Endothelium-Dependent Relaxation of Small Resistance Vessels Is Impaired in Patients with Autosomal Dominant Polycystic Kidney Disease

Similar documents
Effects and mechanisms of Fenofibrate on the secretion of vascular endothelial contraction factors in hypertensive rats

Relaxation responses of aortic rings from salt-loaded high calcium fed rats to potassium chloride, calcium chloride and magnesium sulphate

Differential responses to endothelial dependent relaxation of the thoracic and abdominal aorta from male Sprague-Dawley rats

Reversal by L-arginine of a dysfunctional arginine/nitric oxide pathway in the endothelium of the genetic diabetic BB rat

Supplemental Figure I

A. HOLiiCYOVA, J. TOROK, I. BERNATOVA, O. PECHANOVA

Endothelial function is preserved in pregnant women with well-controlled type 1 diabetes

Prenatal hypoxia causes long-term alterations in vascular endothelin-1 function in aged male but not female offspring

Vascular Structural and Functional Changes in Type 2 Diabetes Mellitus. Evidence for the Roles of Abnormal Myogenic Responsiveness and Dyslipidemia

Role of Endothelial Nitric Oxide in Shear Stress Induced Vasodilation of Human Microvasculature

Preservation of vascular function in rat mesenteric resistance arteries following cold storage, studied by small vessel myography

This laboratory exercise uses a simple preparation and a straightforward

PHYSIOLOGY MeQ'S (Morgan) All the following statements related to blood volume are correct except for: 5 A. Blood volume is about 5 litres. B.

Studies on the effects of viprostol in isolated small blood vessels and thoracic aorta of the rat

CARDIOVASCULAR SYSTEM

Cooling effects on nitric oxide production by rabbit ear and femoral arteries during cholinergic stimulation

DMT NORMALIZATION GUIDE, VOL.2.1

Calcium-dependent mechanisms mediate the vasorelaxant effects of Tridax procumbens

In the name of GOD. Animal models of cardiovascular diseases: myocardial infarction & hypertension

Hawthorn Extract - Viable Treatment for Cardiovascular Disease or Unscrupulous Herbal Supplement?

Vascular action of the hypoglycaemic agent gliclazide in diabetic rabbits

VASCULAR DYSFUNCTION IN THE -GALACTOSIDASE A-KNOCKOUT MOUSE IS AN ENDOTHELIAL CELL-, PLASMA MEMBRANE-BASED DEFECT

Effects of ascorbic acid on impaired vascular reactivity in aortas isolated from age-matched hypertensive and diabetic rats

Mechanisms of simvastatin-induced vasodilatation of rat superior mesenteric arteries

Aging is a well-documented cardiovascular risk factor.

hypoxic pulmonary hypertension

The role of angiotensin II (AngII) in maintaining

ambrisentan, bosentan, BQ788, endothelin-1, ET A receptors, ET B receptor-mediated clearance mechanism, ET B receptors, macitentan, sarafotoxin S6c

The Arterial and Venous Systems Roland Pittman, Ph.D.

Vascular disease. Structural evaluation of vascular disease. Goo-Yeong Cho, MD, PhD Seoul National University Bundang Hospital

How to detect early atherosclerosis ; focusing on techniques

Blood Vessel Mechanics

rapid communication Charybdotoxin and apamin block EDHF in rat mesenteric artery if selectively applied to the endothelium

Cardiovascular Physiology

T excellent conduit for coronary artery bypass grafting.

The Study of Endothelial Function in CKD and ESRD

Differences in functional and structural properties of segments of the rat tail artery

Cardiovascular System. Biology 105 Lecture 15 Chapter 12

The CARI Guidelines Caring for Australasians with Renal Impairment. Specific management of IgA nephropathy: role of fish oil

Functional vascular disorders

Endothelial cells play a key role in the local regulation

Magnesium is a key ionic modulator of blood vessel

European Heart Journal (1999) 20, Article No. euhj , available online at on

Cardiovascular Physiology. Heart Physiology. Introduction. The heart. Electrophysiology of the heart

Diversity of endothelium-derived vasocontracting factors arachidonic acid metabolites 1

2.4. Isolated Vessels. Introduction

Exercise Training Enhances Flow-Mediated Dilation in Spontaneously Hypertensive Rats

Cardiovascular system

Effects of Poststroke Losartan Versus Captopril Treatment on Myogenic and Endothelial Function in the Cerebrovasculature of SHRsp

Endothelium-Dependent Contractions

BIPN100 F15 Human Physiol I (Kristan) Lecture 14 Cardiovascular control mechanisms p. 1

Nitric oxide is the mediator of both endothelium-dependent relaxation and hyperpolarization of the rabbit carotid artery

Numerous studies have been reported on agerelated

Reactivity of the isolated perfused rat tail vascular bed

Journal of the American College of Cardiology Vol. 37, No. 4, by the American College of Cardiology ISSN /01/$20.

Modulation of vascular reactivity in normal, hypertensive and diabetic rat aortae by a non-antioxidant flavonoid

Assessment of endothelial function of large, medium, and small vessels: a unified myograph

Multiple factors contributing to lipopolysaccharide-induced reactivity changes in rabbit pulmonary artery

Potassium-Induced Release of Endothelium- Derived Relaxing Factor From Canine Femoral Arteries

VA/DoD Clinical Practice Guideline for the Diagnosis and Management of Hypertension - Pocket Guide Update 2004 Revision July 2005

11/10/2014. Muscular pump Two atria Two ventricles. In mediastinum of thoracic cavity 2/3 of heart's mass lies left of midline of sternum

Circulation. Blood Pressure and Antihypertensive Medications. Venous Return. Arterial flow. Regulation of Cardiac Output.

Exercise Training Enhances Flow-Mediated Dilation in Spontaneously. Hypertensive Rats. Herbert J. Meiselman 2 Prof, Oğuz K.

Eicosapentaenoic Acid and Docosahexaenoic Acid: Are They Different?

SUPPLEMENTAL DATA. Lumen area ( m 2 )

Multiscale Blood Flow Regulation Models Incorporating Cellular Function of the Vessel Wall

EFFECTS OF AGING AND EXERCISE TRAINING ON THE MYOGENIC MECHANISM OF SKELETAL MUSCLE RESISTANCE ARTERIES

Chapter 9. Body Fluid Compartments. Body Fluid Compartments. Blood Volume. Blood Volume. Viscosity. Circulatory Adaptations to Exercise Part 4

Importance of Calcium in Long-Term Preservation of the Vasculature

Peptides-Derived from Thai Rice Bran Improve Hemodynamics and Induce Vasorelaxation in Renovascular Hypertensive Rats

Chapter 1 RENAL HAEMODYNAMICS AND GLOMERULAR FILTRATION

The average potassium content during the last 5. solids. This average decrease of 2.2 meq. per 100. initial potassium content of the arteries.

Mechanical and vasomotor properties of piglet isolated middle cerebral artery

REGULATION OF CARDIOVASCULAR SYSTEM

Endothelial dysfunction in hypertension: from bench to bedside

HYPERTENSIVE VASCULAR DISEASE

Metabolic Syndrome and Chronic Kidney Disease

Repositioning of the Mineralocorticoid Receptor Antagonists in renal diseases: pathophysiological basis and therapeutic issues

PCTH 400. Endothelial dysfunction and cardiovascular diseases. Blood vessel LAST LECTURE. Endothelium. High blood pressure

The Cardiovascular and Lymphatic Systems Cardiovascular System Blood Vessels Blood Vessels Arteries Arteries Arteries

Control of Myocardial Blood Flow

Access to the published version may require journal subscription. Published with permission from: Elsevier.

Cardiovascular. Function of the cardiovascular system is to transport blood containing: Nutrients Waste Hormones Immune cells Oxygen

Current Role of Renal Artery Stenting in Patients with Renal Artery Stenosis

Effects of Aging and Hypertension on Endothelium-Dependent Vascular Relaxation in Rat Carotid Artery

UCLA Nutrition Bytes. Title. Permalink. Journal ISSN. Author. Publication Date. Calcium and Hypertension.

Evidence for speci c regional patterns of responses to di erent vasoconstrictors and vasodilators in sheep isolated pulmonary arteries and veins

Managing High Blood Pressure Naturally. Michael A. Smith, MD Life Extension s Healthy Talk Series

The CARI Guidelines Caring for Australasians with Renal Impairment. ACE Inhibitor and Angiotensin II Antagonist Combination Treatment GUIDELINES

Impaired vasodilation of peripheral response to acetylcholine in human with abdominal aortic aneurysm

(D) (E) (F) 6. The extrasystolic beat would produce (A) increased pulse pressure because contractility. is increased. increased

Cardiac Output (C.O.) Regulation of Cardiac Output

The Cardiovascular and Lymphatic Systems

Cardiovascular System. Blood Vessel anatomy Physiology & regulation

Interval sprint training enhances endothelial function and enos content in some arteries that perfuse white gastrocnemius muscle

Nephrology Grand Rounds. Vasishta Tatapudi, MD January 24 th, 2013

Reducing proteinuria

IB TOPIC 6.2 THE BLOOD SYSTEM

Transcription:

ARTICLES J Am Soc Nephrol 11: 1371 1376, 2000 Endothelium-Dependent Relaxation of Small Resistance Vessels Is Impaired in Patients with Autosomal Dominant Polycystic Kidney Disease DAN WANG,* JENS IVERSEN, and SVEND STRANDGAARD* Departments of *Nephrology and Medicine, and Clinical Physiology, Herlev Hospital, Herlev, Denmark. Abstract. Impaired endothelium-dependent relaxation has been demonstrated previously in resistance vessels of Han:SPRD polycystic kidney disease rats. The aim of the present study was to investigate whether endothelium-dependent relaxation is reduced also in patients with autosomal dominant polycystic kidney disease (ADPKD) and whether this is influenced by the nitric oxide (NO) system. Small subcutaneous resistance vessels from normotensive ADPKD patients with normal or nearnormal renal function (n 9) and from healthy control subjects (n 10) were mounted in a Mulvany Halpern myograph. The morphology of the vessels and acetylcholine (ACh)-induced endothelium-dependent relaxation, as well as 3-morpholino-sydnonimine (SIN-1, NO donor)-induced endotheliumindependent relaxation were investigated. The results showed that: (1) there were no significant differences in morphologic parameters of resistance vessels between the two groups; (2) the maximal ACh-induced relaxation rate was decreased in ADPKD patients compared with control subjects (71.5 12.1 versus 85.2 8.7%, P 0.01); (3) in the presence of L- arginine (a substrate of NO synthase), a left shift of the ACh dose response curves was found in control subjects, but not in ADPKD patients; (4) in the presence of the N G -nitro-l-arginine methyl ester (an inhibitor of NO synthase), a right shift of the ACh dose response curve was found in control subjects, but not in ADPKD patients; and (5) endothelium-independent relaxation rate induced with SIN-1 was similar in patients and control subjects. In conclusion, endothelium-dependent relaxation was impaired in resistance vessels from patients with ADPKD. The reduced response of the vessels to both the substrate and inhibitor of NO synthase in ADPKD suggests that an impairment of NO synthase may be involved in the mechanism of endothelial dysfunction in ADPKD. Received September 28, 1999. Accepted December 13, 1999. Correspondence to Dr. Dan Wang, Department of Nephrology, Herlev Hospital, University of Copenhagen, Herlev Ringvej 75, DK-2730 Herlev, Denmark. Phone: 45 44883781; Fax: 45 44884615; E-mail: wangdan9090@hotmail.com 1046-6673/1108-1371 Journal of the American Society of Nephrology Copyright 2000 by the American Society of Nephrology Autosomal dominant polycystic kidney disease (ADPKD) is a common genetic multisystem disorder (1,2). Cardiovascular manifestations may include hypertension, cerebral and coronary artery aneurysms, mitral valve prolapse, aortic root dilation, dissection of the thoracic aorta, and aneurysm formation in the abdominal aorta (3,4). Cysts may develop not only in the kidneys, but also in the liver, spleen, and pancreas (5). The structure and function of the microvascular bed have not previously been investigated in ADPKD. Endothelium-dependent relaxation of arteries can be induced in vitro by acetylcholine (ACh), which functions as an activator of nitric oxide synthase (NOS) by increasing intracellular calcium (6). An impaired relaxation response of resistance vessels to ACh has been demonstrated and proposed as a contributory factor to vascular disease in essential hypertension and diabetes mellitus (7 10). In Han:SPRD polycystic kidney disease rats, we have demonstrated that endothelium-dependent relaxation of resistance vessels was impaired (11). Accordingly, endothelial dysfunction of resistance vessels might be present in patients with ADPKD as well, and might contribute to the development of hypertension. To test this hypothesis, the present study was designed to elucidate whether there is an impairment of ACh-induced endothelium-dependent relaxation in patients with ADPKD and whether this could be influenced by NOS substrate and inhibitor. Materials and Methods Patients The protocol was approved by the Medical Ethics Committee, Copenhagen County, Denmark, and all individuals gave written informed consent before entering the study. Ten healthy control subjects and nine normotensive ADPKD patients ages 23 to 60 yr were recruited. All ADPKD patients were diagnosed by renal ultrasound, showing five or more renal cysts distributed in both kidneys. Most of the patients had a positive family history of ADPKD. During outpatient control, the ADPKD patients consistently had a systolic BP 140 mmhg and a diastolic BP 85 mmhg. No antihypertensive medications or other drugs were taken by the patients or control subjects. Plasma creatinine was normal in nine of the ADPKD patients (68 to 105 mol/l) and slightly elevated in one patient (154 mol/l). The patients had no disease other than ADPKD, and were in good general health. Twenty-four hour ambulatory BP was measured with the Takeda 2420 monitor. GFR was measured with the 4-h one sample plasma

1372 Journal of the American Society of Nephrology J Am Soc Nephrol 11: 1371 1376, 2000 clearance of 51 Cr-ethylenediaminetetra-acetic acid (12). These measurements were done within 1 wk of the subcutaneous fat biopsy described below. Preparation of Small Subcutaneous Vessels All subjects arrived in the laboratory between 8 and 9 a.m. and had fasted since the previous evening. From each individual, a biopsy of subcutaneous fat of 1.0 0.5 0.5 cm was obtained from the gluteal region under local anesthesia with 1% lidocaine hydrochloride. Arteries were carefully dissected from the biopsy under a dissecting microscope (Olympus SN450). Two segments of the same artery (about 2 mm in length with a mean diameter of 300 m) were isolated as described previously (13). Vessels were mounted as ring preparations on two 40- m stainless steel wires in an isometric Mulvany Halpern small-vessel myograph (J.P. Trading, Science Park, Aarhus, Denmark) (Figure 1) (14). One wire was attached to a force transducer and the other was attached to a micrometer (13,14). This arrangement enabled the wall tension to be measured at a predetermined internal circumference. Both dissection and mounting of the vessels were carried out in cold (4 C) PSS solution (118 mmol/l sodium chloride, 25 mmol/l sodium bicarbonate, 4.5 mmol/l potassium chloride, 2.5 mmol/l calcium chloride, 1.0 mmol/l magnesium sulfate, and 6.0 mmol/l glucose). The two segments of resistance vessels from each individual were studied in parallel. One was treated by the experimental protocol described below; the other was used as a time control and was treated only with repeated courses of contraction with noradrenaline (NA) (10 5 mol/l). Vessel Experimental Procedure Once mounted, the resistance vessels were warmed to 37 C in PSS and allowed to equilibrate for 30 min, with the vessels internal circumference set to give a wall tension of 0.2 mn/mm. The myograph chambers were bubbled with 5% CO 2 and 95% O 2 to maintain a ph of 7.4. Morphologic measurements of wall thickness were then performed with a precalibrated filar micrometer eyepiece with a resolution of 1 m. The cross-sectional wall area of each vessel could then be calculated. These measurements were made with the vessel relaxed and minimal passive stretch (wall tension of 0.2 mn/mm), and normalized results were calculated by a computer program (Myosight, J.P. Trading, Science Park, Aarhus, Denmark). The resting tension/ internal circumference relationship for each vessel was determined and then the internal circumference was set to 0.9 L 100, where L 100 is the internal circumference the vessel would have had in vivo when relaxed and under a transmural pressure of 100 mmhg (15). After this normalization process, the vessels were incubated in PSS for 30 min before further study. During this baseline period, the PSS was replaced at 10-min intervals. Vessels were then contracted by 3 PSS containing 10 5 mol/l NA, followed by one exposure to high-potassium PSS (during which sodium chloride was replaced by potassium chloride) and one exposure to PSS containing 10 5 mol/l NA, respectively. Contractions were maintained for 3 min before rinsing with PSS back to baseline. After this stimulation procedure, the vessels were rinsed three times with fresh PSS and left to recover at baseline for 20 min. Maximal contraction of the vessels was then achieved by incubation with 10 5 mol/l NA. When a plateau of contraction had been reached, relaxation was induced by adding cumulatively increasing concentrations of ACh (10 9 to 10 5 mol/l) in the presence of an unchanged concentration of NA. Afterward, the bath was rinsed with PSS three times, and the vessels were allowed to recover for at least 15 min. Then the vessels were maximally contracted with NA (10 5 mol/l) and relaxed with cumulatively increasing concentrations of the endothelium-independent vasodilator (nitric oxide [NO] donor) 3-morpholino-sydnonimine (SIN-1, 10 9 to 10 3 mol/l), again in the presence of an unchanged concentration of NA. The vessels were then rinsed to baseline and incubated with L-arginine (substrate of NOS, 10 3 mol/l) for 30 min, and subsequently the NA contraction and ACh relaxation response were studied in the presence of L-arginine. Finally, the vessels were rinsed with PSS and incubated with the NOS inhibitor N G -nitro-l-arginine methyl ester (L-NAME, 10 4 mol/l) for 30 min, after which the NA contraction and ACh relaxation response were studied in the presence of L-NAME. All solutions were freshly prepared 1 d before the experiment. ACh, NA, SIN-1, and L-NAME were purchased from Sigma (St. Louis, MO). All reagents were prepared in distilled water and diluted to the final bath concentration with PSS. Figure 1. Diagram of segment of small subcutaneous artery mounted in wire myograph.

J Am Soc Nephrol 11: 1371 1376, 2000 Endothelial Dysfunction in ADPKD Patients 1373 Statistical Analyses All data are expressed as mean SD. Statistical differences were evaluated by two-tailed t test or by Newman-Keuls statistics. ACh sensitivity is expressed in terms of ped 50, which is the ( Log) concentration of the drug required to produce 50% of the maximum response. Values of relaxation response to ACh and SIN-1 were expressed as a percentage decline in the maximum contractile response. Statistical significance was defined as P 0.05. Statistica 5.0 (StatSoft, Tulsa, OK) was used as software. Results Clinical Characteristics of the Subjects There were no significant differences between ADPKD patients and control subjects in age, 24-h ambulatory BP, and GFR (Table 1). Table 2. Morphologic data of vessels from study groups a Parameter Control Subjects ADPKD Patients n 10 9 Diameter ( m) 156 29 153 10 Wall thickness ( m) 57.8 9 56.8 7 Wall area ( m 2 ) 39,540 3709 38,572 40,372 Wall to lumen ratio (%) 37.8 7 38.6 6 a Results are given as mean SD. Morphology of Vessels There were no significant differences in vessel diameter, wall thickness, wall area, and wall to lumen ratio between ADPKD patients and healthy control subjects (Table 2). Endothelium-Dependent Relaxation ACh Response. The maximum relaxation rate (E max ) and ped 50 by ACh were significantly attenuated in maximumcontracted resistance vessels from patients with ADPKD (E max : 71.5% 12.1%; ped 50 : 6.72 0.75) compared with the healthy control subjects (E max : 85.2% 8.7%; ped 50 : 7.15 0.71) (P 0.01) (Figure 2). Effect of L-Arginine. Incubation with the substrate of NOS, L-arginine, resulted in an increased maximum relaxation to ACh of resistance vessels from healthy control subjects (from 85.2 8.7 to 92.3 5.7%, P 0.05) (Figure 3A). The ACh dose response curves of the vessels from healthy control subjects were shifted to the left in the presence of L-arginine (ped 50 from 7.15 0.71 to 7.45 0.79; P 0.001) (Figure 3A). A slight, nonsignificant leftward shift of the response to ACh in the presence of L-arginine was observed in vessels from patients with ADPKD (Figure 3B). The dose response curve to ACh was significantly different in vessels from healthy control subjects and patients with ADPKD in the presence of L-arginine (E max : 92.3 5.7% versus 78.2 8.1%, control versus ADPKD, P 0.001) (Figure 4A). Incubation with L-arginine hence increased the difference in response to ACh between patients and control subjects (Figure 4A). Table 1. Characteristics of study groups a Characteristic Control Subjects ADPKD Patients Female/male 5/5 5/4 Age (yr) 38 10 43 10 24-h average arterial BP (mmhg) 92 6 89 8 Plasma clearance of 51 Cr-EDTA (ml/min) 100 9 84 16 a Results are given as mean SD. Figure 2. Acetylcholine-induced relaxation curve of noradrenaline (NA)-precontracted subcutaneous small arteries from healthy control subjects (E, n 10) and patients with autosomal dominant polycystic kidney disease (ADPKD) (f, n 9). P 0.05 versus healthy control subjects. Results are given as mean SD. Effect of L-NAME. Incubation with the NOS inhibitor L-NAME resulted in a significant decrease in the maximum relaxation response to ACh of resistance vessels from healthy control subjects (from 85.2 8.7 to 68.1 6.6%) (Figure 3A). The ACh dose response curves showed a significant rightward shift in the presence of L-NAME (ped 50 : from 7.15 0.71 to 6.56 0.77, P 0.01) (Figure 3A). Incubation with L-NAME did not influence the response to ACh in vessels from patients with ADPKD (Figure 3B). Hence, in the presence of L-NAME, the dose response curve to ACh was not significantly different in vessels from patients and control subjects (Figure 4B). Endothelium-Independent Relaxation (Relaxation Response to SIN-1) The SIN-1 dose response was identical in resistance vessels from ADPKD patients and healthy control subjects (Figure 5). Time Control of Vessel Response The time-control studies showed no difference in vessel constriction response to NA for the duration of the experiment. The relaxation response of the time-control result to ACh in increasing dose was identical at start at baseline and after incubation in PSS for 30 min. We have found previously that the maximum response of ACh is similar between the dose

1374 Journal of the American Society of Nephrology J Am Soc Nephrol 11: 1371 1376, 2000 Figure 3. Acetylcholine-induced relaxation curve of NA-precontracted subcutaneous small arteries from healthy control subjects (n 10) (A) and patients with ADPKD (n 9) (B) in the absence (E) and in the presence (f) ofl-arginine (10 3 mol/l), and in the presence of N G -nitro-l-arginine methyl ester (L-NAME) (Œ) (10 4 mol/l). a P 0.01 versus in PSS and in the presence of L-arginine. b P 0.01 versus in PSS. Results are given as mean SD. response curves performed after incubation in PSS for 30 min and after incubation in PSS for 60 min and 120 min. Moreover, in another time-control experiment with subcutaneous resistance arteries from healthy control subjects and ADPKD patients, we found that NA maximum responses and sensitivity to ACh remained unchanged within a 10-h period (data not shown). Discussion ACh-mediated relaxation of resistance vessels is predominantly mediated by the production of NO in vascular endothelial cells. NO is generated by the endothelial enzyme NOS from the substrate L-arginine. ACh may have other effects on the endothelium, such as the release of prostaglandin H 2 (16), endothelial-derived contracting factor, or endothelial-derived hyperpolarizing factor (17). Vasodilation induced by ACh via mechanisms other than NOS activity are resistant to the blocking effect of L-NAME. In the absence of endothelium, ACh constricts the small resistance vessels (18). The results of the present study demonstrated that AChinduced endothelium-dependent relaxation was impaired in Figure 4. Acetylcholine-induced relaxation curve of NA-precontracted subcutaneous small arteries from healthy control subjects (n 10) and patients with ADPKD (n 9) in the presence of L-arginine (A) and in the presence of L-NAME (10 4 mol/l) (B). *P 0.01 versus healthy control subjects. Results are given as mean SD. resistance vessels from patients with ADPKD. Hence, endothelial dysfunction was present in ADPKD, even though the subjects were still in the early normotensive phase of the disease. By contrast, endothelium-independent relaxation response to an NO donor (SIN-1) was similar in patients and control subjects (Figure 4), demonstrating that the impairment of endothelium-dependent relaxation was not due to a decreased ability of vascular smooth muscle to respond to exogenous NO. The role of NO was further assessed by the effect of incubation with the NOS substrate L-arginine and the NOS inhibitor L-NAME on ACh-induced vasodilation. In healthy control subjects, the effect of ACh was increased by L-arginine and impaired by L-NAME, whereas in ADPKD neither of these substances significantly influenced the ACh relaxation response. Hence, L-arginine increased the difference between the ACh response in healthy control subjects and ADPKD patients, while L-NAME-resistant or NO-independent vasodilation was the same in both groups (Figure 4). In ADPKD, dysfunction of endothelium-dependent vasorelaxation thus seemed to be as-

J Am Soc Nephrol 11: 1371 1376, 2000 Endothelial Dysfunction in ADPKD Patients 1375 Figure 5. 3-Morpholino-sydnonimine (SIN-1)-induced relaxation response of NA-precontracted subcutaneous small arteries from healthy control subjects (E, n 10) and patients with ADPKD (f, n 9). P 0.05 versus healthy control subjects. Results are given as mean SD. sociated with a defective NO release from the endothelium. Interestingly, in a recent study of blood vessels from endothelial NOS (enos) knockout ( / ) mice (19), isolated aorta and carotid and coronary arteries did not relax in response to ACh and endothelial-derived hyperpolarizing factor. In enos ( / ) control mice, the endothelium-dependent relaxation to ACh involved either NO or the combination of NO plus a product of cyclo-oxygenase. These findings demonstrate that enos plays an important role in endothelium-dependent relaxation, and that enos impairment in ADPKD endothelium may be the cause of the findings of the present study. The changes in small artery function in ADPKD patients observed in the present study seemed to be independent of structural vascular changes, because parameters of resistance arterial structure were identical in both ADPKD patients and healthy control subjects. Similar observations have been made by our group in mesenteric arteries from young polycystic kidney disease rats (11) and suggest that endothelial dysfunction and defective endothelial NO generation may be early features in ADPKD, contributing to the development of hypertension and vascular disease well before renal function starts to decline. A decreased endothelium-dependent relaxation response in isolated small arteries has also been demonstrated in patients with essential hypertension (20 22), and in patients with diabetes mellitus (9,23). In most of these studies, as in the present one, there was no change in the relaxation response to endothelium-independent vasodilators such as sodium nitroprusside. The question of whether endothelial dysfunction is an early feature of vascular disease in hypertension and diabetes mellitus, as it appears to be in ADPKD, has not been studied. The relationship between the endothelial NO system and the well-described genetic defect in the various types of ADPKD is uncertain. Polycystin 1, which is the gene product of the most frequent form of ADPKD, has been demonstrated in the wall of aneurysms from patients, and also in large vessels from patients and control subjects (4). It is uncertain whether polycystins also are present in small resistance vessels such as those used in the present study. The functional role of vascular polycystin has not been elucidated, but it would be a likely participant in the chain of events leading to vascular disease in ADPKD, possibly with NOS dysfunction also involved. An impairment of the NO system may also be operative in the kidneys in animal models of polycystic disease. Thus, in the kidneys of rats with polycystic disease, expression of NOS isoenzymes decreases as cyst development progresses (24). Taxol, which is an inducer of NOS, inhibits cyst growth and loss of renal function in mice with polycystic kidney disease (25,26). Interestingly, expression of endothelin receptors increases in the course of cyst growth (27). In conclusion, the present study demonstrated impaired endothelium-dependent relaxation in resistance vessels from patients with ADPKD with a normal BP and renal function. This impairment may be a factor that contributes to the development of hypertension and vascular disease later in life. A reduced ACh response to substrate and inhibitor of NOS was also demonstrated, suggesting that an impaired function of this enzyme may be involved in the mechanism of endothelial dysfunction in ADPKD. It may be speculated that treatment with an exogenous NO donor could reduce the cardiovascular manifestations of disease in these patients. Acknowledgments This study was supported by the Daloon Foundation, the Becket Foundation, the Danish Kidney Foundation (Nyreforeningen) and the Foundation for the Advancement of Medical Research, Denmark. The authors thank technician Pia Linne Olsen for her meticulous laboratory work during the study. References 1. Perrone RD, Grubman SA, Murray SL, Lee DW, Alper SL, Jefferson DM: Autosomal dominant polycystic kidney disease decreases anion exchanger activity. Am J Physiol 272: C1748 C1756, 1997 2. Gabow PA: Definition and natural history of autosomal dominant polycystic kidney disease. In: Polycystic Kidney Disease, Oxford Clinical Nephrology Series, edited by Watson ML, Torres VI, Oxford, Oxford University Press, 1996, pp 333 355 3. Grantham JJ, Geiser JL, Evan AP: Cyst formation and growth in autosomal dominant polycystic kidney disease. Kidney Int 31: 1145 1152, 1987 4. Griffin MD, Torres VE, Grande JP, Kumar R: Vascular expression of polycystin. J Am Soc Nephrol 8: 616 626, 1997 5. Biagini A, Maffei S, Baroni M: Familiar clustering of aortic dissection in polycystic kidney disease. Am J Cardiol 72: 741 742, 1993 6. Vanhoutte PM, Mombouli JV: Vascular endothelium: Vasoactive mediators. Prog Cardiovasc Dis 39: 229 238, 1996 7. Luscher TF, Boulangern CM, Dohi Y, Yang Z: Endotheliumderived contracting factor. Hypertension 19: 117 130, 1992 8. Dohi Y, Criscioni L, Luscher TF: Renovascular hypertension impairs formation of endothelium-derived relaxing factors and sensitivity to endothelin-1 in small arteries. Br J Pharmacol 104: 349 354, 1991 9. McNally PG, Watt PAC, Rimmer T, Burden AC, Hearnshaw JR,

1376 Journal of the American Society of Nephrology J Am Soc Nephrol 11: 1371 1376, 2000 Thurston H: Impaired contraction and endothelium-dependent relaxation in isolated resistance vessels from patients with insuline dependent diabetes mellitus. Clin Sci 87: 31 36, 1994 10. Heygate KM, Lawrence IG, Bennett MA, Thurston H: Impaired endothelium-dependent relaxation in isolated resistance arteries of spontaneously diabetic rats. Br J Pharmacol 116: 3251 3259, 1995 11. Wang D, Iversen J, Strandgaard S: Contractility and endothelium-dependent relaxation of resistance vessels in polycystic kidney disease rats. J Vasc Res 36: 502 509, 1999 12. Groth S, Aasted M: 51 Cr-EDTA clearance determined by one plasma sample. Clin Physiol 1: 417 425, 1981 13. Schiffrin EL, Deng LY, Larochelle P: Effect of endothelin upon small subcutaneous small arteries of mild essential hypertensive patients. J Hypertens 10: 437 444, 1992 14. Mulvany MJ, Halpern W: Contractile properties of small arterial resistance vessels in spontaneously hypertensive and normotensive rats. Circ Res 41: 19 26, 1977 15. Mulvany MJ, Halpern W: Mechanical properties of vascular smooth muscle cells in situ. Nature 260: 617 619, 1976 16. Kato Y, Iwana Y, Okumura K, Hashimoto H, Ito T, Satake T: Prostaglandin H2 may be the endothelium derived contracting factor released by acetylcholine in the aorta of the cat. Hypertension 15: 475 481, 1990 17. Zanchi A, Aubert JF, Brunner HR, Waeber B: Vascular acetylcholine response during chronic NO synthase inhibition: In vivo versus in vitro. Cardiovasc Res 30: 122 129, 1995 18. Richard V, Gosgnach M, Drieu la-rochelle C, Giudicelli JF, Berdeaux A: The L-arginine-nitric oxide pathway in the canine femoral vascular bed: In vitro and in vivo experiments. Fundam Clin Pharmacol 5: 777 788, 1991 19. Chataigneau T, Feletou M, Huang PL, Fishman MC, Duhault J, Vanhoutte PM: Acetylcholine-induced relaxation in blood vessels from endothelial nitric oxide synthase knockout mice. Br J Pharmacol 126: 219 226, 1999 20. Deng LY, Li JS, Schiffrin EL: Endothelin receptor subtypes in resistance arteries from humans and rats. Cardiovasc Res 29: 532 535, 1995 21. Taddei S, Virdis A, Mattei P, Ghiadoni L, Sudano I, Salvetti A: Defective L-arginine-nitric oxide pathway in offspring of essential hypertensive patients. Circulation 94: 1298 1303, 1996 22. Mattei P, Virdis A, Ghiadoni L, Taddei S, Salvetti A: Endothelial function in hypertension. J Nephrol 10: 192 197, 1997 23. Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA: Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 97: 22 28, 1996 24. Wang D, Braendstrup O, Larsen S, Strandgaard S: Renal expression of nitric oxide synthase and circulating nitric oxide in polycystic kidney disease rats [Abstract]. XVth International Congress of Nephrology, Buenos Aires, Argentina, May 2 6, 1999 25. Woo DD, Miao SY, Pelayo JC, Woolf AS: Taxol inhibits progression of congenital polycystic kidney disease. Nature 368: 750 753, 1994 26. Woo DD, Tabancay AP Jr, Wang CJ: Microtubule active taxanes inhibit polycystic kidney disease progression in cpk mice. Kidney Int 51: 1613 1618, 1997 27. Hocher B, Zart R, Schwarz A, Vogt V, Braun C, Thone-Reineke C, Braun N, Neumayer H-H, Koppenhagen K, Bauer C, Rohmeiss P: Renal endothelin system in polycystic kidney disease. J Am Soc Nephrol 9: 1169 1177, 1998 Access to UpToDate on-line is available for additional clinical information at http://www.jasn.org/