Amadeo R. Fernández-Alba

Similar documents
European Reference Laboratory - FV

Moving from targeted towards non-targeted approaches

for new contaminants at ultra trace level by using high resolution mass spectrometry

Experiences with application of full scan high resolution MS for pesticide residue analysis

Target Analyses in Parallel Reaction Monitoring Mode (PRM)

Ultra High Definition Optimizing all Analytical Dimensions

How to Use TOF and Q-TOF Mass Spectrometers

PesticideScreener. Innovation with Integrity

NON TARGETED SEARCHING FOR FOOD

Advancing your Forensic Toxicology Analyses; Adopting the Latest in Mass Spectrometry Innovations

MASS SPECTROMETRY BASED METABOLOMICS. Pavel Aronov. ABRF2010 Metabolomics Research Group March 21, 2010

Don t miss a thing on your peptide mapping journey How to get full coverage peptide maps using high resolution accurate mass spectrometry

UPLC-HRMS: A tool for multi-residue veterinary drug methods

Increased Identification Coverage and Throughput for Complex Lipidomes

Impurity Identification using a Quadrupole - Time of Flight Mass Spectrometer QTOF

New Methodologies for POPs Analysis using Orbitrap GC-MS in Official Food Control

Application Note # LCMS-89 High quantification efficiency in plasma targeted proteomics with a full-capability discovery Q-TOF platform

High-sensitivity Orbitrap mass analysis of intact macromolecular assemblies. R. J. Rose, E. Damoc, E. Denisov, A. Makarov, A. J. R.

PosterReprint OVERVIEW

Benefits and Characteristic Applications of High Resolution GC/MS and LC/MS. Frank David RIC and Ghent University

Thermo Scientific LCMS Solutions for Pesticide Analysis

Quadrupole and Ion Trap Mass Analysers and an introduction to Resolution

The Comparison of High Resolution MS with Triple Quadrupole MS for the Analysis of Oligonucleotides

Food Analysis Applications with Triple Quadrupole LC/MS and TOF LC/MS

New Instruments and Services

New Mass Spectrometry Tools to Transform Metabolomics and Lipidomics

Quantitation by High Resolution Mass Spectrometry: Case Study of TOF MS for the Quantitation of Allopurinol from Human Plasma

Chemical Analysis Business Operations Waters Corporation Milford MA

LOCALISATION, IDENTIFICATION AND SEPARATION OF MOLECULES. Gilles Frache Materials Characterization Day October 14 th 2016

APPLICATION OF ELEVATED RESOLUTION GC-TOF-MS FOR THE MULTIRESIDUE ANALYSIS OF PESTICIDES IN FOOD

Improving Selectivity in Quantitative Analysis Using MS 3 on a Hybrid Quadrupole-Linear Ion Trap Mass Spectrometer

Advances in Hybrid Mass Spectrometry

Rapid Screening and Quantitation of Postharvest Fungicides on Citrus Fruits Using AxION DSA/TOF and Flexar SQ MS

Agilent s LC/MS Portfolio and Applications Examples

Development and validation of a screening method for drug residues in fish, shrimp and eel using LC-HRMS

Application Note: 425. Introduction. Goal. Experimental Conditions

ESAC 2006 Copenhagen. New Developments in LC/MS & GC/MS Screening Methods for Food Safety and Environmental Monitoring.

1. Sample Introduction to MS Systems:

Research to Routine Workflows for Large and Small Molecules using the Q Exactive HR/MS

Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS

Determination of Multi-Residue Tetracyclines and their Metabolites in Milk by High Performance Liquid Chromatography - Tandem Mass Spectrometry

SWATH Acquisition Enables the Ultra-Fast and Accurate Determination of Novel Synthetic Opioids

Applying a Novel Glycan Tagging Reagent, RapiFluor-MS, and an Integrated UPLC-FLR/QTof MS System for Low Abundant N-Glycan Analysis

SCS Mass Spectrometry Laboratory

Ion Source. Mass Analyzer. Detector. intensity. mass/charge

Latest Innovations in LC/MS/MS from Waters for Metabolism and Bioanalytical Applications

2. Ionization Sources 3. Mass Analyzers 4. Tandem Mass Spectrometry

NIH Public Access Author Manuscript J Proteome Res. Author manuscript; available in PMC 2014 July 05.

Advanced Tools to Screen for Targeted and Nontargeted Contaminants in Food Samples. André Schreiber AB SCIEX, Concord, Ontario (Canada)

Towards High Resolution MS in Regulated Bioanalysis

Characterization of an Unknown Compound Using the LTQ Orbitrap

Quantification with Proteome Discoverer. Bernard Delanghe

MS/MS Scan Modes. Eötvös University, Budapest April 16, MS/MS Scan Modes. Árpád Somogyi. Product Ion Scan Select. Scan. Precursor Ion Scan Scan

Considerations of the use of Triple Quadrupoles or Ion Traps in Quantitative Applications

Mass Spectrometry Infrastructure

MS/MS Library Creation of Q-TOF LC/MS Data for MassHunter PCDL Manager

Comprehensive Forensic Toxicology Screening in Serum using On-Line SPE LC-MS/MS

[ APPLICATION NOTE ] High Sensitivity Intact Monoclonal Antibody (mab) HRMS Quantification APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

LC/MS/MS SOLUTIONS FOR LIPIDOMICS. Biomarker and Omics Solutions FOR DISCOVERY AND TARGETED LIPIDOMICS

DART MSI of drugs of abuse in hair

Join the mass movement towards mass spectrometry

A NOVEL METHOD OF M/Z DRIFT CORRECTION FOR OA-TOF MASS SPECTROMETERS BASED ON CONSTRUCTION OF LIBRARIES OF MATRIX COMPONENTS.

Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System

Matrix-induced Signal Enhancement of Propamocarb in LC-MS/MS

LC-MS/MS Solutions for Comprehensive Cannabis Analysis

Meeting Challenging Requirements for the Quantitation of Regulated Growth Promoters Dexamethasone and Betamethasone in Liver and Milk

Toxicology Screening of Whole Blood Extracts Using GC/Triple Quadrupole/MS

More structural information with MS n

OMCL Network of the Council of Europe QUALITY MANAGEMENT DOCUMENT

Validation Report 20

Determination of 44 Pesticides in Foodstuffs by LC/MS/MS Application

Rapid, Simple Impurity Characterization with the Xevo TQ Mass Spectrometer

1 Analytical Methods 2 3 Electronic Supplementary Information Ultra-trace determination of sodium fluoroacetate (1080) as

INTRODUCTION CH 3 CH CH 3 3. C 37 H 48 N 6 O 5 S 2, molecular weight Figure 1. The Xevo QTof MS System.

SYNAPT G2-S High Definition MS (HDMS) System

Development and Validation of Multiresidue Pesticide Methods at FDA/CFSAN

Fundamentals of Soft Ionization and MS Instrumentation

New Developments in LC-IMS-MS Proteomic Measurements and Informatic Analyses

Supporting information

High resolution mass spectrometry for bioanalysis at Janssen. Current experiences and future perspectives

Time (min) Supplementary Figure 1: Gas decomposition products of irradiated DMC.

Determination of Amantadine Residues in Chicken by LCMS-8040

PHOTOCATALYTIC DECONTAMINATION OF CHLORANTRANILIPROLE RESIDUES IN WATER USING ZnO NANOPARTICLES. DR. A. RAMESH, Ph.D, D.Sc.,

Application Note # FTMS-46 solarix XR: Analysis of Complex Mixtures

Supporting information

4-Fluoroethamphetamine

MALDI Imaging Drug Imaging Detlev Suckau Head of R&D MALDI Bruker Daltonik GmbH. December 19,

Determination of red blood cell fatty acid profiles in clinical research

Made For Routine Food, Environment, and Forensic Testing

PosterREPRINT RAPID, SELECTIVE SCREENING OF URINE SAMPLES FOR GLUCURONIDES BY LC/MS/MS INTRODUCTION ABSTRACT

Sue D Antonio Application Chemist Cedar Creek, TX

Supporting Information

Identification of Ginsenosides Using the SCIEX X500R QTOF System

LC/QTOF Discovery of Previously Unreported Microcystins in Alberta Lake Waters

Components of a Mass Spectrometer

For personal use only. Please do not reuse or reproduce

Ten Second DART -MS: Ultra-Fast QC Screening of Foods and Juices with Next Generation DART systems

Michal Godula Thermo Fisher Scientific. The world leader in serving science

Direct Analysis of Folic Acid in Digestive Juices by LC/TOF-MS Application

GC-MS/MS Analysis of Benzodiazepines Using Analyte Protectants

Transcription:

% of compounds % of compounds % of compounds % of compounds Amadeo R. Fernández-Alba LC-Orbitrap QExactive Focus Instrumental LOQ 1% 9% 8% 7% 6% 5% 4% 3% 2% 1% %.1 mg/g.2 mg/g Tomato.5 mg/g ddms2 Target MS 2 AIF Non Target MS 2 (AIF) 1% 9% 8% 7% 6% 5% 4% 3% 2% 1% %.1 mg/g.2 mg/g Apple.5 mg/g ddms2 Target MS 2 AIF Non Target MS 2 (AIF) 1% 9% 8% 7% 6% 5% 4% 3% 2% 1% %.1 mg/g.2 mg/g Orange.5 mg/g ddms2 Target MS 2 AIF Non Target MS 2 (AIF) 1% 9% 8% 7% 6% 5% 4% 3% 2% 1% %.1 mg/g.2 mg/g Onion.5 mg/g ddms2 Target MS 2 AIF Non Target MS 2 (DIA)

LC-Orbitrap QExactive Focus Instrumental LOQs 1% 9% 8% 7% 6% 5% 4% 3% Targe-DDA Target-DDA 2% 1% % 3 mg/g 6 mg/g 1 mg/g 2 mg/g

% of compounds Amadeo R. Fernández-Alba LC-QToF X5R Instrumental LOQs 1 9 8 7 6 5 4 3 Targe-DIA Target-DIA Non target-dia 2 1 Haloxyfop Haloxyfop 3 6 1 µg/kg

% Compounds Amadeo R. Fernández-Alba LC-QToF 655 Instrumental LOQs 1 9 8 7 6 5 4 Non Target-DIA Target-DDA 3 2 1 Disulfoton Sulfone Haloxyfop Haloxyfop 3 ppb 6 ppb 1 ppb 2 ppb

Area Amadeo R. Fernández-Alba LC-Orbitrap QExactive Focus 2,E+9 Linearity 1,8E+9 1,6E+9 1,4E+9 Spinach 1,2E+9 1,E+9 8,E+8 6,E+8 4,E+8 2,E+8 Pirimiphos-methyl Azoxystrobin Ethoprophos Imidacloprid Flusilazole Zoxamide,E+,.7,2.14,4,6.21,8.28 1,.35 1,2.42 1,4.49 1,6 Concentration [mg/g]

Qual. MASS ACCURACY (5 ppm) 2. 1 2. 2. =. 1 2. = 5 1 6 RESOLUTION (?) aa+bb 2..1 =2, 1 mda

Number of possible molecular formulas Amadeo R. Fernández-Alba 8 C -25 H -5 N -5 O -5 Cl -5 Br -5 S -5 6 4 2 Resolution Resolution ~ 25 FWHM 25 molecular formulas - Cl, Br 12 molecular formulas Resolution ~ 7 FWHM 9 molecular formulas 5 ppm - Cl, Br 5 molecular formulas.1.1.5.1.5 495 49 25 5 2 Absolute mass error relative to Thiabendazole Thiabendazole C 1 H 7 N 3 S (m/z 22.433) (Da) (ppm) ~ 2 ~ 2 ~ 4 ~ 2 ~ 4 (FWHM) ~25 ~ 7

ADVANTAGES IN USING A HIGH RESOLUTION (> 25,)

Clofentezine.1 mg/g in lee 17 5 7 Full scan MS 33.199 ± 5 ppm Matrix ion Spectrum Full scan MS Rt = 9.37 Clofentezine ion and matrix ion Mass error -19.1 ppm Matrix ion Clofentezine ion Mass error - 2.6 ppm

European Reference Laboratory - FV Influence of resolution on detection Exact mass of bupirimate: 317.1642 1 9 8 7 6 Resolution 175 317.1657 317.1657 Two non resolved matrix ions. Mass error 4.7 ppm False detect of bupirimate NL: 1.89E6 Nar_1ppb_dil5_175 _1micro_1#7268 RT: 9.31 AV: 1 T: FTMS + p ESI Full ms [1.-8.] 5 4 317.214 317.214 3 2 1 1 9 8 7 6 5 4 3 2 1 317.1728 Resolution 7 Matrix ion. Mass error -3.1 ppm 317.1544 317.1544 317.1728 317.1966 317.1966 Matrix ion. Mass error 27.1 ppm NL: 1.73E6 Nar_1ppb_dil5_7 _1micro_2#283 RT: 9.31 AV: 1 T: FTMS + p ESI Full ms [1.-8.] 317. 317.5 317.1 317.15 317.2 317.25 317.3 317.35 m/z

Number of possible molecular formulas Amadeo R. Fernández-Alba 8 C -25 H -5 N -5 O -5 Cl -5 Br -5 S -5 6 4 2 Resolution Resolution ~ 25 FWHM 25 molecular formulas - Cl, Br 12 molecular formulas Resolution ~ 7 FWHM 9 molecular formulas 5 ppm - Cl, Br 5 molecular formulas.1.1.5.1.5 495 49 25 5 2 Absolute mass error relative to Thiabendazole Thiabendazole C 1 H 7 N 3 S (m/z 22.433) (Da) (ppm) ~ 2 ~ 2 ~ 4 ~ 2 ~ 4 (FWHM) ~25 ~ 7

BUT European Reference Laboratory - FV

Analysis of real samples by LC Q-Exactive MS 2 Metalaxyl (XIC m/z 28.1543 ± 5 ppm). Full scan MS. Resolution 7 RT: 6.72-1.15 1 8 6 4 Pepper spied at 1 µg/g Metalaxyl 8.45 8.47 NL: 3.64E6 Base Pea m/z= 28.1529-28.1557 F: FTMS + p ESI Full ms [14.-75.] MS 1ppb_pimiento1 2 1 8 6 4 Grapefruit Real sample 1 8.47 8.49 8.54? NL: 1.32E7 Base Pea m/z= 28.1529-28.1557 F: FTMS + p ESI Full ms [14.-75.] MS Polemlo_eco 2 1 8 6 4 Grapefruit Real sample 2 8.48? NL: 8.9E6 Base Pea m/z= 28.1529-28.1557 F: FTMS + p ESI Full ms [14.-75.] MS 3_Pomelo 2 6.8 7. 7.2 7.4 7.6 7.8 8. 8.2 8.4 8.6 8.8 9. 9.2 9.4 9.6 9.8 1. Time (min)

LC-QOrbitrap (QExactive) Metalaxyl (XIC m/z 28.1543 ± 5 ppm). Full scan MS. Resolution 7 RT: 6.72-1.15 1 8 6 4 XIC m/z 28.1543 ± 5 ppm Standard of Metalaxyl 8.45 8.47 1 ORBITRAP\...\Polemlo_eco 4/3/14 4:9:55 :. - 18. 1 9 8 7 6 5 4 8 6 4 8.47 8.45 8.47 NL: 3.64E6 Base Pea m/z= 28.1529-28.1557 F: FTMS + p ESI Full ms [14.-75.] MS 1ppb_pimiento1 Library MS/MS spectrum Expected fragments: 148.1119 192,1382 192.1382 16.1119 NL: 3.64E6 Base Pea m/z= 192.138 28.1529-28.1557 F: FTMS + p ESI Full ms NL: 1.32E7 22.138 Base Pea m/z= 28.1529-28.1557 F: FTMS + p ESI Full ms [14.-75.] MS Polemlo_eco 16.112 22.133 [14.-75.] MS 1ppb_pimiento1 3 2 1 2.1 1 8 6 4 2 1 8 6 Relative Abundance 8.47 Grapefruit Real sample 8.48 8.49 8.54 2 1 XIC m/z 28.1543 ± 5 ppm 8 6 4 2 1 8 6 148.1121 95.859 8.3 81.73 6.81 7.45 19.111 9.48 134.964 165.1148 179.161 16.26 1.9 12.33 Time (min) 8.47 NL: 1.32E7 191.63 8.49 Base Pea m/z= 28.1529-28.1557 F: MS spectrum FTMS + p ESI Full ms [14.-75.] MS 28.1547 Polemlo_eco 1.47 3.18 4.18 5.41 5.45 8.75 6.39 11.86 5.29 1.53 1.94 12.9 2.26 13.67 2.4 14.6 2.73 3.53 15.1 1.14 15.94 17.39 1 2 3 4 5 6 7 8 9 1 11 12 13 14 15 16 17 18 lemlo_eco #1465 RT: 8.51 AV: 1 NL: 1.E7 FTMS + p ESI Full ms [14.-75.] 278.1392 1 9 8 7 6 5 4 3 2 1 277.177 278.1961 278.9699 279.1425 279.2323 28.1547 28.2276 8.54 FALSE POSITIVE 188.419 NL: 1.32E7 Base Pea m/z= 28.1529-28.1557 F: FTMS + p ESI Full ms [14.-75.] MS Polemlo_eco 245.178 74.221 95.5484 11.4849 m/z 132.525 172.5912 23.168 2 8.48 NL: 8.9E6 191.6 NL: 8.9E6 Base Pea m/z= Base Pea m/z= 28.1529-28.1557 F: 28.1529-28.1557 F: FTMS + p ESI Full ms FTMS + p ESI Full ms [14.-75.] MS [14.-75.] MS 3_Pomelo 3_Pomelo 277. 277.5 278. 278.5 279. 279.5 28. 28.5 281. 281.5 282. 282.5 283. 283.5 284. 284.5 285. 281.1581 282.2795 283.197 191,63 Experimental MS/MS spectrum 284.981 285.1697 263.11

Identification criteria (EU) Quantitation LOQ, Linearity, Reproducibility,

GC-EI-HRAMS 6 Orbitrap GC-EI-MS System Full scan MS Real Samples: Fluopyram 5 µg/g Std in Tomato Real Sample: Pear C = 26 µg/g Ratio Ion 2/1: 52% Ratio Ion 3/1: 29% Ratio Ion 4/1: 34% Ratio Ion 2/1: 5% Ratio Ion 3/1: 3% Ratio Ion 4/1: 35% The ion ratios are within ± 4% with respect to the standard and mass accuracy below.2 mda Ion 1 (173.29):.1 mda Ion 2 (145.26):.14 mda Ion 3 (195.57): -.8 mda Ion 4 (223.244):.2 mda

Percentage of Compounds (%) Amadeo R. Fernández-Alba GC-Orbitrap QExactive Instrumental LOQ 1 9 8 7 6 5 4 3 Tomato Apple Lee 2 1 1 2 5 1 2 5 1 2 5 C (µg/g)

Percentage of Compounds (%) Amadeo R. Fernández-Alba GC-Orbitrap QExactive Mass Error Full Scan 7 6 5 4 3 Solvent Matrix 2 1 <.1 mda.1-.5 mda.5-1 mda > 1 mda Matrices: at.1,.2 and.5 mg/g Solvent: at.1,.2 and.5 mg/g

Percentage of Compounds (%) Amadeo R. Fernández-Alba GC-Orbitrap QExactive 1 Ion Ratio Ion Ratio within ±3% 8 6 4 2 Solvent Tomato Apple Lee 1 2 5 C (µg/g)

LC-ESI-HRAMS Amadeo R. Fernández-Alba

TARGET ANALYSIS m/z t R CE DDA MS 2 (Data Dependent Acquisition) Restricted to inclusion list of m/z DIA Always MS 2 (Data Independent Acquisition) DDA dd-ms 2 AutoMS 2 Preferred List IDA Inclusion List (Information Dependent Acquisition) AutoMS DIA PRM (Parallel Reaction Monitoring) Targeted MS 2 MRM-HR (MRM-High Resolution) MRM

NON TARGET ANALYSIS m/z DDA MS 2 (Data Dependent Acquisition) 2-1, X more abundant ions DIA Always MS 2 (Data Independent Acquisition) t R 1-3 CE DDA dd-ms 2 (Data Dependent) Auto MS/MS IDA (Information Dependent Acquisition) AutoMS DIA AIF-MS 2 (All Ion Fragmentation) vdia (variable Data Independent Acquisition) AI (All Ion) SWATH bbcid (Sequential Window (broad band Collision Acquisition of all Induced Dissociation) THeoretical Mass Spectra)

dd-ms 2 (two fragment ions with mass error < 5 ppm) 1,66 1,66 Ethion Full scan 384.9949 ± 5 ppm 142.9384 Solvent 142.9386 Lee 114.9615 17.9696 199,8 dd-ms 2 384.9949 ±.5 Da 113.423 17.9699 199.13 Fragment ion Abundance in solvent Abundance in lee 114.9615 39% 43% 142.9386 1% 1% 17.9699 82% 74% 199.13 29% 26%

9.57 9.57 9.41 9.63 9.68 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 1. 1.1 Time (min) Amadeo R. Fernández-Alba C:\Xcalibur\...\Puerro_1ppb_AIF Puerro_1ppb_EC_opt_12min #285 RT: 9.53 AV: 1 NL: 3.35E5 9/13/16 14:4:11 T: FTMS + p ESI d Full ms2 35.182@hcd3. [5.-33.] RT: 8 9.6-1.21 1 7 8 114.9614 6 6 5 4 15.7 17.858 131.856 112.344 119.855 2 4 153.12 Puerro_1ppb_EC_opt_12min 9/13/16 :34:23 RT: 9.5-1.19 9.48 9.5 1 dd-ms 2 Relative Abundance 9 8 7 6 5 4 3 2 1 169.791 Diazinon (35.183) MS 2 spectrum 9.47 NL: Retention time 9.48 ±.1 min 9.51 9.52 Precursor selection m/z= 9.52 9.45 9.53 152.5253- Quadrupole 9.53 window width 1 Da 9.55 152.5268 MS 9.43 9.42 9.57 9.57 9.41 9.63 9.68 Puerro_1ppb_ 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 1. 1.1 AIF Time (min) Puerro_1ppb_EC_opt_12min #285 RT: 9.53 AV: 1 NL: 1.96E5 T: FTMS + p ESI d Full ms2 35.182@hcd3. [5.-33.] 153.12 1 9 8 NL: 3.92E6 Base Pea m/z= 35.168-35.198 MS Puerro_1ppb_ EC_opt_12min 31 6 121.112 9.5 145.18 NL: 19.649 135.81 5 1.46E6 9.51 4 2 8 123.84 2 9.49 149.958 m/z= 3 Base Pea 143.854 157.19 124.9821 1 153.112-6 153.128 MS 1 129.696 161.956 m/z 11.426 9.48 9.52 Puerro_1ppb_ 138.17 163.1118 171.1171 4 AIF 9.47 9.53 9.54 9.46 2 9.56 1 15 11 115 12 125 13 135 14 145 15 9.43 9.45 9.58 m/z 155 16 165 17 175 18 185 19 195 2 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 1. 1.1 1.2 Puerro_1ppb_AIF #188 RT: 9.52 AV: 1 NL: 6.58E7 T: FTMS + p ESI Full ms2 56.@hcd3. [66.7-1.] 8 7 6 5 4 3 17.86 119.858 114.9617 121.115 123.87 128.623 136.9549 142.9985 Time (min) 147.298 149.234 DIA Non target-ms 2 153.124 163.247 Relative Abundance Relative Abundance Relative Abundance 169.795 7 177.1123 153. 153.2 153.4 153.6 153.8 153.1 153.12 153.14 153.16 153.18 153.2 C:\Xcalibur\...\Puerro_1ppb_AIF 9/13/16 14:4:11 RT: 9.6-1.21 1 6 4 2 185.67 9.49 9.49 9.48 9.5 9.51 9.52 9.47 9.53 9.54 9.46 9.56 9.43 9.45 9.58 194.9968 9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 1. 1.1 1.2 Puerro_1ppb_AIF #188 RT: 9.52 AV: 1 NL: 1.3E6 T: FTMS + p ESI Full ms2 56.@hcd3. [66.7-1.] 153.346 1 9 8 7 6 5 4 3 2 153.548 153.733 Time (min) 196.2 153.912 153.124 153.1276 NL: 3.52E6 Diazinon MS 2 1.14 9.52 1.13 m/z= 1.15 8 9.48 1.2 9.53 168.2896-9.93 1. 1.7 9.7 9.46 1.16 9.17 9.22 9.26 9.29 9.3 9.43 9.65 9.92 169.9762 MS 9.13 9.33 9.76 6 9.89 9.94 9.37 spectrum 9.56 9.98 9.58 9.65 9.7 9.77 Puerro_1ppb_ 9.71 9.79 9.82 9.66 AIF 4 2 No precursor selection 9.5 NL: 1 1.46E6 9.51 Base Pea Quadrupole window width 934 Da (66 1 Da) 8 m/z= 153.112-153.128 MS Puerro_1ppb_ AIF 2 1 153.71 186.9713 138.976 169.795 199.1254 m/z 153.346 179.19 159.117 188.9683 153. 153.2 153.4 153.6 153.8 153.1 153.12 153.14 153.16 153.18 153.2 1 165.44 173.1326 184.733 193.9889 1 15 11 115 12 125 13 135 14 145 15 155 16 165 17 175 18 185 19 195 2 m/z

Relative Abundance 1 1 2 3 4 5 6 7 8 9 1 11 12 Time (min) Puerro_1ppb_EC_opt_12min #285 RT: 9.53 AV: 1 NL: 2.1E5 F: FTMS + p ESI d Full ms2 35.182@hcd3. [5.-33.] 1 114.9614 114.9614 9 8 8 7 Relative Abundance 6 5 4 3 2 1 115.379 114.7 114.75 114.8 114.85 114.9 114.95 115. 115.5 115.1 115.15 115.2 m/z 1 169.791 9 8 7 6 5 4 3 2 1 168.9 168.92 168.94 168.96 168.98 169. 169.2 169.4 169.6 169.8 169.1 169.12 169.14 169.16 169.18 169.2 m/z

ADVANTAGES IN USING MASS WINDOWS (MS 2 ) IN NON-TARGET DIA

Ethoprophos 5µg/Kg dilx5 1 Mass Window 65 Da per window? 5 Mass Windows 13 Da per window 1 Mass Windows 65 Da per window Product ions: 172.9854 13.938 96.958 15 Mass Windows 43 Da per window 2 Mass Windows 32 Da per window

Ethoprophos 2µg/Kg dilx5 in Lee XIC-ToF MS/MS ppp:28 1Mass Window Zoom m/z: 96.955 Ion ratio.372 Mass error: -.1 mda Zoom m/z: 13.9392 Ion ratio.342 Mass error: 1.2 mda Zoom m/z: 172.9857 Ion ratio.121 Mass error:.3 mda XIC-ToF MS/MS ppp:18 5Mass Windows Zoom m/z: 96.956 Ion ratio.1885 Mass error: -.2 mda Zoom m/z: 13.9384 Ion ratio.256 Mass error:.4 mda Zoom m/z: 172.9855 Ion ratio.631 Mass error:.1mda XIC-ToF MS/MS ppp:15 1 Mass Windows Ion ratio.542 Mass error: -.1 mda Ion ratio Ion ratio.661.211 Mass error:.4 mdamass error:.2 mda

Ethoprophos 2µg/Kg dilx5 in Lee XIC-ToF MS/MS ppp:11 15Mass Windows Ion ratio.67 Mass error: -.2mDa Ion ratio Ion ratio.669.184 Mass error:.4mda Mass error: -.6mDa XIC-ToF MS/MS ppp:9 2 Mass Windows Ion ratio.622 Mass error:.5mda Ion ratio.586 Mass error:.6 mda Ion ratio.171 Mass error: -.2mDa XIC-ToF MS/MS ppp:8 4 Mass Windows Ion ratio.473 Mass error: mda Ion ratio.414 Mass error:.5mda Ion ratio.122 Mass error:.3 mda

Ion Ratios FS-MSMS Ethoprophos 2µg/Kg dilx5 in Lee Non Target- Independent data acquisition Mass Windows ion fragments 1W 5W 1W 15W 2W 4W 13.938.342.256.661.669.586.414 172.9854.121.631.211.184.171.122 96.958.372.1885.542.67.622.473 >35% <3% Mass errors for ion fragments Ethoprophos 2µg/Kg dilx5 in Lee Non Target- Independent data acquisition Mass error (mda) Exact Mass 1W 5W 1W 15W 2W 4W 172.9854.3.1.2 -.6 -.2.3 13.938 1.2.4.4.4.6.5 96.958 -.1 -.2 -.1 -.2.5.

vdia causes of no identification.1 mg/g of dodine in orange Full scan MS 228.2434 ± 5ppm Full scan MS 228.2434 ± 5ppm MS2 (12 27 m/z) 6.566 ± 5ppm MS2 (195 35 m/z) 6.566 ± 5ppm 3 mass segments 5 mass segments Resolution 35,

MS detector/ characteristics Unit mass resolution MS/MS Accurate mass measurement Typical systems (examples) quadrupole, ion trap, TOF triple quadrupole, ion trap, Q-trap, Q-TOF, Q-Orbitrap High resolution MS: (Q-)TOF (Q-)Orbitrap FT-ICR-MS sector MS Conditions for Identification By using Target List (with retention time) Table 4 in Document Nº SANTE/215/11945. Identification criteria for different MS techniques Acquisition full scan, limited m/z range, SIM selected or multiple reaction monitoring (SRM, MRM), mass resolution for precursor-ion isolation equal to or better than unit mass resolution full scan, limited m/z range, SIM, fragmentation with or without precursor-ion selection, or combinations thereof combined single stage MS and MS/MS with mass resolution for precursor-ion isolation equal to or better than unit mass resolution Requirements for identification minimum number of ions 3 ions 2 product ions 2 ions with mass accuracy 5 ppma,b, c) a) preferably including the molecular ion, (de)protonated molecule or adduct ion b) including at least one fragment ion c) < 1 mda for m/z < 2 d) no specific requirement for mass accuracy e) in case noise is absent, a signal should be present in at least 5 subsequent scans 2 ions: 1 molecular ion, (de)protonated molecule or adduct ion with mass acc. 5 ppm a,c plus 1 MS/MS product ion d) other S/N 3 e) Analyte peas in the extracted ion chromatograms must fully overlap. Ion ratio within ±3% (relative) of average of calibration standards from same sequence

FDA Acceptance Criteria for Confirmation of Identity of Chemical Residues using Exact Mass Data Table 1. Summarized Requirements for Confirmation of Identity MS mode MS 1 MS/MS MS 1 and MS/MS EIC: signal requirement (absolute) A criterion to be set by one of the following methods: (1) a S/N threshold 3; (2) an intensity ratio relative to the comparison standard equal or above a preset threshold EIC: retention time, relative to comparison standard A criterion to be set by one of the following methods: (1).2 min, or (2) within ±2.5%, not to exceed.5 min, or (3) within an established error range, not to exceed.5 min MS: number of structurally significant ions Minimum 2 Minimum 2 MS: mass accuracy 5 ppm 1 ppm Minimum 2 combined MS 1 : 5 ppm; MS/MS: 1 ppm

% % Amadeo R. Fernández-Alba LC-QToF X5R Mass Error Non Target-Data Independent Acquisition SWATH 1 windows Full Scan MS 2 1 9 8 7 6 5 4 3 2 1 <.1 mda.1-.5 mda.5-1 mda >1 mda Solvent Matrix 1 9 8 7 6 5 4 3 2 1 <.1 mda.1-.5 mda.5-1 mda >1 mda Matrices: at.1,.2 and.5 mg/g Solvent: at.1,.2 and.5 mg/g

LC-Orbitrap QExactive Focus 1% 9% 8% 7% 6% 5% 4% 3% 2% 1% % Errors in full scan MS (n = 7444) 64% 3% 5% 1% -.2 mda.21-.5 mda.51-1 mda >1 mda Is it necessary 1 ppm in MS 2? 1% 9% 8% 7% 6% 5% 4% 3% 2% 1% % Errors in dd-ms 2 (n = 3623) 45% 38% 16% 1% -.2 mda.21-.5 mda.51-1 mda >1 mda

% Ions % Ions LC-QToF 655 Mass Error Non Target-Data Independent Acquisition All Ion Amadeo R. Fernández-Alba Full Scan MS 2 1 1 9 9 8 8 7 7 6 5 4 Solvent Matrices 6 5 4 3 3 2 2 1 1 <.1 mda.1-.5 mda.5-1 mda > 1 mda <.1 mda.1-.5 mda.5-1 mda > 1 mda Matrices: at.1,.2 and.5 mg/g Solvent: at.1,.2 and.5 mg/g

Percentage of pesticides Amadeo R. Fernández-Alba LC-Orbitrap QExactive Focus Mass Error Target-Data Dependent Acquisition Full scan MS 2 1% 9% 8% 7% 6% 5% 4% 3% 2% 1% % <.1 mda.1 -.5 mda.5-1 mda > 1 mda 1% 9% 8% 7% 6% 5% 4% 3% 2% 1% % <.1 mda.1 -.5 mda.5-1 mda > 1 mda

a) b) tomato garlic 1% 8% onion lee parsley 6% 4% 2% % spinach green bean cucumber lettuce orange apple.1 mg/g.1 mg/g Mass error (two ions) a) dd-ms 2 b) vdia c) AIF c) Ion ratio Ion ratio Mass error (two ions) Mass error (two ions) Scope: 166 compounds

dd-ms 2 (two fragment ions with mass error < 5 ppm) 1,66 1,66 Ethion Full scan 384.9949 ± 5 ppm 142.9384 Solvent 142.9386 Lee 114.9615 17.9696 199,8 dd-ms 2 384.9949 ±.5 Da 113.423 17.9699 199.13 Fragment ion Abundance in solvent Abundance in lee Mass error (mda) 114.9615 39% 43%.3 142.9386 1% 1%.2 17.9699 82% 74%.3 199.13 29% 26%.5

Ethion Full scan MS 384.9949 ± 5ppm Chlorpyriphos Full scan MS 349.9336 ± 5ppm All ion fragmentation MS 2 114.9614 ± 5ppm 114,9615 Mass error.1 mda 114,9615 Mass error.1 mda 114,9614 Mass error mda Ethion dd-ms 2 spectrum Chlorpyriphos dd-ms 2 spectrum AIF MS 2 spectrum

TARGET ANALYSIS (DATA DEPENDENT ACQUISITION) TOF 3 25 25 NON TARGET MS 2 (DATA INDEPENDENT ACQUISITION) 25 25 25 2 3 2 3 2 3 2 3 2 3 2 NON TARGET MS 2 DIA-VMW 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 Full scan MS MS 2 25 25 25 25.1.2 s.1 -.8 s

Orbitrap FS/dd-MS 2 7 17,5 17,5 K Target MS 2 analysis. Fragmentation is carried out only if precursor ion is detected in full scan MS. List of precursor ions is necessary. Full scan MS MS 2 FS/AIF-MS 2 7 FS/vDIA 7 7 35 35 35 35 35 Non-target MS 2 analysis. Fragmentation is carried out during entire chromatographic run. No precursor selection. No list of precursor ions is present. FS/ AIF-MS 2 / dd-ms 2 7 7 17,5 Combined target and non-target MS 2 analysis. Fragmentation without precursor selection is carried out during entire chromatographic run. List of target precursor ions is present. Fragmentation with precursor selection is carried out only if a precursor ion from the list is detected in full scan MS..27 s.6 s.7 s 1.2 s

CONCLUSIONS GC-HRAMS with Electron ionization source only full scan (no MS 2 ) was necessary for a correct identification and quantitation of the compounds. In case of LC-ESI-HRAMS various MS 2 worflows can be applied depending of the analyzer type (TOF, orbitrap). They can that affect the analytical results especially with difficult matrices and low concentration levels. The specific instrument performance for MS 2 for target, non target or a combination of both modes determines their optimum selection for routine analysis. It is important to consider how these capabilities and modes can affect to ensure, in practice, the compliance with identification criteria established in the EU SANTE Guideline.

Than You for Your Attention