pertussis infections: results of a prospective multicenter surveillance study. Pediatrics. 1997;100(6). Available at: www.pediatrics.org/cgi/content/ full/100/6/e10. 9. Greenberg DP, Wirsing von Konig C, Heininger U. Health burden of pertussis in infants and children [review]. Pediatr Infect Dis J. 2005;24:S39-S43. 10. Stojanov S, Liese J, Belohradsky BH. Hospitalization and complications in children under 2 years of age with bordetella pertussis infection. Infection. 2000;28(2): 106-110. 11. Surridge J, Segedin ER, Grant CC. Pertussis requiring intensive care. Arch Dis Child. 2007;92:970-975. 12. Miale JB. Laboratory Medicine: Hematology. 5 th ed. St. Louis: CV Mosby; 1977. 13. Gan, VN, Murphy TV. Pertussis in hospital ized children. Am J Dis Child. 1990;144:130-134. 14. Tozzi AE, Celentano LP, Ciofi degli Atti L, Salmaso S. Diagnosis and management of pertussis [review]. CMAJ. 2005;172(4):509-515. 15. Wortis N, Strebel PM, Wharton, M, Bardenheier B, Hardy I. Pertussis deaths: report of 23 cases in the United States, 1992 and 1993. Pediatrics. 1996;97:607-612. 16. Briand V, Bonmarin I, Levy-Bruhl D. Study of the risk factors for severe childhood pertussis based on hospital surveillance data. Vaccine. 2007;25:7224-7232. 17. Pierce C, Klein N, Peters M. Is leukocytosis a predictor of mortality in severe pertussis infection? Intensive Care Med. 2000;26:1512-1514. 18. Mikelova LK, Halperin SA, Scheifele D, et al. Predictors of death in infants hospitalized with pertussis: a case-control study of 16 pertussis deaths in Canada. J Pediatr. 2003;143:576-581. 22 VOLUME 1 ISSUE 1