Policy. Section: Medicine Effective Date: January 15, 2015 Subsection: Pathology/Laboratory Original Policy Date: December 5, 2014 Subject:

Similar documents
Section: Medicine Effective Date: January 15, 2016 Subsection: Pathology/Laboratory Original Policy Date: December 5, 2014 Subject:

Policy. Background

Serum Biomarker Panel Testing for Systemic Lupus Erythematosus

Serum Biomarker Panel Testing for Systemic Lupus Erythematosus and Other Connective Tissue Diseases

MP Serum Biomarker Panel Testing for Systemic Lupus Erythematosus and Other Connective Tissue Diseases

Benlysta (belimumab) Prior Authorization Criteria Program Summary

Systemic Lupus Erythematosus

LUPUS CAN DO EVERYTHING, BUT NOT EVERYTHING IS LUPUS LUPUS 101 SLE SUBSETS AUTOIMMUNE DISEASE 11/4/2013 HOWARD HAUPTMAN, MD IDIOPATHIC DISCOID LUPUS

MANAGING THE PATIENT WITH POSITIVE ANA

Lupus. Fast facts. What is lupus? What causes lupus? Who gets lupus?

ONE of the following:

Insights into the DX of Pediatric SLE

Biomarker studies KEY MESSAGES

Development of SLE among Possible SLE Patients Seen in Consultation: Long-Term Follow-Up. Disclosures. Background. Evidence-Based Medicine.

UPDATES ON PEDIATRIC SLE

Definition Chronic autoimmune disease The body s immune system starts attacking itself Can affect most organs and tissues in the body Brain, lungs, he

Summary Article: Lupus (Systemic Lupus Erythematosus) from Harvard Medical School Health Topics A-Z

9/25/2013 SYSTEMIC LUPUS ERYTHEMATOSUS (SLE)

Autoimmune diseases. SLIDE 3: Introduction to autoimmune diseases Chronic

High Impact Rheumatology

The Power of the ANA. April 2018 Emily Littlejohn, DO MPH

Clinical Laboratory. 14:41:00 Complement Component 3 50 mg/dl Oct-18

Living with Lupus: An Insider s Perspective

Clinical Laboratory. [None

DIAGNOSING CTD IN CLINICAL PRACTICE

Committee Approval Date: May 9, 2014 Next Review Date: May 2015

The Diagnosis of Lupus

SLE and the Antiphospholipid Syndrome

UNDERSTANDING SYSTEMIC LUPUS ERYTHEMATOSUS

PS + MPs PS - MPs 37% 36% 64% 64%

NATIONAL LABORATORY HANDBOOK. Laboratory Testing for Antinuclear antibodies

Alida R Harahap & Farida Oesman Department of Clinical Pathology Faculty of Medicine, University of Indonesia

Measurement of Cell-Bound Complement Activation Products Enhances Diagnostic Performance in Systemic Lupus Erythematosus

Erythrocyte-bound C4d in combination with complement and autoantibody status for the monitoring of SLE

LUPUS (SLE) MEDICAL SOURCE STATEMENT

Test Name Results Units Bio. Ref. Interval

Cigna Drug and Biologic Coverage Policy

Dr. Venkateswari. R. Dr. Janani Sankar s unit Kanchi Kamakoti CHILDS Trust Hospital

Autoimmune Disease. Autoimmunity. Epidemiology. ACR Criteria for Diagnosis. Signs and Symptoms. Autoreactivity: Reactivity to self antigens:

Cell-bound complement activation products in SLE

Autoimmunity. Autoimmune Disease

Learning about Lupus. Learning About Lupus. Lupus Society of Illinois

Arthritis & Rheumatology Clinics of Kansas PATIENT EDUCATION SYSTEMIC LUPUS ERYTHEMATOSUS

Disclosures. Rheumatological Approaches to Differential Diagnosis, Physical Examination, and Interpretation of Studies. None

.,Dr Ali Alkazzaz Babylon collage of medicine 2016

* Autoantibody positive (i.e. antinuclear antibody or ANA titre 1:80 or anti-double stranded (ds) DNA antibody 30 IU/mL)

LABORATORY STANDARDS IN THE DIAGNOSIS AND THERAPY MONITORING OF SYSTEMIC LUPUS ERYTHEMATOSUS

Association of anti-mcv autoantibodies with SLE (Systemic Lupus Erythematosus) overlapping with various syndromes

Conflict of Interest. Systemic Lupus Erythematosus and the Antiphospholipid Syndrome Bonnie L. Bermas, MD Brigham and Women s Hospital.

Clinical Laboratory. 14:42:00 SSA-52 (Ro52) (ENA) Antibody, IgG 1 AU/mL [0-40] Oct-18

Original Article. Abstract

Correlation between Systemic Lupus Erythematosus Disease Activity Index, C3, C4 and Anti-dsDNA Antibodies

CSTAR CASE STUDIES: BLOCK F Type 3 Hypersensitivity Reaction

Marilina Tampoia, MD; Vincenzo Brescia, MD; Antonietta Fontana, MD; Antonietta Zucano, PhD; Luigi Francesco Morrone, MD; Nicola Pansini, MD

What will we discuss today?

Budsakorn Darawankul, MD. Maharat Nakhon Ratchasima Hospital

University of Pretoria

Efficacy and Safety of Belimumab in the treatment of Systemic Lupus Erythematosus: a Prospective Multicenter Study.

SLE-key Case Studies

To live with lupus, we need to know about lupus.

Peter H. Schur Elena M. Massarotti. Editors. Lupus Erythematosus. Clinical Evaluation and Treatment

Tools to Aid in the Accurate Diagnosis of. Connective Tissue Disease

10/6/08. Systemic Lupus Erythematosus. SLE Epidemiology: who is at risk? Margrit Wiesendanger Division of Rheumatology, CUMC.

Systemic lupus erythematosus in 50 year olds

Cutaneous manifestations and systemic correlation in patients with lupus erythematosus and its subsets: a study of 40 cases

Demystifying. Systemic Lupus Erythematosus: Signs and Symptoms for Early Recognition. Teaching Fellows in Lupus Project

Advances in Autoantibody Testing & Clinical Applications

Central Nervous System (CNS) and Lupus: Learn from the Experts. Betty Diamond, M.D. Feinstein Institute for Medical Research

Systemic Lupus Erythematosus among Jordanians: A Single Rheumatology Unit Experience

Corporate Medical Policy

Systemic lupus erythematosus and primary fibromyalgia can be distinguished by testing for cell-bound complement activation products

Rheumatology Primer: What Labs and When

CIBMTR Center Number: CIBMTR Recipient ID: RETIRED. Today s Date: Date of HSCT for which this form is being completed: &

Improving the Diagnosis and Treatment of Lupus

Systemic lupus erythematosus (SLE) ... PRESENTATIONS... Epidemiology of Systemic Lupus Erythematosus. Based on a presentation by Susan Manzi, MD, MPH

Autoimmune diagnostics. A comprehensive product line for the detection of autoantibodies

Significance of Anti-C1q Antibodies in Patients with Systemic Lupus Erythematosus as A Marker of Disease Activity and Lupus Nephritis

Is it Autoimmune or NOT! Presented to AONP! October 2015!

Late onset systemic lupus erythematosus in southern Chinese. Citation Annals Of The Rheumatic Diseases, 1998, v. 57 n. 7, p.

Improving the Diagnosis and Treatment of Lupus Practical Guidance for the Primary Care Physician

Autoantibodies panel ANA

Living with Lupus. Helping Your Patient With Systemic Lupus Erythematosus By Hussein M. Halaby, MBBS, ABIM, FRCPC; and John M. Esdaile, MD, MPH, FRCPC

IdentRA test panel with eta. A clinically proven biomarker for earlier, accurate RA diagnosis and now, prognosis and monitoring

Lupus as a risk factor for cardiovascular disease

Clinical Study A Study on Clinical and Pathologic Features in Lupus Nephritis with Mainly IgA Deposits and a Literature Review

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

Editing file. Color code: Important in red Extra in blue. Autoimmune Diseases

Residual Functional Capacity Questionnaire SYSTEMIC LUPUS ERYTHEMATOSUS

Manifestation of Antiphospholipid Syndrome among Saudi patients :examining the applicability of sapporo Criteria

Systemic Lupus Erythematosus in Libyan Children: Diagnosis and Management

Test Name Results Units Bio. Ref. Interval

Clinical and immunological characteristics of Polish patients with systemic lupus erythematosus

INTERPRETATION OF LABORATORY TESTS IN RHEUMATIC DISEASE

Rheumatoid Arthritis. Manish Relan, MD FACP RhMSUS Arthritis & Rheumatology Care Center. Jacksonville, FL (904)

Supplementary Figure Legends

Auto-Antibody Detection: Prevailing Practices at a Tertiary Care Hospital in Riyadh

Antigen Leukocyte Antibody Test. Description

Early diagnosis of systemic lupus erythematosus in primary care by family doctors

2/23/18. Disclosures. Rheumatic Diseases of Childhood. Making Room for Rheumatology. I have nothing to disclose. James J.

Pattern of Systemic Lupus Erythematosus in Tabuk, Saudi Arabia

Transcription:

Last Review Status/Date: December 2014 Page: 1 of 10 Summary Systemic lupus erythematosus (SLE) is an autoimmune connective tissue disease that can be difficult to diagnose because patients often present with diverse, nonspecific symptoms, and commonly used laboratory tests are not highly accurate. Currently, the diagnosis of SLE depends on a combination of clinical signs and symptoms and individual laboratory tests. More accurate laboratory tests for SLE could facilitate diagnosis of the disease in many patients. Recently, laboratory-developed, diagnostic panel tests with proprietary algorithms and/or index scores for the diagnosis of SLE have become commercially available. Panel tests for SLE include markers that are standard in the work-up of SLE, but also contain novel markers, most notably cell-bound complement activation products (CB-CAPs). The accuracy of CB- CAPs in establishing a diagnosis of SLE is not known, nor is the use of these novel biomarkers recommended in clinical practice guidelines. In addition to reporting the results of the panel of tests, an index score is reported that rates how suggestive the results of the panel are of a diagnosis of SLE. Information is not available on how this index score is calculated, nor is it known how this score performs in diagnosing SLE compared with currently accepted clinical and laboratory criteria. Finally, the utility of assessing multiple biomarkers simultaneously, rather than the more commonly performed sequential testing, is unknown. Therefore, serum biomarker panel testing with proprietary algorithms and/or index scores for the diagnosis of SLE is considered investigational. Related Policies None Policy *This policy statement applies to clinical review performed for pre-service (Prior Approval, Precertification, Advanced Benefit Determination, etc.) and/or post-service claims. Serum biomarker panel testing with proprietary algorithms and/or index scores for the diagnosis of systemic lupus erythematosus is considered investigational.

Page: 2 of 10 Background SLE is an autoimmune connective tissue disease that affects approximately 1.5 million individuals in the United States. (1) It is one of several types of lupus, the other 2 being cutaneous and druginduced lupus. About 90% of lupus patients are women between the ages of 15 and 45 years. SLE causes inflammation and can affect any part of the body, most commonly the skin, heart, joints, lungs blood vessels, liver, kidneys, and nervous system. Although generally not fatal, SLE can lead to increased mortality, most commonly from cardiovascular disease due to accelerated atherosclerosis. SLE can also lead to kidney failure, which may reduce survival. The survival rate in the U.S. is approximately 95% at 5 years and 78% at 20 years. (2) The morbidity associated with SLE is substantial. Symptoms such as joint and muscle pain can impact quality of life and functional status. SLE also increases patients risk of infection, cancer, avascular necrosis (bone cancer death), and pregnancy complications (eg, preeclampsia and preterm birth). The course of the disease is variable, and patients generally experience periods of illness (called flares) and periods of remission. Flare severity can range from mild to serious. Treatments for SLE can ameliorate symptoms, reduce disease activity, and slow progression of organ damage, however there is no cure for SLE. Muscle and joint pain, fatigue and rashes are generally initially treated with nonsteroidal anti-inflammatory drugs. Antimalarial drugs such as hydroxychloroquine can relieve some symptoms of SLE including fatigue, rashes, and joint pain. Patients with more serious symptoms, such as heart, lung or kidney involvement, can be treated with corticosteroids or immune suppressants. There are also biologic treatments, such as rituximab, which are U.S. Food and Drug Administration approved for treatment of rheumatoid arthritis and are being evaluated for treatment of SLE. Patients with SLE often present with nonspecific symptoms such as fever, fatigue, joint pain, and rash, which can make the disease difficult to diagnosis. In some patients, the diagnosis can be made with certainty, for example when there are typical symptoms of rash and joint symptoms, and laboratory testing shows a high-titer abnormal antinuclear antibody (ANA) in a pattern that is specific for SLE. However, in many other patients, the symptom patterns are less clear and laboratory testing is equivocal, and as a result, a definitive diagnosis is difficult to make. The diagnosis of SLE has depended on a combination of clinical symptoms and laboratory results. In 1997 the American College of Rheumatology (ACR) proposed updated criteria for classification of SLE; this represented an update of 1982 criteria. (3, 4) The ACR classification criteria are as follows: 1. Malar rash 2. Discoid rash 3. Photosensitivity 4. Mouth or nose ulcers (usually painless) 5. Arthritis (nonerosive) in two or more peripheral joints, along with tenderness, swelling, or effusion.

Page: 3 of 10 6. Serositis:Pleuritis or pericarditis 7. Renal disorder: excessive protein in the urine, or cellular casts in the urine 8. Neurologic disorder: seizures and/or psychosis, in the absence of offending drugs or known metabolic derangements 9. Hematologic disorders: hemolytic anemia, leukopenia, lymphopenia or thrombocytopenia 10. Immunologic disorder: antibodies to double stranded DNA (anti-dsdna), antibodies to Smith nuclear antigen (anti-sm), positive antiphospholipid antibody or false positive serologic test for syphilis known to be positive for at least 6 months. 11. ANA test in the absence of drugs known to induce it. These criteria were originally developed for use in research studies, but they have been widely adopted into clinical care. Individuals who meet 4 or more of the 11 criteria receive a diagnosis of SLE. If a patient meets fewer than 4 of criteria, lupus can still be diagnosed by clinical judgment; it is generally recommended that a rheumatologist confirm the diagnosis of SLE. (5) ANA testing is usually performed for patients who present with signs and symptoms involving 2 or more organ systems, and individuals who test positive are recommended to undergo additional laboratory testing. (6) Studies on the 1982 ACR criteria have reported sensitivities ranging from 78% to 95% and specificities ranging from 89% to 100%, with lower accuracy in patients with mild disease. (6) In 2012, the Systemic Lupus International Collaborating Clinics (SLICC), an international group of researchers developed revised criteria for diagnosing SLE.(7) These criteria include more laboratory tests than the earlier ACR criteria, including elements of the complement system. Patients are classified as having SLE if they satisfy 4 or more of the 18 criteria, including at least 1 clinical criterion and 1 immunologic criterion or they have biopsy-proven nephritis compatible with SLE and with ANA or antidsdna antibodies. In a sample of 690 patients, the SLICC criteria had a sensitivity of 97% and a specificity of 84% for diagnosing SLE, whereas the ACR criteria applied to the same sample had a sensitivity of 83% and a specificity of 96%. It is not clear how well accepted the SLICC recommendations are in the practice setting. The SLICC criteria are as follows: Clinical criteria (in the absence of other known causes) 1. Acute cutaneous lupus (including but not limited to lupus malar rash) 2. Chronic cutaneous lupus (including but not limited to discoid rash) 3. Oral ulcers 4. Non-scarring alopecia in the absence of other causes 5. Synovitis involving two or more joints, characterized by swelling or effusion or and thirty minutes or more of morning stiffness. 6. Serositis 7. Renal: excessive protein in the urine, or cellular casts in the urine 8. Neurologic disorder: seizures, psychosis, mononeuritis complex or peripheral or cranial neuropathy 9. seizures

Page: 4 of 10 10. Hemolytic anemia 11. Leukopenia or lymphopenia 12. Thrombocytopenia Immunological criteria: 1. ANA above laboratory reference range 2. Anti-dsDNA above laboratory reference range 3. Anti-Sm 4. Antiphospholipid antibody 5. Low complement (low C3, low C4, or low CH150) 6. Direct Coombs tests in the absence of hemolytic anemia As previously noted, the SLICC classification system includes a wider range of laboratory tests than the ACR criteria. To date, the most common laboratory tests performed in the diagnosis of SLE are serum ANA, and if this is positive, tests for anti-dsdna and anti-sm. ANA tests are highly sensitive (ie, with a high negative predictive value) but have low specificity and relatively low positive predictive value, particularly when the ANA is positive at a low level. Specificity of testing can be increased by testing for specific antibodies against individual nuclear antigens (extractable nuclear antigens, or ENAs) to examine the pattern of ANA positivity. These include antigens against single and doublestranded DNA, histones, Sm, Ro, La, and RNP. The presence of anti-dsdna or anti-sm is highly specific for SLE because few patients without SLE test positive; however, neither of these tests have high sensitivity. (8) The presence of other antibody patterns may indicate the likelihood of alternate diagnoses. For example, the presence of Ro and La antibodies suggests Sjogren syndrome, while the presence of antihistone antibodies suggests drug-induced lupus. Better diagnostic tests for SLE would be useful in clinical practice. A variety of biomarkers, including markers associated with the complement system, are being explored to aid in the diagnosis of lupus. The complement system is part of the immune system and consists of 20 to 30 protein molecules that circulate in the blood in inactive form until activated by a trigger. When activated, as in by an infection, a sequence of events known as the complement cascade is initiated. This cascade involves the proteolysis of a complement protein into a smaller protein and a peptide. The smaller protein is able to bind to the complex at the surface of the invading microorganism and the peptide diffuses away. For example, in the first step, complement protein C3 is cleaved into C3b and C3a. C3b binds to the surface of the microorganism and activates the next step in the cascade, the proteolysis of C5, and the small peptide, C3a diffuses away. The precursors C3 and C4 and the complement activation products (CAPs), eg, C3a, C5a and C4d, have been considered as SLE biomarkers. More recently, cell-bound complement activation products (CB-CAPs), which are longer-lived than circulating CAPs, have been investigated as biomarkers of SLE. It is as yet unclear what advantages CB-CAPs may have over measuring circulating CAPs. In addition to exploration of individual biomarkers with higher accuracy than accepted markers such as ANA and anti-dsdna, there is interest in identifying a panel of tests with high sensitivity and

Page: 5 of 10 specificity for SLE diagnosis. At least 1 multibiomarker test to aid in the diagnosis of SLE is commercially available. This panel, Avise 2.0 (Exagen Diagnostics), contains a total of 22 different tests. It combines 2 smaller panels, a 10-marker panel that includes common SLE tests, as well as CB-CAPs (known as Avise SLE 2.0) and a 12-marker panel that includes focuses on connective tissue diseases other than SLE (known as Avise SLE + Connective Tissue 2.0 ). Specific biomarkers in the panel are as follows. 10 marker Avise SLE 2.0 test: Auto-antibodies: ANA, Anti-dsDNA, Anti-mutated citrullinated vimentin (Anti-MCV), C4d erythrocytebound complement fragment (EC4d), C4d lymphocyte-bound complement (BC4d), Anti-Sm, Jo-1, Sci- 70, CENP, SS-B/La, 12 marker Avise SLE + Connective Tissue 2.0 test: Auto-antibodies: U1RNP, RNP70, SS-A/Ro. Rheumatoid arthritis auto-antibodies: Rheumatoid factor IgM, Rheumatoid factor IgA, Anti-cyclic citrullinated peptide IgG. Anti-phospholipid syndrome auto-antibodies: Cardiolipin IgM, Cardiolipin IgG, B2-glycoprotein 1 IgG, B2-glycoprotein 1 IgM. Thyroid auto-antibodies: Thyroglobulin IgG, Thyroid perodixidase IgG. In addition to reporting individual test results, an index score is reported that rates how suggestive results of tests are of SLE. Information is not available as to how this index score is calculated. The score can range from -5 (highly nonsuggestive of SLE) to 5 (highly suggestive of SLE) and a score of -0.1 to 0.1 is considered to be in the indeterminate zone. Exagen also offers the Avise SLE Prognostic test, a 10-marker panel that can be ordered in conjunction with the Avise SLE 2.0/Avise SLE + Connective Tissue 2.0 panels. The prognostic test focuses on patients risk of lupus nephritis, neuropsychiatric SLE, thrombosis and cardiovascular events. The test includes anti-c1q, anti-ribosomal P, anti-phoshatidylserine/prothrombin IgM and IgG, anti-cardiolipin IgM, IgG and IgA and anti-b2-glycoprotein 1 IgM, IgG and IgA. Four of the 10 markers are included in the Avise SLE + Connective Tissue 2.0 panel. Company materials do not state that Exagen reports a summary score for the prognostic test. Regulatory Status Clinical laboratories may develop and validate tests in-house and market them as a laboratory service; laboratory-developed tests must meet the general regulatory standards of the Clinical

Page: 6 of 10 Laboratory Improvement Act (CLIA). The Avise SLE + Connective Tissue 2.0 test (Exagen Diagnostics) is available under the auspices of CLIA. Rationale This policy was created in 2014 with a search of the MEDLINE database. Assessment of a diagnostic technology typically focuses on 3 categories of evidence: (1) technical performance (test-retest reliability or interrater reliability); (2) diagnostic accuracy (sensitivity, specificity, and positive and negative predictive value) in relevant populations of patients; and (3) demonstration that the diagnostic information can be used to improve patient outcomes. In addition, subsequent use of a technology outside of the investigational setting may also be evaluated. Technical Accuracy Some individual biomarkers, eg, ANA and anti-dsdna, are considered standard of care in the diagnosis of connective tissue diseases, and, presumably, the technical accuracy of these tests has been established. The technical accuracy of tests for novel biomarkers in biomarker panel tests is not known. Serum Biomarker Panel Tests Diagnostic Accuracy No studies were identified that evaluated the diagnostic accuracy of any commercially available biomarker panel for systemic lupus erythematosus (SLE). One study, published by Kalunian et al in 2012 and supported by Exagen Diagnostics, evaluated the performance of a 7-marker biomarker panel for the diagnosis of SLE; some of these markers are included in a commercially available panel test. (9) The biomarkers included the auto-antibodies antinuclear antibodies (ANA), anti-dsdna, and anti-mutated citrullinated vimentin (anti-mcv) measured by enzyme-linked immunosorbent assay (ELISA). In addition, the authors assessed the cell-bound complement activation products, complement receptor 1 levels on erythrocytes and complement C4d levels on erythrocytes (EC4d), platelets (PC4d) and B cells (BC4d), determined by fluorescenceactivated cell sorting. The study was cross-sectional and enrolled 593 individuals at 14 sites in the United States. The sample consisted of 210 patients with SLE (according to the American College of Rheumatology (ACR) classification criteria, updated in 1997), 178 patients with other rheumatic diseases and 205 healthy volunteers. Test results were evaluated by scientists blinded to patient diagnosis. In a multivariate logistic regression, SLE diagnosis was associated with a positive ANA test, a negative anti-mcv test, and elevated values of EC4d and BC4d (area under the curve [AUC], 0.92; p<0.001). The weighted sum of these 4 markers correctly categorized 106 of 148 (71.6%) of SLE patients who were anti-dsdna negative. (The investigators evaluated the 4-marker index score among individuals

Page: 7 of 10 who tested negative for anti-dsdna because of the low sensitivity of this test, 29.5%, and thus high false negative rate). The specificity of the 4-marker index was 98.0% (200/204 healthy volunteers with test results were correctly classified). When anti-dsdna was added to the 4-marker panel, the test had 80% sensitivity for SLE (168/210 SLE patients were correctly classified). Moreover, this 5-marker test had 97.6% specificity among healthy individuals (200/205 were correctly classified as not having SLE). Moreover, the 5-marker test had 87% specificity in patients with other rheumatic diseases; the most false positives, 9, were in patients with rheumatoid arthritis. Limitations of the study are that it did not include the population of greatest interest to SLE diagnostic testing; that is, individuals with symptoms suggestive of SLE who have not already received a diagnosis. Instead it included individuals either known to have SLE or another rheumatic disease or known to be healthy. Moreover, test accuracy was not compared with concurrent physician diagnosis. It is important to note that the biomarkers in the 5-marker test are part of the 10-marker Avise 2.0 SLE test marketed by Exagen. It is not clear whether the index score reported along with the Avise 2.0 panel is the same or different as the index score reported in the Kalunian et al study. Novel Panel Components: CB-CAPs As previously discussed, CB-CAPs are key components of a commercially available biomarker panel test for lupus diagnosis. CB-CAPs include complement C4d levels on erythrocytes, platelets, and B cells. Preliminary investigations of each of these biomarkers have been done by a research team at the University of Pittsburgh. A study on lymphocyte-bound complement activation products was published by Liu et al in 2009. (10) This was a cross-sectional study including 224 patients with SLE (according to ACR criteria), 179 patients with other autoimmune or inflammatory diseases and 114 healthy controls. Levels of lymphocyte-bound complement activation products, T-cell bound C4d and C3d (TC4d and TC3d) and B-cell- bound C4d and C3d (BC4d and BC3d) were measured in all participants. The diagnostic accuracy of these markers was accessed using receiver operating characteristic (ROC) analysis. The AUC was 0.727 for TC4d and 0.770 for BC4d. Based on these estimates, TC4d was estimated to be 56% sensitive and 80% specific for differentiating SLE from other diseases. BC4d had 56% sensitivity and 80% specificity. In addition, the authors compared the CB-CAPs with other, conventionally used, SLE markers. The markers were evaluated as a confirmatory test in patients who tested positive for ANA. This analysis only included the SLE patients, 223 of 224 of whom (99.6%) were positive for ANA. Of the 223 ANApositive patients, 141 (63%) patients had elevated levels of TC4d and/or BC4d. In contrast, 59 of the 209 ANA-positive patients (28%) tested positive for anti-dsdna. Moreover, when the more commonly used CAPs, serum C3 and serum C4, were evaluated, 67 of 221 (30%) of ANA-positive patients tested positive for C3 and 82 of 221 patients (37%) tested positive for C4. Previously, a study on platelet C4d was published by Navratil in 2006. (11) The cross-sectional study included 105 patients with SLE (according to ACR criteria), 115 patients with other autoimmune or

Page: 8 of 10 inflammatory diseases, and 100 healthy controls. Abnormal levels of platelet C4d were detected in 18% of SLE patients. False negative rate and sensitivity rates were not reported. The authors reported that the marker was 100% specific for a diagnosis of SLE compared with healthy controls and 98% specific compared with patients who had other diseases. Thirdly, Manzi et al reported on the diagnostic accuracy of erythrocyte C4d in 2004. (12) The crosssectional study included 100 patients with SLE (according to ACR criteria), 133 patients with other autoimmune or inflammatory diseases and 84 healthy controls. Overall, erythrocyte C4d was 86% sensitive and 71% specific. Moreover, the authors reported that erythrocyte C4d was 72% sensitive and 79% specific for SLE versus other diseases, and 81% sensitive and 91% specific for SLE versus healthy controls. The CB-CAPs lymphocyte-bound BC4d, platelet C4d and erythrocyte C4d are included in the panel test evaluated in the Kalunian et al study discussed earlier. (9) As in the Kalunian study, all of the other studies included individuals with known diagnoses; none included patients of greatest interest for diagnostic test those with symptoms suggestive of disease. Also similar was the lack of a concurrent reference standard in the studies. Effect on Patient Outcomes No studies were identified that evaluate the impact of serum biomarker panel testing for SLE on patient management decisions or patient outcomes. Summary of Evidence Systemic lupus erythematosus (SLE) is an autoimmune connective tissue disease that can be difficult to diagnose because patients often present with diverse, nonspecific symptoms, and commonly used laboratory tests are not highly accurate. Currently, the diagnosis of SLE depends on a combination of clinical signs and symptoms and individual laboratory tests. More accurate laboratory tests for SLE could facilitate diagnosis of the disease in many patients. Recently, laboratory-developed, diagnostic panel tests with proprietary algorithms and/or index scores for the diagnosis of SLE have become commercially available. Panel tests for SLE include markers that are standard in the work-up of SLE, but also contain novel markers, most notably cell-bound complement activation products (CB-CAPs). The accuracy of CB- CAPs in establishing a diagnosis of SLE is not known, nor is the use of these novel biomarkers recommended in clinical practice guidelines. In addition to reporting the results of the panel of tests, an index score is reported that rates how suggestive the results of the panel are of a diagnosis of SLE. Information is not available on how this index score is calculated, nor is it known how this score performs in diagnosing SLE compared with currently accepted clinical and laboratory criteria. Finally, the utility of assessing multiple biomarkers simultaneously, rather than the more commonly performed sequential testing, is unknown. Therefore, serum biomarker panel testing with proprietary algorithms and/or index scores for the diagnosis of SLE is considered investigational.

Page: 9 of 10 Supplemental Information Practice Guidelines and Position Statements In 2014, an international group including participants in the European autoimmunity standardization initiative and the International Union of Immunologic Societies published recommendations on the assessment of autoantibodies to cellular antigens. (13) The recommendations included the following statements relevant to the diagnosis of SLE: The diagnosis of systemic autoimmune rheumatic diseases (SARD) requires a panel of specific laboratory tests (ie, ANA, anti-dsdna, anti-ena antibodies) The detection of ANA is the first-level test for laboratory diagnosis of SARD. If the ANA test is positive, testing for anti-dsdna antibodies is advised when there is clinical suspicion of SLE If the ANA test is positive, testing for anti-ena antibodies is recommended. This topic is not a preventive service. U.S. Preventive Services Task Force Recommendations Medicare National Coverage There is no national coverage determination (NCD). In the absence of an NCD, coverage decisions are left to the discretion of local Medicare carriers. References 1. Lupus Research Institute. Lupus Fact Sheet. http://www.lupusresearchinstitute.org/lupusfacts/lupus-fact-sheet. Accessed October 2014. 2. Kasitanon N, Magder LS, Petri M. Predictors of survival in systemic lupus erythematosus. Medicine (Baltimore). May 2006; 85(3):147-156. PMID 16721257 3. American College of Rheumatology (ACR). The 1982 Revised Criteria for Classification of Systemic. http://www.rheumatology.org/practice/clinical/classification/sle/sle.asp. Accessed October 2014. 4. Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum. Sep 1997; 40(9):1725. PMID 9324032 5. Guidelines for referral and management of systemic lupus erythematosus in adults. American College of Rheumatology Ad Hoc Committee on Systemic Guidelines. Arthritis Rheum. Sep 1999; 42(9):1785-1796. PMID 10513791

Page: 10 of 10 6. Gill JM, Quisel AM, Rocca PV, et al. Diagnosis of systemic lupus erythematosus. Am Fam Physician. Dec 1, 2003; 68(11):2179-2186. PMID 14677663 7. Petri M, Orbai AM, Alarcon GS, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus. Arthritis Rheum. Aug 2012; 64(8):2677-2686. PMID 22553077 8. Suresh E. Systemic lupus erythematosus: diagnosis for the non-specialist. Br J Hosp Med (Lond). Oct 2007; 68(10):538-541. PMID 17974296 9. Kalunian KC, Chatham WW, Massarotti EM, et al. Measurement of cell-bound complement activation products enhances diagnostic performance in systemic lupus erythematosus. Arthritis Rheum. Dec 2012; 64(12):4040-4047. PMID 22932861 10. Liu CC, Kao AH, Hawkins DM, et al. Lymphocyte-bound complement activation products as biomarkers for diagnosis of systemic lupus erythematosus. Clin Transl Sci. Aug 2009; 2(4):300-308. PMID 20161444 11. Navratil JS, Manzi S, Kao AH, et al. Platelet C4d is highly specific for systemic lupus erythematosus. Arthritis Rheum. Feb 2006; 54(2):670-674. PMID 16447243 12. Manzi S, Navratil JS, Ruffing MJ, et al. Measurement of erythrocyte C4d and complement receptor 1 in systemic lupus erythematosus. Arthritis Rheum. Nov 2004; 50(11):3596-3604. PMID 15529364 13. Agmon-Levin N, Damoiseaux J, Kallenberg C, et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann Rheum Dis. Jan 2014; 73(1):17-23. PMID 24126457 Policy History Date Action Reason December 2014 New Policy Policy created with literature review. Serum biomarker panel tests for systemic lupus erythematosus with proprietary algorithms and/or index scores are considered investigational. This policy was approved by the FEP Pharmacy and Medical Policy Committee on December 5, 2014 and is effective January 15, 2015. Signature on File Deborah M. Smith, MD, MPH