Basics of skeletal muscle electrophysiology. Tóth András, PhD

Similar documents
PSK4U THE NEUROMUSCULAR SYSTEM

Skeletal Muscle. Connective tissue: Binding, support and insulation. Blood vessels

Muscle and Muscle Tissue

Session 3-Part 2: Skeletal Muscle

Musculoskeletal Systems. Anatomy: Arrangement of Cells Physiology: Contractions

About This Chapter. Skeletal muscle Mechanics of body movement Smooth muscle Cardiac muscle Pearson Education, Inc.

Ch 12: Muscles sarcolemma, t-tubules, sarcoplasmic reticulum, myofibrils, myofilaments, sarcomere...

Skeletal Muscle and the Molecular Basis of Contraction. Lanny Shulman, O.D., Ph.D. University of Houston College of Optometry

Chapter 10 Muscle Tissue and Physiology Chapter Outline

1/4/2017. Introduction. Connective Tissue Coverings. 9.1: Structure of a Skeletal Muscle. Skeletal Muscle Fibers. Connective Tissue Coverings

Muscles and Muscle Tissue

1. Locomotion. 2. Repositioning. 3. Internal movement

1. Locomotion. 2. Repositioning. 3. Internal movement

Concept 50.5: The physical interaction of protein filaments is required for muscle function

Skeletal Muscle. Skeletal Muscle

Chapter 10 -Muscle Tissue

Ch 12 can be done in one lecture

Chapter 9 Muscle. Types of muscle Skeletal muscle Cardiac muscle Smooth muscle. Striated muscle

MUSCLE TISSUE (MUSCLE PHYSIOLOGY) PART I: MUSCLE STRUCTURE

2/19/2018. Learn and Understand:

Chapter 10 Muscle Tissue Lecture Outline

Hole s Human Anatomy and Physiology Eleventh Edition. Mrs. Hummer. Chapter 9 Muscular System

Skeletal Muscle Qiang XIA (

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

Structure of the striated muscle general properties

CHAPTER 6 2/9/2016. Learning Objectives List the four traits that all muscle types have in common.

Skeletal Muscle Tissue

Physiology sheet #2. The heart composed of 3 layers that line its lumen and cover it from out side, these layers are :

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Characteristics of Muscle:

Microanatomy of Muscles. Anatomy & Physiology Class

Muscle Cell Anatomy & Function (mainly striated muscle tissue)

Muscle Tissue. Muscle Tissue Outline. General Function of Muscle Tissue

Lecture Overview. Muscular System. Marieb s Human Anatomy and Physiology. Chapter 9 Muscles and Muscle Tissue Lecture 16

BIPN 100 F15 (Kristan) Human Physiology Lecture 10. Smooth muscle p. 1

Chapter 10! Chapter 10, Part 2 Muscle. Muscle Tissue - Part 2! Pages !

Ch.10 Muscle Tissue. Copyright 2009, John Wiley & Sons, Inc.

Principles of Anatomy and Physiology

Page 1. Chapter 9: Muscle Tissue. Types of Muscle Tissue: Skeletal Muscle Cardiac Muscle Smooth Muscle. Gross Anatomy of Muscle:

MUSCULAR SYSTEM CHAPTER 09 BIO 211: ANATOMY & PHYSIOLOGY I

Muscle Tissue- 3 Types

Cardiovascular system progress chart

Nerve Cell (aka neuron)

Outline. Bio 105: Muscular System. Muscular System. Types of Muscles. Smooth Muscle. Cardiac Muscle 4/6/2016

Muscle Tissue. Dr. Heba Kalbouneh Associate Professor of Anatomy and Histology

10 - Muscular Contraction. Taft College Human Physiology

Muscular Tissue. Functions of Muscular Tissue. Types of Muscular Tissue. Skeletal Muscular Tissue. Properties of Muscular Tissue

Smooth Cardiac Skeletal Location Around tubes Heart tissue attached to skeleton Moves stuff thru Heart beat pumps Moves body parts

CLASS SET Unit 4: The Muscular System STUDY GUIDE

Biology 201-Worksheet on Muscle System (Answers are in your power point outlines-there is no key!)

Behavior of Whole Muscles

Muscle Physiology. Dr. Ebneshahidi Ebneshahidi

Chapter 9 - Muscle and Muscle Tissue

Chapter 50. You re on your own for: Sensory Reception Mechanoreceptors Gravity, Hearing and Equilibrium. Chemoreception taste and smell

Muscle Histology. Dr. Heba Kalbouneh Assistant Professor of Anatomy and Histology

Connective tissue MUSCLE TISSUE

AnS SI 214 Practice Exam 2 Nervous, Muscle, Cardiovascular

Cardiac Muscle Physiology. Physiology Sheet # 8

Muscle Tissue. PowerPoint Lecture Presentations prepared by Jason LaPres. Lone Star College North Harris Pearson Education, Inc.

Chapter 8: Skeletal Muscle: Structure and Function

BIOH111. o Cell Module o Tissue Module o Integumentary system o Skeletal system o Muscle system o Nervous system o Endocrine system

Ch 10: Skeletal Muscle Tissue (Myology)

Chapter 10: Muscle Tissue

Animal Skeletons. Earthworm peristaltic movement. Hydrostatic Skeletons

Department of medical physiology 7 th week and 8 th week

AN INTRODUCTION TO INVOLUNTARY (ESPECIALLY SMOOTH) MUSCLES 1

Warm Up! Test review (already! ;))

Muscle Tissue. C h a p t e r. PowerPoint Lecture Slides prepared by Jason LaPres Lone Star College - North Harris

(c) sarcolemma with acethylcholine (protein) receptors

Muscle tissue. 1) Striated skeletal muscle tissue. 2) Striated cardiac muscle tissue. 3) Smooth muscle tissue.

Muscular System. This chapter will focus on muscle cells and tissues. Muscle tissue has several functions:

Marah karablieh. Osama khader. Muhammad khatatbeh. 0 P a g e

Chapter 10! Muscle Tissue - Part 2! Pages ! SECTION 10-5! Sarcomere shortening and muscle fiber stimulation produce tension!

Chapter 10: Muscles. Vocabulary: aponeurosis, fatigue

Cardiac Properties MCQ

Chapter 8 Notes. Muscles

Skeletal Muscle Contraction 4/11/2018 Dr. Hiwa Shafiq

BIOLOGY - CLUTCH CH.49 - MUSCLE SYSTEMS.

Fig Copyright McGraw-Hill Education. Permission required for reproduction or display. Nucleus. Muscle fiber. Endomysium. Striations.

The Musculoskeletal System. Chapter 46

Neuromuscular Junction (NMJ) Skeletal Muscle Structure. Motor Unit. Motor Units. Chapter 12 Outline

UNIVERSITY OF BOLTON SPORT AND BIOLOGICAL SCIENCES SPORT AND EXERCISE SCIENCE PATHWAY SEMESTER TWO EXAMINATIONS 2016/2017

Muscle Tissue. General concepts. Classification of muscle. I. Functional classification is based on the type of neural control.

Skeletal Muscle Contraction 5/11/2017 Dr. Hiwa Shafiq

MODULE 6 MUSCLE PHYSIOLOGY

Essentials of Human Anatomy & Physiology. The Muscular System

Cardiovascular health & Health Promotion HH2602 & HH5607

The Cardiovascular System

Muscles and Metabolism

A and P CH 8 Lecture Notes.notebook. February 10, Table of Contents # Date Title Page # /30/17 Ch 8: Muscular System

Anatomy and Physiology 1 Chapter 10 self quiz Pro, Dima Darwish,MD.

MUSCULAR TISSUE. Dr. Gary Mumaugh

QUIZ/TEST REVIEW NOTES SECTION 1 CARDIAC MYOCYTE PHYSIOLOGY [CARDIOLOGY]

Muscle Tissue. Alternating contraction and relaxation of cells. Chemical energy changed into mechanical energy

Muscular System. 3 types of muscle tissue. How skeletal muscles arrange CARDIAC SMOOTH SKELETAL

Nerve regeneration. Somatic nervous system

Nerve meets muscle. Nerve regeneration. Somatic nervous system

FIBER TYPES - oxidative metabolism is the main form here - ATPase activity is relatively low

Objectives & key points. Outline of muscle lectures

Muscles & Motor Locomotion Why Do We Need All That ATP?

NZQA Expiring unit standard version 2 Page 1 of 5. Demonstrate knowledge of exercise physiology and human anatomy

Transcription:

Basics of skeletal muscle electrophysiology Tóth András, PhD

Topics Structure Contraction and relaxation Activation Excitation-contraction coupling Action potential Ion channels* Calcium homeostasis

Structure

Skeletal muscle Cardiac muscle In skeletal muscle the SR is greatly enlarged at the terminal cisternae, the diameter of the T-tubules is relatively narrow. In cardiac muscle T-tubules are much larger in diameter and the SR is more sparse, but includes junctional couplings with the external sarcolemma, as well, as the T- tubules. Myofibrils are also more irregular. Mitochondria are plentiful. Schematic diagram of skeletal and cardiac muscles

Skeletal muscle fibre types Voluntary muscles contain a variety of fibre types which are specialised for particular tasks. Most muscles contain a mixture of fibre types although one type may predominate. The pattern of gene expression within each voluntary muscle cell is governed by the firing pattern of its single motor neurone. Motor neurones branch within their target muscle and thereby control several muscle fibres, called a motor unit. The high precision eye muscles have only a few fibres in each motor unit, but the muscles in your back have thousands. All the cells in a motor unit contract in unison and they all belong to the same fibre type: Type 1 or slow oxidative fibres have a slow contraction speed and a low myosin ATPase activity. These cells are specialised for steady, continuous activity and are highly resistant to fatigue. Their motor neurones are often active, with a low firing frequency. These cells are thin (high surface to volume ratio) with a good capillary supply for efficient gas exchange. They are rich in mitochondria and myoglobin which gives them a red colour. They are built for aerobic metabolism and prefer to use fat as a source of energy. These are the marathon runner's muscle fibres. Type 2A or fast oxidative-glycolytic fibres have a fast contraction speed and a high myosin ATPase activity. They are progressively recruited when additional effort is required, but are still very resistant to fatigue. Their motor neurones show bursts of intermittent activity. These cells are thin (high surface to volume ratio) with a good capillary supply for efficient gas exchange. They are rich in mitochondria and myoglobin which gives them a red colour. They are built for aerobic metabolism and can use either glucose or fats as a source of energy. These are general purpose muscle fibres which give the edge in athletic performance, but they are more expensive to operate than type 1. Type 2B or fast glycolytic fibres have a fast contraction speed and a high myosin ATPase activity. They are only recruited for brief maximal efforts and are easily fatigued. Their motor neurones transmit occasional bursts of very high frequency impulses. These are large cells with a poor surface to volume ratio and their limited capillary supply slows the delivery of oxygen and removal of waste products. They have few mitochondria and little myoglobin, resulting in a white colour (e.g. chicken breast). They generate ATP by the anaerobic fermentation of glucose to lactic acid. These are sprinter's muscle fibres, no use for sustained performance.

Contraction - relaxation

The length-tension relationship in skeletal & cardiac muscle

The contractile force in skeletal muscle is determined by A) Contraction summation (tetanus) B) Sarcomer length (myofilament overlap) C) Activation of further fibers (recruitment) The contractile force in cardiac muscle is determined by A) Intracellular Ca concentration (analog) (intrinsic regulation) B) Sarcomer length (myofilament overlap) (extrinsic regulation) The regulation of the contractile force in skeletal & cardiac muscle

Activation

The restricted space located between junctional sarcosplasmic reticulum (JSR) and the junctional sarcolemma (JSL) forms a local intracellular compartment which, has a very special role in both EC coupling and calcium homeostasis. In this space changes in Na +, K + & Ca 2+ concentrations are significantly greater than in all other compartments of the cytosol. L-type Ca channel & NCX protein densities in the junctional sarcolemma are also much higher than in any other regions of the sarcolemma. The restricted space

Excitation-contraction coupling (ECC)

A) Isolated rat ventricular myocyte B) Frog skeletal muscle fiber In contrast to skeletal muscle in cardiac myocytes external Ca influx is essential for activation of contraction

In contrast to skeletal muscle, where DHPRs are found in very regular structure, the DHPRs in the heart cells are sparse and less aligned. Structural differences in skeletal & cardiac T-tubule junctions

In skeletal muscle The physical link between DHPR & RyR1 is critical for VDCR Influx of external Ca (I Ca ) is not required In cardiac muscle The physical link between DHPR & RyR2 is not critical for CICR Influx of external Ca (I Ca ) is crucial Comparison of EC-coupling in skeletal & cardiac muscle

A) Two Ca 2+ sparks (2D confocal fluorescence) B) Single Ca 2+ spark (line-scan image) C) [Ca 2+ ] i computed from the image D) Surface plot of [Ca 2+ ] i during a Ca 2+ spark The elementary event of Ca 2+ -release from the SR is the local spark, which often occurs during rest in a stochastic manner. Many RyRs contribute to a single spark, which starts at the T-tubule and increases [Ca 2+ ] i in 10 ms to a peak value of 200-300 nmol. The reason for its time dependent decrease is Ca 2+ diffusion and Ca 2+ reuptake. Calcium sparks

Similarities between skeletal muscle and cardiac EC coupling Both muscle types are striated & contain T-tubules and highly developed intracellular SR networks APs provide the excitation stimulus used to activate plasma membrane DHPRs (or Ca 2+ channels ) Activated DHPRs (or Ca 2+ channels) trigger the opening of SR Ca 2+ release channels Resulting elevation in intracellular Ca 2+ activates the contractile machinery

Differences between skeletal muscle and cardiac EC coupling The skeletal muscle contains highly developed, cardiac muscle contains a less developed T-tubule and SR system The skeletal muscle does not contain, while the heart contains specialized excitatory tissues (SA node) and conductive fibers (Purkinje fibers) Each skeletal muscle fiber is independent, while the heart is a syncytium of many cells electrically connected at intercalated discs by gap junctions The skeletal muscle AP is 100x shorter (2.5 ms) than that of the ventricular myocardium

Ca 2+ -sensitizer agents Positive inotropic agents Hypoxia ischemia Factors which may alter Ca-sensitivity

Conclusion A) In a simplified manner the 3 muscle types can serve as models for the 3 major mechanisms of SR Ca-release (VDCR: skeletal muscle; CICR: cardiac muscle; IP 3 ICR: smooth muscle) This is an oversimpliplification since all 3 mechanism may be present and functional in all 3 muscle types. B) In skeletal muscle VDCR seems to be the crucial initiating process, however, CICR may be very important in recruiting RyRs ( 50%) which are not physically coupled to T-tubule tetrads. IP 3 can also induce Ca release (IP 3 ICR), but its significance is not yet clear. C) In cardiac muscle CICR is the essential EC-coupling mechanism. IP 3 may also modulate cardiac Ca release. There is some evidence for a functional direct link between the SL and the SR (and possibly VDCR). The significance of this link is not yet clear. D) In smooth muscle there is evidence for both IP 3 ICR & CICR. There is also evidence for that the IP 3 ICR interacts with a different plasma membrane Ca channel (TRP), involved in CCE where the signal is retrograde from IP 3 R to TRP.

Action potential

Ca 2+ homeostasis in skeletal muscle

INFLUX = EFFLUX Ca-transient CDI 1 I Ca TRIGGER - + + Steady-state I NCX INFLUX EFFLUX INFLUX EFFLUX TRIGGER Ca-transient CDI 2 - I Ca + + Empty cell I NCX INFLUX = EFFLUX TRIGGER CDI 3 - I Ca + + During refill Ca-transient I NCX CDI 4 - I Ca TRIGGER + + Steady-state Ca-transient I NCX Principles of autoregulation of SR Ca 2+ content in the heart This mechanism does not work in skeletal muscle

Modes of regulated Ca 2+ entry across the plasma membrane. Ca 2+ can enter cells by any of several general classes of channels, including voltage-operated channels (VOC), second messenger-operated channels (SMOC), storeoperated channels (SOC), and receptor-operated channels (ROC). 1) VOCs are activated by membrane depolarization. 2) SMOCs are activated by small messenger molecules (i.e inositol phosphates, cyclic nucleotides, and lipidderived messengers (diacylglycerol and arachidonic acid and its metabolites)). 3) SOCs are activated by depletion of intracellular Ca 2+ stores. 4) ROCs are activated by direct binding of a neurotransmitter or hormone agonist (Ag). 5) In addition, under some conditions, Ca 2+ can enter cells via the Na-Ca 2+ exchanger (NCX) operating in reverse mode.

Model of SOCE (store operated calcium entry) in skeletal muscle. SOCE in skeletal muscle displays rapid kinetics compared to non-excitable cells. STIM1 (stromal interaction molecule) localization may account for these kinetic differences. Electron micrographs of skeletal muscle from STIM1 gene trapped mice revealed STIM1 protein aggregates located in membranes of the terminal cisternae and the para-junctional SR. The junctional STIM1 pool is located near or complexed with Orai1 (calcium-release activated calcium channel protein) and can respond rapidly to store depletion.

STIM & ORAI: two major players in the SOC(cer) field

Structure and distribution of STIM proteins. (A) Comparison of the sequence domains of STIM1 and STIM2 proteins including the EF-hand Ca 2+ binding regions, sterile-alpha motifs (SAM), glycosylation sites (hexagons), transmembrane domains (TM), coiled-coil regions, ezrin radixin moesin-like domains (ERM), and proline-rich domains (P). (B) Domain topologies for STIM1 and STIM2 a number of potential serine/threonine phosphorylation sites existing on the N-terminal domains of the proteins are shown (red P). (C) Lower right panel: distribution of STIM1 and STIM2 in the PM and ER. While STIM1 can be observed in both the ER and PM, the STIM2 protein appears to be exclusively in the ER.

Models for the coupling between STIM1 and Orai1 in the activation of store-operated Ca 2+ entry. (A) Simplest model in which Orai1 in the PM interacts directly with the aggregated STIM1 in the ER. (B) STIM1 in the PM is the primary site of a interaction of aggregated STIM1 in the ER; the PM STIM1 protein then mediates interaction with and activation of Orai1 in the PM. (C) STIM1 aggregated in the ER activates PM Orai1 channels by direct activation as in (A) but STIM1 in the PM exerts a modulatory role on this channel activation by interacting with aggregated STIM1 in the ER.