Castanea spp. hybrid clones in vitro conservation: synthetic seeds vs slow growth storage

Similar documents
macrophylla var. ashei shoot tips Cryopreservation of Magnolia by droplet vitrification Raquel Folgado*, Tim Thibault* and Bart Panis~

PROCEEDINGS OF THE FOURTH ACADEMIC SESSIONS 2007

Objective: How it Was Done:

Effect of Potassium and Sucrose Concentrations on the Production of Potato Microtubers Through Tissue Culture.

2.1 Reproduction At the end of this sequence of lessons I can:

Reduced dietary levels of EPA and DHA have a major impact on the composition of

2012 Johnsongrass Control Trials

Efficacy of Additional Insecticides for Insect Pests in a MGVII Soybean Beaumont, TX 2005

2013 Johnsongrass Control Trials

Advances in Environmental Biology

Title: Potential Management of Powdery Scab and Mop Top Virus Using an Integration of Soil Fumigation and Genetic Resistance

2016 Processing Onion Weed Control Trial

The effect of plant growth regulator and in vitro conservation of teak (Tectona grandis L.) by tissue culture

Trichoderma atroviride SC1 can prevent infections of Phaeoacremonium and Phaeomoniella in nurseries

Objective: Procedures:

Answer Notes Marks 1 (a) root appears / shoot appears / sprout / seed coat ignore growth alone 1

Embryo rescue of crosses between diploid and tetraploid grape cultivars and production of triploid plants

Key words: Solanum tuberosum - Andigena - Multivariate analyses - Heterosis - Breeding strategies. Materials and methods.

Research Update Meeting Pathological Highlights from 2007

VARIETY DEVELOPMENT IN TULELAKE, CA

A COMPARISON OF FORAGE YIELD AND QUALITY IN A SIMULATED GRAZE-OUT FOR TWELVE VARIETIES OF HARD RED AND WHITE WINTER WHEAT

Field Efficacy of Seed Dressing Fungicides against Seed Borne Diseases of Cotton

Gary L. Hein and John Thomas, University of Nebraska Panhandle Research and Extension Center, 4502 Ave. I, Scottsbluff, NE

In Vitro Culture of Cassava (Manihot esculenta Crantz): Assessment of Cassava Starch from Different Varieties as Gelling Agent in Culture Medium

POLLEN CRYOPRESERVATION

Development of sustainable lucerne pastures for wool production. J M van Heerden, ARC-API, PO Box 3320, Matieland.

Past Questions on Plant Reproduction

RESEARCH JOURNAL OF FISHERIES AND HYDROBIOLOGY INTRODUCTION

3. Which of the following cannot increase metabolic rate? A. Reading B. Sleeping C. Talking D. Jogging

Water ph and Soluble Salts Levels Affects Vase Life of Cut Callas, Hydrangeas and. Snapdragons

Organic Fungicides: What do we know about what really works?

Unit E: Plant Propagation. Lesson 1: Understanding Sexual Reproduction

THE EFFECT OF CARBON SOURCES ON IN VITRO MICROTUBERIZATION OF POTATO (Solanum tuberosum L.)

REPORT TO THE AGRICULTURAL RESEARCH FOUNDATION FOR THE OREGON PROCESSED VEGETABLE COMMISSION December 2010 Project Title: Management of Fusarium

Hybridization between Lycopersicon esculentum Mill. and Lycopersicon pennellii Cor.: Pollen Fertility and Viability in F 1.

CHAPTER IV RESULTS Occurrence of endophytic microorganisms in the roots and shoots of crop plants

AN UNUSUAL VIRUS IN TREES WITH CITRUS BLIGHT RON BRLANSKY UNIVERSITY OF FLORIDA, CREC

BASIC COMPATIBILITY. Pl Path 604

STUDIES ON FUNGAL POPULATION OF CUMIN (NIGELLA SATIVA L.) FROM DIFFERENT PARTS OF MARATHWADA.

Interaction Effect of Sucrose, Salicylic Acid and 8- hydroxyquinoline Sulfate on Vase-life of Cut Gerbera Flowers

Effects of Zn, Fe and Mn on soybean elements concentration

Abstract. Introduction

Topic 4: Enzymes and metabolism

Interspecific Hybridization in Poplars Using Recognition Pollen

The Initiation, Multiplication, and Cryopreservation of Fraser Fir (Abies fraseri [Pursh] Poir.) Embryogenic Tissue for Somatic Embryogenesis

Cotton Variety Guide 2017 UT Cotton Agronomy Department of Plant Sciences University of Tennessee

Can Brachypodium distachyon provide insight into FHB? Paul Nicholson Disease and Stress Biology Department John Innes Centre

Table 2. Leaf Tissue Nutrient Levels of Nonpareil Almond on Eight Different Rootstocks. July, Escalon CA N (%)

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

Phytophthora Dieback management in rehabilitation and revegetation projects

Brenna Aegerter Michelle Le Strange Gene Miyao Scott Stoddard Tom Turini. University of California Cooperative Extension

Fusarium wilt trial results

IMPROVEMENT OF CHERRY PLANT

Asian Journal of Food and Agro-Industry ISSN Available online at

Inbreeding and Crossbreeding. Bruce Walsh lecture notes Uppsala EQG 2012 course version 2 Feb 2012

CAMBRIDGE INTERNATIONAL EXAMINATIONS General Certificate of Education Advanced Subsidiary Level and Advanced Level

Sugarcane Brown Rust Research Results From Jeff Hoy Plant Pathology and Crop Physiology Department LSU Agricultural Center Baton Rouge, LA 70803

Evaluation of Powdery Mildew Tolerance in Pumpkin in Central Kentucky

Dual effects of microwave and salinity stresses on growth and Na + and K + amounts of durum wheat plants

Fusarium root rot of soybean occurrence, impact, and relationship with soybean cyst nematode

Media preparation. To Prepare A ml stock soln (B X) Dissolve (Concn in medium (mg/ml) X A X B) mg In total volume A ml.

Unit 2 - Characteristics of Living Things

COMPOSED OF ALTERNATE UNITS OF α-1-3 AND β-1-4 D-GALACTOSE WITH SULPHATE

PRELIMINARY STUDIES IN VITRO REGENERATION OF VETIVERIA ZIZANIOIDES THROUGH MERISTEM TIP CULTURE. College, Coimbatore , India.

Dehydration Synthesis and Hydrolysis Reactions. ne_content/animations/reaction_types.ht ml

The Making of New Life: Multiplication or Division?

Journal of Chemical and Pharmaceutical Research

IR-4 Ornamental Horticulture Program Downy Mildew Efficacy. Authors: Cristi Palmer and Ely Vea Date: June 2, 2010

TARGET SPOT IN COTTON POSSIBLE EMERGING DISEASE

TITLE: Fast-Track Development of Potato Clones with Pure Amylopectin Starch Used in the Paper, Textile and Food Industries by Using Induced Mutation.

Chapter 2. Perennial and Intermediate Ryegrass Varietal Effect on Overseeded Bermudagrass. Fairway Performance and Post Dormancy Transition

Evaluation and comparison of biofungicides and fungicides for the control of post harvest potato tuber diseases ( ).

Peanut Disease Control Field Trials 2015

THRIPS EFFICACY TRIALS IN SOUTH GEORGIA. J. D. Griffin, J.R. Ruberson, R.J. Ottens and P.M. Roberts Dept. of Entomology, Univ. of Georgia Tifton GA

Recipes for Media and Solution Preparation SC-ura/Glucose Agar Dishes (20mL/dish, enough for 8 clones)

Effects of Sucrose on Germination and Seedling Development of Brassica Napus

Powdery Mildew, Scab, and Other Disease Control on Almond

Development of an IPM program for citrus thrips in blueberries. David R. Haviland, UCCE Kern Co and Joseph G. Morse, UCR

Exploring myxomycetes for possible applications as antagonists in bio-control of plant pathogens

Thermo-Therapy and Use of Biofungicides and Fungicides for Management of Internal Discoloration of Horseradish Roots

TOXICOLOGY PROTOCOLS PROTOCOL 1. SERIAL DILUTIONS. Objective To make a serial dilution for use in dose/response bioassays.

Sorghum Grain Mold: Variability in Fungal Complex

Field inoculation of Actinidia sp. with Pseudomonas syringae var. actinidiae biovar 3 (Psa)

LYGUS BUG MANAGEMENT IN SEED ALFALFA. Eric T. Natwick and M. Lopez 1 ABSTRACT

Deployment of Novel Sources of Sclerotinia Stalk Rot Resistance in Sunflower

EFFECT OF DIFFERENT CARBON SOURCES ON THE GROWTH OF DIFFERENT ISOLATES OF FUSARIUM OXYSPORUM f. sp. CUBENSE IN DIFFERENT MEDIA

London Examinations IGCSE

What You ll Learn. Genetics Since Mendel. ! Explain how traits are inherited by incomplete dominance

VASANTDADA SUGAR INSTITUTE, PUNE, MAHARASHTRA. Annual report of AICRP (S) of Plant Pathology Discipline for the year

DECISION DOCUMENTAL. Food and feed safety assessment of maize event MIR604 OECD: SYN-IR6Ø4-5. Directorate of Agrifood Quality

Striatal Neuron Medium Kit

Terry Richmond s Fertilizer Package mentioned in the panel discussion March 14, 2013.

Plants as Chemical Factories

Bacterial Wilt Tolerance Improvement in Tomato. Dilip R. Panthee Department of Horticultural Science North Carolina State University

Fusarium sp. associated with stem diseases on sunflowers

Oil Bodies as a promising source of natural oil in water emulsion. Simone De Chirico, Vincenzo di Bari, David Gray

Cambridge International Examinations Cambridge International General Certificate of Secondary Education

Studies on Barley and Malt Amylases. Part XIX. Activation of Zymogen Ĉ-amylase in vivo and Amylase. Formation in Isolated Aleurone Layers

North Central Soybean Research Program. Seedling Diseases: Biology, Management and Education

Ascorbate Peroxidase Activity of Aranda Broga Blue Orchid Protocorm-like Bodies (PLBs) In Response to PVS2 Cryopreservation Method

Transcription:

Castanea spp. hybrid clones in vitro conservation: synthetic seeds vs slow growth storage Marta Clemente, Patrícia Figueiredo, Fani Plácito, Tiago Rodrigues, Helena Machado, Carmen Santos, Rita Costa e Filomena Gomes Funding: PRODER 4.1 Ref.ª 53590

Inter-specific crosses to introgress resistance genes to Phytophthora cinnamomi SC SM Inter-specific crosses European chestnut Castanea sativa Resistance Asian chestnut Progenies Nº C. crenata SC 53 C. mollissima SM 21 Total 74 PTDC/AGR-CFL/101707/2008 - Understanding Resistance to Pathogenic Fungi in Castanea sp

Micropropagation of Castanea spp. hybrid clones Progenies Full-sib pedigrees In vitro Nº Nº % SC 53 24 45.2 % SM 21 9 42.9 % Total 74 33 44.6 % PTDC/AGR-CFL/101707/2008

Micropropagation of Castanea spp. hybrid clones Ex vitro rooting and acclimatization PRODER 4.1 Ref.ª 45964

Micropropagation of Castanea spp. hybrid clones Pathogenic fungi resistance Plantlets - root inoculated with the pathogen Progeny susceptibility - days of surviving after inoculation Nº Genotypes tested 25 Six Genotypes - selected for resistance to P. cinnamomi Clonal conservation (in vitro) Slow growth storage Synthetic seed (synseeds)

MATERIALS AND METHODS Slow growth storage vs Synseeds Periods 1; 3; 6; 9 months (4ºC/dark) Medium MS/2 + 0.45µM BA Slow growth storage - SG Carbon Source Sucrose (Suc.) Mannitol (Man.) Control (Suc.) Concentration 0.16; 0.22 M 0.09 M

MATERIALS AND METHODS: Synseeds Synseeds - Syn 5-7mm Antioxidant treatment: - sterile H 2 O 1h Na-alginate CaCl 2 2H 2 O 2.75% vs 3% + (MS/2 - Ca) 50 vs 75 vs 100mM 30 minutes Washed 3 times: in sterile dist. H 2 O X

Synseeds Nodal Segments 5-7 mm Antioxidant treatment 1H Na-alginate 2.75 vs 3% Washed 3 times CaCl 2 2H 2 O 50; 75; 100 mm 30 minutes

Synseeds

MATERIALS AND METHODS Synseeds - Conservation conditions: Tubes 1- Empty vs 2- Sterile & distilled H 2 O vs 3 - Glycerol 30% 1- Empty 2- Sterile, distilled H 2 O 3 - Glycerol 30%

synthetic seeds vs slow growth storage MATERIALS AND METHODS Reactivation period Conditions 1 st week 25/20ºC, in dark conditions 2 nd week 25/20ºC, 8 / 16 h 3 th week 25/20ºC, 16 / 8 h Data recorded Slow growth storage Synseeds Survival rate (%) Shoot length (SL cm) Germination Time Multiplication rate (MR): 1 st & 2 nd

RESULTS Slow Growth Storage: Survival rate (%) Conditions Tested (concentration M) Survival rate (% ) 0.09 M Suc. 49.4 ± 1.82 c 0.16 M Suc. 76.5 ± 1.54 b 0.22 M Suc. 92.2 ± 0.95 a 0.16 M Man. 13.3 ± 1.20 d 0.22 M Man. 3.3 ± 0.63 e

RESULTS Slow Growth Storage: Survival rate (%) Conditions Tested 0.09 M Suc. 100,0 ± 0,0 0.16 M Suc. 100,0 ± 0,0 0.22 M Suc. 100,0 ± 0,0 0.16 M Man. 16,7 ± 2,3 0.22 M Man. 0,0 ± 0,0 Conservation Periods 1 month 3 months 6 months a a a de e 9 months 33,3 ± 2,9 c 8,0 ± 1,8 de 0,0 ± 0,0 83,3 ± 2,3 a 50,0 ± 3,1 b 38,7 ± 3,0 83,3 ± 2,3 a 93,3 ± 1,5 a 80,0 ± 2,5 20,0 ± 2,5 cd 3,3 ± 8,1 e 0,0 ± 0,0 10,0 ± 1,9 de 0,0 ± 0,0 e 0,0 ± 0,0 e b a e e

RESULTS Slow Growth Storage: 1 st Multiplication rate Conditions Tested 1 st multiplication rate 1 month 3 months 6 months 9 months 0.09 M Suc. 2,00 ± 0,14 b 0,30 ± 0,10 ef 0,04 ± 0,04 fg 0,00 ± 0,00 g 0.16 M Suc. 2,40 ± 0,15 a 1,13 ± 0,13 c 0,53 ± 0,11 e 0,29 ± 0,12 ef 0.22 M Suc. 1,20 ± 0,07 c 0,80 ± 0,11 d 1,33 ± 0,11 c 1,17 ± 0,14 c 0.16 M Man. 0,17 ± 0,07 fg 0,07 ± 0,05 fg 0,00 ± 0,00 g 0,00 ± 0,00 g 0.22 M Man. 0,00 ± 0,00 g 0,07 ± 0,05 fg 0,00 ± 0,00 g 0,00 ± 0,00 g

RESULTS Slow Growth Storage: 2 nd Multiplication rate Conditions Tested 2 nd multiplication rate 1 month 3 months 6 months 9 months 0.09 M Suc. 1,36 ± 0,05 d 0,43 ± 0,14 f 0,04 ± 0,04 g 0,00 ± 0,00 g 0.16 M Suc. 1,69 ± 0,04 bc 1,43 ± 0,14 cd 0,77 ± 0,18 e 0,39 ± 0,14 f 0.22 M Suc. 2,22 ± 0,07 a 1,27 ± 0,16 d 1,83 ± 0,14 b 1,30 ± 0,15 d 0.16 M Man. 0,10 ± 0,06 g 0,00 ± 0,00 g 0,00 ± 0,00 g 0,00 ± 0,00 g 0.22 M Man. 0,00 ± 0,00 g 0,00 ± 0,00 g 0,00 ± 0,00 g 0,00 ± 0,00 g

RESULTS Slow Growth Storage: Multiplication rate 2.50 2.00 1.50 1.00 0.50 0.00 0.09 M Suc. 0.16 M Suc. 0.22 M Suc. 0.16 M Man. 0.22 M Man. Conservation Periods Conditions Tested 1 month/2nd MR 3 month/2nd MR 6 month/2nd MR Conditions Tested 2 nd multiplication rate 0.09 M Suc. 0.16 M Suc. 0.22 M Suc. 0.16 M Man. 0.091 M month/1st Suc. MR 0.16 M 3 Suc. month/1st 0.22 MRM Suc. 6 month/1st 0.16 M Man. MR 0.22 M Man. 9 months 0,0 ± 0,0 38,7 ± 3,0 80,0 ± 2,5 0,0 ± 0,0 9 months 0,00 ± 0,00 0,39 ± 0,14 1,30 ± 0,15 0,00 ± 0,00 0,00 ± 0,00

Synthetic Seeds Reactivation Period 3 w Survival Rate (%) 1 st MR 4 Weeks: SL cm SN 4 Weeks 2 nd MR GER (%) GT

RESULTS Synthetic Seeds: Survival rate (%) Alg. Na (concentration) Na Alg 3.0% Na Alg 2.75% Survival rate (% ) 63.9 ± 0.80 a 58.4 ± 0.90 a Conservation Periods Ca Cl 2 (concentration) Survival rate (% ) 50 mm 59.5 ± 1.07 a 75 mm 63.0 ± 1.01 a 100 mm 61.3 ± 1.04 a Survival rate (%) 1 month 66,7± 1,96 a 3 months 59,2± 1,29 a 6 months 65,2± 2,04 a 9 months 61,5± 0,99 a

RESULTS Synthetic Seeds: Survival rate (%) Conservation Conditions Survival rate (%) Empty tube 88,5± 0,71 b Ste D H 2 O 98,0± 0,63 a Glycerol 30% 0,0± 0,00 c

RESULTS Synthetic Seeds: Survival rate (%) Synseeds: Ca Cl 2 X Conserv. Cond. Survival rate (% ) 50 mm Empty tube 82,0 ± 1,56 c 75 mm Empty tube 94,3 ± 1,49 ab 100 mm Empty tube 89,2 ± 1,48 b 50 mm Ste D H 2 O 98,3 ± 0,56 a 75 mm Ste D H 2 O 96,7 ± 0,77 a 100 mm Ste D H 2 O 100,0 ± 0,00 a 50 mm Glycerol 30% 0,0 ± 0,00 d 75 mm Glycerol 30% 0,0 ± 0,00 d 100 mm Glycerol 30% 0,0 ± 0,00 d

RESULTS Synthetic Seeds: Shoots number (SN) Cons. Conditions Empty tube Ste D H 2 O SN 0.79 ± 0.08 b 1.14 ± 0.07 a Conserv. Period SN 1 month 0,83± 0,10 a 3 months 0,89± 0,09 a 6 months 1,02± 0,09 a 9 months 0,55± 0,05 b

RESULTS Synthetic Seeds: Shoot length (SL cm) Conserv. Conditions Empty tube Ste D H 2 O SL cm 1.17 ± 0.12 b 2.36 ± 0.18 a Conserv. SL cm Period 1 month 2,30± 0,32 a 3 months 1,83± 0,19 b 6 months 1,14± 0,09 b 9 months 0,93± 0,10 b Cons. Conditions X Ca Cl 2 (mm) SL cm Empty tube 50 mm 1.13 ± 0.22 b Empty tube 75 mm 0.86 ± 0.18 b Empty tube 100 mm 1.56 ± 0.24 b Ste D H 2 O 50 mm 2.27 ± 0.29 a Ste D H 2 O 75 mm 2.49 ± 0.30 a Ste D H 2 O 100 mm2.35 ± 0.36 a

RESULTS Synthetic Seeds: 1 st Multiplication Rate (MR) Conserv. Conditions Empty tube Ste D H 2 O 1 st Mult. Rate 0.81 ± 0.07 b 1.34 ± 0.08 a Conserv. Conditions X Ca Cl2 (mm) 1st Mult. Rate Empty tube 50 mm 0.72 ± 0.09 b Empty tube 75 mm 0.69 ± 0.12 b Empty tube 100 mm 1.03 ± 0.14 ab Ste D H 2 O 50 mm 1.36 ± 0.14 a Ste D H 2 O 75 mm 1.39 ± 0.13 a Ste D H 2 O 100 mm 1.25 ± 0.17 a

RESULTS Synthetic Seeds: 2 nd Multiplication Rate (MR) Cons. Conditions Empty tube Ste D H 2 O 2 nd Mult. Rate 0.86 ± 0.06 b 1.36 ± 0.07 a Cons. Conditions 2 nd Mult. Rate 1 month 0,90± 0,10 b 3 months 0,88± 0,08 b 6 months 1,34± 0,07 a 9 months 0,84± 0,07 b

RESULTS Synthetic Seeds: 2 nd Multiplication Rate (MR) Conserv. Conditions X Ca Cl 2 mm 2 nd Mult. Rate X Cons. Period Empty tube 50 mm 1 month 1.28 ± 0.26 abcde Empty tube 50 mm 3 months 0.37 ± 0.16 fg Empty tube 50 mm 6 months 1.24 ± 0.15 abcde Empty tube 75 mm 1 month 0.00 ± 0.00 g Empty tube 75 mm 3 months 0.69 ± 0.17 ef Empty tube 75 mm 6 months 1.00 ± 0.15 bcdef Empty tube 100 mm 1 month 1.22 ± 0.29 abcde Empty tube 100 mm 3 months 0.72 ± 0.16 ef Empty tube 100 mm 6 months 1.24 ± 0.19 abcde Ste D H 2 O 50 mm 1 month 0.98 ± 0.24 cdef Ste D H 2 O 50 mm 3 months 1.51 ± 0.22 abcd Ste D H 2 O 50 mm 6 months 1.70 ± 0.18 ab Ste D H 2 O 75 mm 1 month 1.03 ± 0.20 bcdef Ste D H 2 O 75 mm 3 months 1.35 ± 0.18 abcde Ste D H 2 O 75 mm 6 months 1.60 ± 0.13 abc Ste D H 2 O 100 mm 1 month 0.87 ± 0.24 def Ste D H 2 O 100 mm 3 months 1.08 ± 0.19 bcde Ste D H 2 O 100 mm 6 months 1.80 ± 0.25 a Conservation period: 9 months Conserv. Conditions: Ste D. H2O

RESULTS - Synthetic Seeds: Germination Rate & Time (GER; GT) Ca Cl 2 mm X Germination Rate (aver. % ) Conserv. Cond. 1 month 3 months 6 months Ste D H 2 O 83.3 80.0 81.2 50 mm Empty tube 53.3 31.0 36.4 Ste D H 2 O 77.3 78.9 85.3 75 mm Empty tube 31.0 39.3 39.7 Ste D H 2 O 76.7 75.0 81.9 100 mm Empty tube 46.7 46.4 44.3 Germination Time (average / days) 1 month 3 months 6 months 9 months 16,3 17,8 24,0 26,0

Castanea spp. hybrid clones in vitro conservation Conclusion: comparison of Survival Rates Slow growth storage Conservation period: 9 months Conditions SR% (Ave±SE) Tested 9 months 0.09 M Suc. 0,0 ± 0,0 c 0.16 M Suc. 38,7 ± 3,0 b 0.22 M Suc. 80,0 ± 2,5 a 0.16 M Man. 0,0 ± 0,0 c 0.22 M Man. 0,0 ± 0,0 c Synthetic seeds Conservation period: 9 months Survival rate (after 9 months) Ca Cl 2 mm x Cons. Cond. SR % (Ave±SE) 50 mm Empty tube 80,0±2,48 50 mm Glycerol 30% 0,0±0,00 50 mm Ste D H2O 92,0±1,85 75 mm Empty tube 73,3±2,74 75 mm Glycerol 30% 0,0±0,00 75 mm Ste D H2O 86,7±2,10 100 mm Empty tube 66,7±2,92 100 mm Glycerol 30% 0,0±0,00 100 mm Ste D H2O 100,0±0,00

Conclusion: 2 nd Multiplication Rate comparison Slow growth storage Conservation period: 9 months Conditions Tested 2 nd Mult. Rate 9 months 0.09 M Suc. 0,00 ±0,00 c 0.16 M Suc. 0,39 ±0,14 b 0.22 M Suc. 1,30 ±0,15 a 0.16 M Man. 0,00 ±0,00 c 0.22 M Man. 0,00 ±0,00 c Synthetic seeds Conservation period: 9 months 2 nd Mult. Rate (after 9 months) Cons. Cond. X Ca Cl 2 mm 50 mm Empty tube 0,34±0,11 75 mm Empty tube 0,50±0,12 100 mm Empty tube 0,90±0,20 50 mm Ste D H2O 1,80±0,21 75 mm Ste D H2O 1,43±0,24 100 mm Ste D H2O 2,60±0,16 50 mm Glycerol 30% 0,00±0,00 75 mm Glycerol 30% 0,00±0,00 100 mm Glycerol 30% 0,00±0,00

synthetic seeds vs slow growth storage Future perspectives In vitro propagation of resistant clones to ink disease Select and produce resistant plant material for rootstocks Ink disease resistance & plant vigor Establishment of field trails Water use efficiency Conservation of hybrid clones in vitro & in field Identify candidate genes of resistance with further validation Select markers linked to resistance (Santos et al., 2014) Perform marker assisted selection in the future.

synthetic seeds vs slow growth storage THANK YOU FOR YOUR ATTENTION! Acknowledgments. UTAD. ESAC. CERNAS. INIAV Funding: PRODER 4.1 Ref.ª 53590