Clinical Study Macular Development in Aggressive Posterior Retinopathy of Prematurity

Similar documents
Clinical Study Incidence of Retinopathy of Prematurity in Extremely Premature Infants

Grand Rounds. Jenny Temnogorod SUNY Downstate Medical Center Department of Ophthalmology September 19, 2013

Classification of ROP

Retinopathy of prematurity (ROP) is a disorder of retinal

CLINICAL SCIENCES. Rajeev H. Muni, MD, FRCSC; Radha P. Kohly, MD, FRCSC, PhD; Alexander C. Charonis, MD; Thomas C. Lee, MD

Retinopathy of Prematurity. Objectives. Normal Retina Development. ROP Pathogenesis 6/8/2018. Thomas W. Hejkal, MD, PhD Eye Consultants, PC

Clinical Study Posterior Pole Sparing Laser Photocoagulation Combined with Intravitreal Bevacizumab Injection in Posterior Retinopathy of Prematurity

Diode Laser Photocoagulation for Retinopathy of Prematurity: Outcomes After 7 Years of Treatment

Recurrence of ROP after Anti-VEGF Therapy: How Many, Which Ones, When, What, Where

PART 1: GENERAL RETINAL ANATOMY

Diagnosis and treatment of diabetic retinopathy. Blake Cooper MD Ophthalmologist Vitreoretinal Surgeon Retina Associates Kansas City

Inadvertent trypan blue staining of posterior capsule during cataract surgery associated with "Argentinian flag" event

Early Human Development

Laser Therapy Versus Anti-VEGF Agents for Treatment of Retinopathy of Prematurity. Ilya Leskov, MD, PhD Shizuo Mukai, MD

OFF-LABEL USE OF INTRAVITREAL BEVACIZUMAB (AVASTIN) FOR SALVAGE TREATMENT IN PROGRESSIVE THRESHOLD RETINOPATHY OF PREMATURITY

Index. Note: Page numbers with f and t indicate figures and tables, respectively.

10. ADVANCED RETINOPATHY OF PREMATURITY

Case Report Optic Disk Pit with Sudden Central Visual Field Scotoma

INFANTS WITH birth weights less

EyePACS Grading System (Part 3): Detecting Proliferative (Neovascular) Diabetic Retinopathy. George Bresnick MD MPA Jorge Cuadros OD PhD

A bs tr ac t. n engl j med 364;7 nejm.org february 17,

The Human Eye. Cornea Iris. Pupil. Lens. Retina

Case Report Increase in Central Retinal Edema after Subthreshold Diode Micropulse Laser Treatment of Chronic Central Serous Chorioretinopathy

Diabetic Retinopathy

IN NICU OCT UTILIZES A CONCEPT KNOWN AS INTERFEROMETRY APPLICATIONS FOR OCT THE PRIMARY USE IN THE EYE - RETINA

PMA Weight (g) Diagnosis at IVB. at IVB

Research Article The Impact of the Menstrual Cycle on Perioperative Bleeding in Vitreoretinal Surgery

FINAL RESULTS OF THE EARLY TREATMENT FOR RETINOPATHY OF PREMATURITY (ETROP) RANDOMIZED TRIAL

Top Pediatric Retinal Diseases you don t want to miss! Retinopathy of Prematurity (ROP) Aggressive, Posterior ROP (AP ROP)

Pros and Cons in the use of AntiVEGF therapy in ROP

Childhood blindness due to ROP

ZEISS AngioPlex OCT Angiography. Clinical Case Reports

Diabetic Retinopathy. Barry Emara MD FRCS(C) Giovanni Caboto Club October 3, 2012

Criteria for the timing of the initial retinal examination to screen for retinopathy of prematurity

Pulsed mode versus near-continuous mode delivery of diode laser photocoagulation for high-risk retinopathy of prematurity

ROP and Imaging. Deborah M Costakos MD, MS August 12, 2016

OCT Assessment of the Vitreoretinal Relationship in CSME

Clinical Study Spectral Domain OCT: An Aid to Diagnosis and Surgical Planning of Retinal Detachments

ROP. Therapies. Current. Randomizing infants to receive either retinal laser or intravitreal. How Laser and Anti-VEGF Compare

Late-onset Retinal Detachment Associated with Regressed Retinopathy of Prematurity

3/6/2014. None relevant to this talk. Michael Trese Associated Retinal Consultants Royal Oak, Michigan USA

A spectral-domain OCT study of formerly premature children. Prat Itharat MD May 30, 2008 Vanderbilt Eye Institute Preceptor: Dr.

OUTCOMES AFTER LASER VERSUS COMBINED LASER AND BEVACIZUMAB TREATMENT FOR TYPE 1 RETINOPATHY OF PREMATURITY IN ZONE I


Diabetic Retinopatathy

Study of Incidence, Clinical Staging and Risk Factors of Retinopathy of Prematurity in Rural Area

Case Report Pediatric Transepiphyseal Seperation and Dislocation of the Femoral Head

Clinical Study Intravitreal Dexamethasone in the Management of Delayed-Onset Bleb-Associated Endophthalmitis

Combined treatment for Coats disease: retinal laser photocoagulation combined with intravitreal bevacizumab injection was effective in two cases

Early retinopathy of prematurity findings identified with fluorescein angiography

Insights into Advanced Retinopathy of Prematurity Using Handheld Spectral Domain Optical Coherence Tomography Imaging

Case Report Tortuous Common Carotid Artery: A Report of Four Cases Observed in Cadaveric Dissections

Envisu TM C-Class SD-OCT System

Optical Coherence Tomograpic Features in Idiopathic Retinitis, Vasculitis, Aneurysms and Neuroretinitis (IRVAN)

Michael P. Blair, MD Retina Consultants, Ltd Libertyville/Des Plaines, Illinois Clinical Associate University of Chicago 17 October 2015

Case Report Long-Term Outcomes of Balloon Dilation for Acquired Subglottic Stenosis in Children

Eyes on Diabetics: How to Avoid Blindness in Diabetic Patient

A Patient s Guide to Diabetic Retinopathy

Research Article Predictions of the Length of Lumbar Puncture Needles

Marcus Gonzales, OD, FAAO Cedar Springs Eye Clinic

Clinically Significant Macular Edema (CSME)

When Retina is not detached anymore. Alexandra Mouallem, Agnès Glacet-Bernard Service du Professeur Souied Le 19/03/2014

Intravitreal bevacizumab as adjunctive treatment for retinopathy of prematurity

Protocol. This trial protocol has been provided by the authors to give readers additional information about their work.

Jay M. Haynie, O.D.; F.A.A.O. Olympia Tacoma Renton Kennewick Washington

Screening Examination of Premature Infants for Retinopathy of Prematurity

Brampton Hurontario Street Brampton, ON L6Y 0P6

Optical Coherence Tomography: Pearls for the Anterior Segment Surgeon Basic Science Michael Stewart, M.D.

Diabetes & Your Eyes

Multicenter Study of Cryotherapy for Retinopathy of Prematurity (CRYO-ROP) Publications


OCT Angiography in Primary Eye Care

Long-Term Visual Outcome in Proliferative Diabetic Retinopathy Patients After Panretinal Photocoagulation

Case Report Medial Radial Head Dislocation Associated with a Proximal Olecranon Fracture: A Bado Type V?

Scott M. Pfahler D.O. Dayton Vitreo-Retinal Associates AOCOO-HNS Palm Springs, CA 2012


Dehiscence of detached internal limiting membrane in eyes with myopic traction maculopathy with spontaneous resolution

Diabetic Retinopathy A Presentation for the Public

Goals. Glaucoma PARA PEARL TO DO. Vision Loss with Glaucoma

Jiao Lyu 1, Qi Zhang 1, Chunli Chen 2,YuXu 1, Xunda Ji 1 and Peiquan Zhao 1*

Perspectives on Screening for Diabetic Retinopathy. Dr. Dan Samaha, Optometrist, MSc Clinical Lecturer School of Optometry, Université de Montréal

International Journal of Health Sciences and Research ISSN:

Diabetic Retinopathy WHAT IS DIABETIC RETINOPATHY? WHAT CAUSES DIABETIC RETINOPATHY? WHAT ARE THE STAGES OF DIABETIC RETINOPATHY?

SUMMARY. Heather Casparis, MD,* and Neil M. Bressler, MD MARINA AND ANCHOR

Antivascular endothelial growth factor for retinopathy of prematurity Helen A. Mintz-Hittner a and Leah M. Best b

Case Report Anomalous Left Main Coronary Artery: Case Series of Different Courses and Literature Review

Case Report Complete Obstruction of Endotracheal Tube in an Infant with a Retropharyngeal and Anterior Mediastinal Abscess

DIABETES AND YOUR EYES. Presented by Dr. Andrea Hagler

Clinical Study Metastasectomy of Pulmonary Metastases from Osteosarcoma: Prognostic Factors and Indication for Repeat Metastasectomy

Correspondence should be addressed to Alicia McMaster;

Facts About Diabetic Eye Disease

Past ocular history. DME Case 1. Patient presents blurred VA. Hemoglobin A1c 11.5% -- patient states sugars have not been in good control

evaluation of vitreoretinal adhesions in exudative AMD using optical coherence tomography

Study of clinical significance of optical coherence tomography in diagnosis & management of diabetic macular edema

Case Report Asymptomatic Pulmonary Vein Stenosis: Hemodynamic Adaptation and Successful Ablation

Title. Author(s)Saito, Wataru; Kase, Satoru; Ohgami, Kazuhiro; Mori, CitationActa Ophthalmologica, 88(3): Issue Date Doc URL.

Clinical Study Patient Aesthetic Satisfaction with Timing of Nasal Fracture Manipulation

PCMCH ROP Screening Guidelines

Vitreous changes after intravitreal bevacizumab monotherapy for retinopathy of prematurity: a case series

Non-ophthalmologist screening for retinopathy of prematurity

Transcription:

BioMed Research International Volume 2015, Article ID 808639, 5 pages http://dx.doi.org/10.1155/2015/808639 Clinical Study Macular Development in Aggressive Posterior Retinopathy of Prematurity Hemang K. Pandya, 1 Lisa J. Faia, 2 Joshua Robinson, 2 and Kimberly A. Drenser 2,3 1 Kresge Eye Institute, Wayne State University, Detroit, MI, USA 2 Associated Retinal Consultants, P.C., Royal Oak, MI, USA 3 Associated Retinal Consultants, William Beaumont Hospital, 3535 W 13 Mile Road, No. 344, Royal Oak, MI 48073, USA Correspondence should be addressed to Kimberly A. Drenser; kdrenser@arcpc.net Received 2 August 2014; Accepted 13 October 2014 Academic Editor: Anand Vinekar Copyright 2015 Hemang K. Pandya et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Purpose. To report anatomic outcomes after early and confluent laser photocoagulation of the entire avascular retina, including areas in close proximity to the fovea, in patients with APROP. We aspire to demonstrate fundoscopic evidence of transverse growth and macular development following laser treatment in APROP. Methods. Retrospective review of 6 eyes with APROP that underwent confluent laser photocoagulation of the entire avascular retina. Photographic fundoscopic imaging was performed using the RetCam to compare outcomes after treatment. Results. Mean birth weight and gestational age were 704.8 g and 24.33 weeks, respectively. There were 2 females and 1 male. The average time to laser was 9.3 weeks after birth, with the mean postmenstrual age of 34 weeks. Two eyes had zone 1 and 4 eyes had posterior zone 2 disease. Three eyes developed 4A detachments, which were successfully treated. All 6 eyes experienced transverse growth, with expansion of the posterior pole and anterior displacement of the laser treatment. Conclusion. Confluent photocoagulation of the entire avascular retina, regardless of foveal proximity, should be the mainstay for treating APROP. Examination should be conducted within 5 10 days to examine areas previously hidden by neovascularization to ensure prudent therapy. Macular development involves both transverse and anterior-posterior growth. 1. Introduction Aggressive posterior retinopathy of prematurity (APROP) is a severe and uncommon form of retinopathy of prematurity (ROP), seen in significantly premature infants of low birth weight (<750 g) and young gestational age (<26 weeks). These eyes are characterized by rapid, progressive vascular changes, flat neovascularization, intraretinal shunting, hemorrhages, and ultimately retinal detachment, despite not progressing through stages 1 3 [1 4]. APROP eyes have a poorer prognosis compared to that of classic ROP eyes, with retinal detachment rates as high as 45% [4 6]. The incidence of APROP has increased, attributable to improved neonatal care and the resulting increase in survival of premature infants [7 9]. Both the Cryotherapy for Retinopathy of Prematurity (CRYO-ROP) [10, 11] and Early Treatment for Retinopathy of Prematurity (ET- ROP) [12, 13] studies demonstrated improved structural and functional outcomes with peripheral ablation of the avascular retina, including the areas in close proximity to any flat neovascularization. When compared to full term neonates, these APROP patients are at a different stage of retinal and vascular development. APROP infants, in particular, may have an avascular temporal notch of retinal tissue within zone 1 [14]. ApreviousstudyevaluatingAPROP,usingPhotographic Screening for Retinopathy of Prematurity (PHOTO-ROP) patients, recognized that unique treatment guidelines did not exist [15]. They suggested that photocoagulation be applied to the avascular peripheral retina including the areas in close proximity to any flat neovascularization. Subsequent examination and photocoagulation should be performed within 10 days, as the neovascular areas will have involuted, thus exposing the previously hidden avascular retina. Laser photocoagulation of the avascular retina has since become the mainstay therapy for APROP. However, due to its

2 BioMed Research International Table 1: Patient demographics and clinical information. Patient Gender Race Gestational age (weeks) Birth weight (grams) Comorbidities Initial ROP staging Initial Plus disease Initial laser (weeks) 1 Male African- American 23 6/7 760 Hydrocephalus s/p ventriculoparietal shunt, bowel perforation Pulmonary hypertension, conductive hearing loss OD: stage 3, zone 1 OS: stage 3, zone 1 OD: 2-3+ OS: 2-3+ PRP OU @ 33 5/7 2 Female Caucasian 234/7 525 OD: stage 2, zone 2 OS:stage2,zone2 OD: stage 3, zone 1 OS: stage 3, zone 1 OD: 2-3+ OS: 2-3+ OD: 2-3+ OS: 2-3+ PRP OU @ 36 3 Female Caucasian 25 4/7 829 Pulmonary hypertension PRP OU @ 33 5/7 proximity to the fovea, there exists a hesitance to apply ablation to the temporal notch, particularly for fear of laser spread posteriorly (or creep ). Our study aims to report anatomic outcomes after early and confluent laser photocoagulation of the entire avascular retina, including areas in proximity to the fovea, in patients with APROP. In addition, we demonstrate, through fundoscopic evidence, that transverse growth and macular development are seen after the treatment of eyes with APROP. 2. Methods A retrospective case review of infants with APROP seen between January 2004 and January 2008 evaluated and treated at the Associated Retinal Consultants P.C. with confluent laser photocoagulation of the entire avascular retina was performed. These infants were evaluated for clinical course, treatment interventions, and anatomical outcomes. Babies were excluded if they were transferred from an outside hospital and had received previous treatment elsewhere. APROP was characterized as stage 3, zone 1, or posterior zone 2 with Plus or pre-plus disease. Evaluations included a dilated fundus examination under anesthesia to assess the extent of APROP. Serial photographic fundoscopic imaging was performed using the RetCam (MLI Inc., Pleasanton, CA) to compare retinal anatomy before and after treatment. All infants underwent confluent peripheral laserablationoftreatment-requiringdiseasebasedonicrop classification [1] and ETROP criteria [12]. Additional therapies including vitrectomy were also performed if necessary. The primary outcome measures were the regression of neovascularization and attachment of the retina. Institutional review board (IRB) approval was obtained. Written informed consent in accordance with the Declaration of Helsinki was obtained from the parents/guardians of all patients. All procedures were performed by a single vitreoretinal surgeon (KAD) at William Beaumont Hospital, Royal Oak, MI. 3. Results A total of 6 eyes of 3 patients were reviewed with patient demographics listed in Table 1. The average gestational age was 24.3 weeks with a range of 23.6 25.6 weeks. The average birth weight was 705 grams with a range of 525 829 grams. The average time to laser treatment was 9.3 weeks after birth, with the mean postmenstrual age of 34 weeks (range 32 36 weeks). Two eyes had zone 1 disease and 4 eyes had posterior zone 2 disease. Associated comorbidities are noted in Table 1. All 6 eyes received confluent and complete laser photocoagulation of the entire avascular retina, including areas in close proximity to the fovea. Three eyes demonstrated appropriate regression of neovascular pathology and Plus disease with a single treatment of peripheral laser ablation. There were no cases of anterior segment ischemia, cataract formation, vitreous hemorrhage, or rhegmatogenous retinal detachment. However, 3 eyes developed 4A detachments, which were successfully treated with a lens-sparing vitrectomy, and, at last exam, had grossly normal appearing posterior poles. All tractional retinal detachments occurred near the due date, similar to that seen in classic ROP [14]. The mean follow-up was 7 months (range 3 12 months) and all 6 eyes experienced transverse growth, with expansion of the posterior pole and anterior displacement of the previous laser treatment. At last follow-up, all patients were able to fixate and follow. 4. Discussion Aggressive posterior retinopathy of prematurity (APROP) is a vitreoretinal abnormality that adversely affects premature babies with extremely low birth weights. APROP rates have increased over the last 30 years and continue to be a significant cause of childhood blindness [16]. Our recognition of this debilitating ocular disease and the hesitation of some of our colleagues to perform confluent laser in these patients prompted our review of these infants and their macular growth. In all six of our treated eyes, there was no evidence of posterior creep. In fact, our serial photography demonstrated evidence of anterior displacement of the applied confluent laser. Four representative eyes from two patients one with zone 1 disease and one with posterior zone 2 disease are showninfigures1 and 2. In addition, Figure 3 contains widefield fundus photography of a 7-year-old patient who initially presented with zone 1 disease (Figure 3). Interestingly, the patient s best-corrected visual acuity was 20/40, macula was flat, and all applied confluent laser photocoagulation scars were displaced anteriorly.

BioMed Research International 3 (a) (b) (c) (d) Figure 1 (a) (b) (c) (d) Figure 2

4 BioMed Research International Figure 3 A wedge-shaped area of temporal avascular retina, in close proximity to the fovea, is classically seen in APROP. A previous study asserted that this temporal notch arises from the geometry of the vascular ellipses as they move apart andloseanyoverlap[17]. In addition, we postulate that a developmental lag contributes to the forming of this temporal notch, as transverse growth in our patients is demonstrated by anterior displacement of the laser treatment. The macula is characterized by a high cell-to-signal ratio. The metabolic demand of this highly concentrated tissue isgreaterthanintheremainderofthezone1retinaand may be involved in the forming of the temporal notch that characterizes APROP. A previous neonatal study, which evaluated the macular development in premature infants [18] using a direct ophthalmoscope concluded that the fovea matures 3 months after the target due date. Unfortunately, the mechanisms and nature of macular development were not characterized. We propose that macular development and ocular maturation involve 2 distinct processes: (1) retinal stretch (transverse growth) and (2) anterior-posterior (AP) retinal layer growth. The fundoscopic evidence presented in Figures 1 and 2 shows that the initial laser scars appeared more anteriorly with maturation. We believe that transverse and AP retinal layer growth and remodeling contribute to maintaining a healthy macula in laser-treated APROP patients, although additional prospective investigation is warranted. Ourstudyislimitedbyitssizeandretrospectivenature. Still, these patients clearly demonstrated transverse and AP growth as evident by the serial photography. In order to better explore this observation, future studies will not only focus on obtaining larger numbers but also incorporate observations of macular development using premature mammal models and optical coherence tomography (OCT) evidence of retinal layer changes. Recently, a study by Vajzovic et al. utilized SD-OCT to evaluate and compare retinal morphology with histological slides from comparable ages [19]. Further studies evaluating macular development using SD-OCT are strongly encouraged. In recent years, antivascular endothelial growth factor (VEGF) agents have shown to be a useful adjuvant in the treatment of retinopathy of prematurity [20]. However, the long-term systemic effects in these prematurity infants remain unknown. Although it did not reach statistical significance, there was increased morbidity in the infants treated with bevacizumab compared to laser in the BEAT-ROP trial [21]. Additionally, VEGF is required for neurodevelopment and VEGF blockade in zone 1 development may adversely affect retinal development in the premature neonate, as seen in animal models of ROP [22]. Confluent photocoagulation of the entire avascular retina, regardless of foveal proximity, should be the mainstay for treating APROP. A thorough examination and possible subsequent photocoagulation should be conducted within 10 days to areas previously hidden by neovascularization to ensure prudent therapy. Disclosure This paper was presented in part at the Association for Research in Vision and Ophthalmology May 3, 2011, in Fort Lauderdale, FL, USA. All authors had full access to all data andhavenofinancialdisclosurestoreport. Conflict of Interests No conflicting relationship exists for any author regarding the publication of this paper. References [1] International Committee for the Classification of Retinopathy of Prematurity, The international classification of retinopathy of prematurity revisited, Archives of Ophthalmology, vol. 123, no. 7, pp. 991 999, 2005. [2] S. Shaikh, A. Capone Jr., S. D. Schwartz, C. Gonzales, and M. T. Trese, Inadvertent skip areas in treatment of zone 1 retinopathy of prematurity, Retina, vol. 23, no. 1, pp. 128 131, 2003. [3] X. Katz, A. Kychenthal, and P. Dorta, Zone I retinopathy of prematurity, AAPOS, vol. 4, no. 6, pp. 373 376, 2000. [4] A. Kychenthal, P. Dorta, and X. Katz, Zone I retinopathy of prematurity: clinical characteristics and treatment outcomes, Retina, vol. 26, no. 7, pp. S11 S15, 2006. [5] N.Fallaha,M.J.Lynn,T.M.AabergJr.,andS.R.Lambert, Clinical outcome of confluent laser photoablation for retinopathy of prematurity, American Association for Pediatric Ophthalmology and Strabismus,vol.6,no.2,pp.81 85,2002. [6] A.Vinekar,M.T.Trese,andA.CaponeJr., Evolutionofretinal detachment in posterior retinopathy of prematurity: impact on treatment approach, American Ophthalmology, vol. 154, no. 3, pp. 548 555, 2008. [7]G.R.Alexander,M.Kogan,D.Bader,W.Carlo,M.Allen, and J. Mor, US birth weight/gestational age-specific neonatal mortality: 1995 1997 rates for whites, hispanics, and blacks, Pediatrics, vol. 111, no. 1, pp. e61 e66, 2003. [8]B.A.Darlow,A.E.Cust,andD.A.Donoghue, Improved outcomes for very low birthweight infants: evidence from New Zealandnationalpopulationbaseddata, Archives of Disease in Childhood:FetalandNeonatalEdition,vol.88,no.1,pp.F23 F28, 2003. [9] R.G.Harper,K.U.Rehman,C.Siaetal., Neonataloutcome of infants born at 500 to 800 grams from 1990 through 1998 in a tertiary care center, Perinatology,vol.22,no.7,pp. 555 562, 2002.

BioMed Research International 5 [10] Cryotherapy for Retinopathy of Prematurity Cooperative Group, Multicenter trial of cryotherapy for retinopathy of prematurity. Preliminary results, Archives of Ophthalmology, vol. 106, no. 4, pp. 471 479, 1988. [11] Cryotherapy for Retinopathy of Prematurity Cooperative Group, The natural ocular outcome of premature birth and retinopathy: status at 1 year, Archives of Ophthalmology, vol. 112, no.7,pp.903 912,1994. [12] W. V. Good, J. T. Flynn, A. J. Flach, G. W. Cibis, E. L. Raab, and G. R. Beauchamp, Final results of the Early Treatment for Retinopathy of Prematurity (ETROP) randomized trial, Transactions of the American Ophthalmological Society,vol.102, pp. 233 250, 2004. [13] Early Treatment for Retinopathy of Prematurity Cooperative Group, Revised indications for the treatment of retinopathy of prematurity: results of the early treatment for retinopathy of prematurity randomized trial, Archives of Ophthalmology, vol. 121,no.12,pp.1684 1694,2003. [14] A. Capone Jr. and M. T. Trese, Lens-sparing vitreous surgery for tractional stage 4A retinopathy of prematurity retinal detachments, Ophthalmology, vol. 108, no. 11, pp. 2068 2070, 2001. [15] M.Balasubramanian,A.CaponeJr.,M.E.Hartnett,S.Pignatto, and M. T. Trese, The Photographic Screening for Retinopathy of Prematurity Study (Photo-ROP): study design and baseline characteristics of enrolled patients, Retina,vol.26,supplement 7, pp. S4 S10, 2006. [16] P. G. Steinkuller, L. Du, C. Gilbert, A. Foster, M. L. Collins, and D. K. Coats, Childhood blindness, AAPOS, vol. 3, no. 1, pp. 26 32, 1999. [17] J. T. Flynn and T. Chan-Ling, Retinopathy of prematurity: two distinct mechanisms that underlie zone 1 and zone 2 disease, American Ophthalmology, vol.142,no.1,pp.46 e2, 2006. [18] S. J. Isenberg, Macular development in the premature infant, The American Ophthalmology, vol.101,no.1,pp.74 80, 1986. [19] L. Vajzovic, A. E. Hendrickson, R. V. O Connell et al., Maturation of the human fovea: correlation of spectral-domain optical coherence tomography findings with histology, The American JournalofOphthalmology,vol.154,no.5,pp.779.e2 789.e2, 2012. [20] J. C. Law, F. M. Recchia, D. G. Morrison, S. P. Donahue, and R. L. Estes, Intravitreal bevacizumab as adjunctive treatment for retinopathy of prematurity, JournalofAmericanAssociationfor Pediatric Ophthalmology and Strabismus,vol.14,no.1,pp.6 10, 2010. [21] H. A. Mintz-Hittner, K. A. Kennedy, and A. Z. Chuang, Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity, The New England Medicine,vol.364, no.7,pp.603 615,2011. [22] C. C. Tokunaga, K. P. Mitton, W. Dailey et al., Effects of anti-vegf treatment on the recovery of the developing retina following oxygen-induced retinopathy, Investigative Ophthalmology & Visual Science,vol.55,no.3,pp.1884 1892,2014.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity