Preparation and Characterization of Solid Dispersion Telmisartan Hydroxypropyl Methyl Cellulose(HPMC) E5 LV by Co-Grinding Method

Similar documents
FORMULATION AND CHARACTERIZATION OF TELMISATAN SOLID DISPERSIONS

Comparative study of different solubility enhancement techniques on dissolution rate of zaltoprofen

Journal of Pharmaceutical and Scientific Innovation

The effect of HPMC on solubility and dissolution of carbamazepine form III (CBZ) was investigated in 50% w/w of CBZ

3.1 Background. Preformulation Studies

SOLUBILITY OF SELECTED DERIVATIVES OF 1,4-BENZODIAZEPINE-2-ONE IN THE PRESENCE OF PVP

Enhancement of solubility and dissolution rate of quercetin with solid dispersion system formation using hydroxypropyl methyl cellulose matrix

A study on the effects of different surfactants on Ethylcellulose microspheres

Rohini S. Kharwade et al. Int. Res. J. Pharm. 2017, 8 (2) INTERNATIONAL RESEARCH JOURNAL OF PHARMACY

Mixed Hydrotropy: Novel Science of Solubility Enhancement

Formation and Characterization of Sulfamethoxazole-Trimethoprim Cocrystal by Milling Process

Preparation and Physicochemical Properties of the Complex of Naringenin with Hydroxypropyl-β-Cyclodextrin

SOLID INCLUSION COMPLEXES OF CLASS II IMIDAZOLE DERIVATIVE WITH Β CYCLODEXTRIN. Pradesh.

International Journal of Pharma and Bio Sciences

ENHANCEMENT OF SOLUBILITY OF BICALUTAMIDE DRUG USING SOLID DISPERSION TECHNIQUE


Indian Journal of Novel Drug Delivery 8(4), Oct-Dec, 2016, Indian Journal of Novel Drug Delivery

CHAPTER VI FACTORIAL STUDIES ON THE EFFECTS OF CYCLODEXTRINS AND SOLUTOL HS15 ON THE SOLUBILITY AND DISSOLUTION RATE OF EFAVIRENZ AND RITONAVIR

PREPARATION, CHARACTERIZATON AND DISSOLUTION KINETICS OF CELECOXIB : β AND HP β -CYCLODEXTRIN COMPLEXES

7. SUMMARY, CONCLUSION AND RECOMMENDATIONS

INTERNATIONAL JOURNAL OF INSTITUTIONAL PHARMACY AND LIFE SCIENCES

PHARMA SCIENCE MONITOR AN INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

Characterization and DPPH Radical Scavenging Activity of Gallic Acid-Lecithin Complex

In Vitro Dissolution Enhancement of Felodipine

International Journal of Pharma Sciences and Scientific Research

CHAPTER 5 CHARACTERIZATION OF ZINC OXIDE NANO- PARTICLES

Inclusion Complexes of Ketoprofen with β-cyclodextrins: Oral Pharmacokinetics of Ketoprofen in Human

Designing of Ritonavir Solid Dispersion through Spray Drying

skim milk as carrier by kneading method. They were evaluated for percentage yield, drug content, FT-IR

Journal of Chemical and Pharmaceutical Research, 2018, 10(1): Research Article

Preparation of 200 mg fenofibrate hard capsule with high dissolution profile with microparticle entrapped micelles technology

EFFECT OF PVP ON CYCLODEXTRIN COMPLEXATION OF EFAVIRENZ FOR ENHANCING ITS SOLUBILITY AND DISSOLUTION RATE

DEVELOPMENT, CHARACTERIZATION AND SOLUBILITY STUDY OF SOLID DISPERSION OF CEFIXIME TRIHYDRATE BY SOLVENT EVAPORATION METHOD

SOLID DISPERSION OF USNIC ACID-PVP K30 AND EVALUATION OF ANTIOXIDANT ACTIVITY

Pelagia Research Library. Improvement of the solubility and dissolution of ketoprofen using natural bile salts

Co-Crystal Approach for Improving Poorly Soluble Drug Agomelatine by Using Acid Coformer for Tablets

Mechanochemical Dry Conversion of Zinc Oxide to Zeolitic Imidazolate Framework

Lipid Based Matrices as Colonic Drug Delivery System for Diflunisal (In-vitro, In-vivo study)

Formulation and Development of Sustained Release Tablets of Valsartan Sodium

Comparative Dissolution Study of Glipizide by Solid Dispersion Technique

Fluorescent Carbon Dots as Off-On Nanosensor for Ascorbic Acid

Improving Micromeritic Properties of Ibuprofen: An Agglomeration Approach

FACTORIAL STUDIES ON THE EFFECTS OF HYDROXY PROPYL β- CYCLODEXTRIN AND POLOXAMER 407 ON THE SOLUBILITY AND DISSOLUTION RATE OF BCS CLASS II DRUGS

International Journal of Research in Pharmaceutical and Nano Sciences Journal homepage:

International Journal of ChemTech Research CODEN (USA): IJCRGG ISSN: Vol.8, No.6, pp , 2015

International Journal of PharmTech Research CODEN (USA): IJPRIF, ISSN: Vol.7, No.1, pp 22-26,

International Journal of Innovative Pharmaceutical Sciences and Research

Supporting Information. Transformation of Framework Solids into Processible Metallo-polymers

Journal of Chemical and Pharmaceutical Research, 2014, 6(2): Research Article

Formulation and evaluation of Orodispersible tablets to enhance dissolution rate of Lamotrigine by using Solid Dispersion Technique

Bioavailability enhancement of poorly soluble APIs. Enhanced solubilization out of solid glassy solutions prepared by Hot-Melt Extrusion

Preparation and Characterization of Candesartan Cilexetil Solid Lipid Nanoparticulate Capsules

EVALUATION OF EFFERVESCENT FLOATING TABLETS. 6.7 Mathematical model fitting of obtained drug release data

Preparation and Characterization of Quercetin-Loaded Solid Dispersion by Solvent Evaporation and Freeze-Drying Method

Formulation and Evaluation of Gliclazide Tablets Containing PVP-K30 and Hydroxypropyl-β-cyclodextrin Solid Dispersion

Introduction. Songkhla, Thailand, Hat-Yai, Songkhla, Thailand, Hat-Yai, Songkhla, Thailand,

DRUG-EXCIPIENTS INTERACTION AND SOLUBILITY ENHANCEMENT STUDY OF SIMVASTATIN

IMPAIRMENT OF THE IN VITRO RELEASE OF CARBAMAZEPINE FROM TABLETS

NANOSTRUCTURAL ZnO FABRICATION BY VAPOR-PHASE TRANSPORT IN AIR

Asian Journal of Pharmacy and Life Science ISSN Vol. 1 (4), Oct-Dec, 2011

Influence of External Coagulant Water Types on the Performances of PES Ultrafiltration Membranes

Analysis and stability of polymorphs in tablets: The case of Risperidone

MEDAK DIST. ANDHRA PRADESH STATE, INDIA. Research Article RECEIVED ON ACCEPTED ON

A Facile Method for Enhancing the Sensing Performance of Zinc Oxide. Nanofibers Gas Sensors

Mechanochemical Doping of a Non-Metal Element into Zinc Oxide

KEY WORDS Chitosan, Oats powder, Solid dispersion, Simvastatin, Oral bioavailability, Karaya Gum.

Sulfate Radical-Mediated Degradation of Sulfadiazine by CuFeO 2 Rhombohedral Crystal-Catalyzed Peroxymonosulfate: Synergistic Effects and Mechanisms

Engineering the Growth of TiO 2 Nanotube Arrays on Flexible Carbon Fibre Sheets

Journal of Advanced Scientific Research. Formulation and Evaluation of Glimepiride Solid Dispersion Tablets for Their Solubility Enhancement

Patel B et al. IRJP 1 (1)

ENHANCEMENT OF SOLUBILITY AND DISSOLUTION RATE OF NIMESULIDE BY CYCLODEXTRINS, POLOXAMER AND PVP

Supporting Information

International Journal of Current Trends in Pharmaceutical Research. International Journal of Current Trends in Pharmaceutical Research

Enhancement of the release of azelaic acid through the synthetic membranes by inclusion complex formation with hydroxypropyl- -cyclodextrin

STUDIES ON EFFECT OF BINDERS ON ETORICOXIB TABLET FORMULATIONS

Improvement of Solubility and Dissolution of Rilpivirine Solid Dispersions by Solvent Evaporation Technique and Novel Carriers

Formulation and In-Vitro Evaluation of Leflunomide Tablet with Enhanced Dissolution

DESIGN OF BUCCAL DRUG DELIVERY SYSTEM FOR A POORLY SOLUBLE DRUG

A FACTORIAL STUDY ON ENHANCEMENT OF SOLUBILITY AND DISSOLUTION RATE OF IBUPROFEN BY β CYCLODEXTRIN AND SOLUTOL HS15


Chemate and Chowdary, IJPSR, 2012; Vol. 3(7): ISSN:

Supplementary Information for

Volume: 2: Issue-1: Jan-Mar ISSN

Formulation and Evaluation of Acyclovir Liposomes

Investigations of polyethylene glycol mediated ternary molecular inclusion complexes of silymarin with beta cyclodextrins

Journal of Chemical and Pharmaceutical Research

STUDY OF PROCESS INDUCED POLYMORPHIC TRANSFORMATIONS IN FLUCONAZOLE DRUG

Novel Application of an Old Excipient L-Leucine- Improving Physical and. Aerosolization Stability of Spray Dried Amorphous DPI Formulations.

Development of Canagliflozin: Mechanistic Absorption Modeling During Late-Stage Formulation and Process Optimization

Formulation and evaluation of polymeric thin films of zolmitriptan

Supplementary Information

Inclusion Complex of Plai Oil and β-cyclodextrin Ampa Jimtaisong *, Nisakorn Saewan

Crystallography, Morphology and Thermal Properties of Starches from Four Different Medicinal Plants of Fritillaria Species

CONCOMITANT ORAL ADMINISTRATION OF IBUPROFEN AND SOME COMMONLY USED ANTIBIOTICS FOR CHILDREN: COMPATIBILITY STUDY USING DSC AND FTIR

Formulation and Evaluation of Nanostructured Lipid Carrier (NLC) For Glimepiride

Comparison of Melting Behaviors of Edible Oils Using Conventional and Hyper Differential Scanning Calorimetric Scan Rates

The Study of Biodegradable Thermoplastics Sago Starch Zuraida Ahmad a, Hazleen Anuar and Yusliza Yusof

Influence of Lead Substitution in Zinc Oxide Thin Films

SOLUBILITY OF SELECTED DERIVATIVES OF 1,4-BENZODIAZEPIN-2-ONE IN SOLID DISPERSIONS IN PEG 6000

ANALYSIS OF MICROSTRUCTURE OF FUMED SILICA REINFORCED POLYESTER COMPOSITES

Transcription:

ORIENTAL JOURNAL OF CHEMISTRY An International Open Free Access, Peer Reviewed Research Journal www.orientjchem.org ISSN: 0970-020 X CODEN: OJCHEG 2017, Vol. 33, No. (2): Pg. 873-878 Preparation and Characterization of Solid Dispersion Telmisartan Hydroxypropyl Methyl Cellulose(HPMC) E5 LV by Co-Grinding Method Erizal Zaini*, Lili Fitriani, Sanezea Effendy, Deni Noviza and Auzal Halim Department of Pharmaceutics, Andalas University, Kampus Limau Manis, Padang, 25163, Indonesia. *Corresponding author E-mail: erizal@ffarmasi.unand.ac.id http://dx.doi.org/10.13005/ojc/330236 (Received: October 14, 2016; Accepted: January 02, 2017) ABSTRACT Telmisartan (TMS), an antihypertensive drug, is classified as class II according to Biopharmaceutical Classification System (BCS) with low solubility and high permeability. The purpose of this study was to prepare and characterize solid dispersion of TMS with hidroxypropyl methyl cellulose (HPMC) E5 LV to increase the solubility. Solid dispersion was prepared in three different ratio TMS:HPMC 2:1, 1:1, and 1:2 (w/w) by co-grinding method for 60 minutes. Solubility test was conducted in distilled water for 72 hours and the amount of TMS was determined by spectrophotometry UV. Result of Powder X-Ray Diffraction (PXRD) showed a decrease in intensity of TMS in accordance with the amount of HPMC E5 LV in solid dispersion. Fourier Transform Infra-Red(FT-IR)Spectra showed no significant shift of wavelength. Scanning Electron Microscopy (SEM) result presented the crystalline form of TMS, while both physical mixture and solid dispersion at different ratio showed TMS stick on the surface of HPMC E5 LV. Thermogram of Differential Scanning Calorimetry (DSC) showed an incline of endotherm peak as the ratio HPMC E5 LV increased. The solubility result of intact TMS was 0.49±0.03µg/mL, while the physical mixture and solid dispersion 2:1, 1;1 and 1:2 were 1.87±0.18 µg/ml, 5.36±0.48 µg/ml, 7.24±1.73µg/mL, and 14.89±1.49 µg/ml, respectively. In conclusion, solid dispersion of telmisartan-hpmc E5 LV enhanced the solubility of TMS. Keywords: Telmisartan, HPMC E5 LV, Solid dispersion, Solubility, co-grinding. INTRODUCTION Telmisartan (TMS), an antihypertensive drug, belongs to angiotensin receptor blockers (ARBs) which act by inhibiting receptor stimulation of angiotensin II type 1 (AT1) without affecting other related receptors in cardiovascular 1. TMS is classified as class II, low solubility high permeability, based on Biopharmaceutical Classification System (BCS). The main problem is the low solubility of drugs in biological fluids that result in poor bioavailability after oral administration 2. Therefore, it is necessary to improve the solubility and dissolution rate of TMS. Several studies have been conducted to improve

874 Zaini et al., Orient. J. Chem., Vol. 33(2), 873-878 (2017) the solubility and dissolution of TMS including co-grinding TMS with polyvinyl alcohol 3, formation of solid nanoparticles 4, inclusion complex of TMS and b-cyclodextrins 5, formation of cocrystalline phase with several coformers 6,7, formation amorphous solid dsipersion 8. Various strategies are used to increase the solubility and dissolution rate of drugs BCS class II and solid dispersion is one of effective approaches 9,10. This method can be defined as a molecular dispersion of active substance in one or more hydrophilic carriers, which involved a reduction in particle size, increase the wettability of the active ingredient by the carrier, the formation of soluble complexes, and the formation of an amorphous active substance. In the solid dispersion, the hydrophilic polymer also plays an important role in inhibiting the crystallization of crystalline phase through the process of molecular mobility 11, 12. In this research, preparation of solid dispersions TMS - HPMC E5 LV using a planetary ball mill with a ratio of 2: 1, 1: 1, 1: 2 (w / w) aimed to modify the solid properties of TMS and the effects on the solubility. The results obtained were then characterized by Scanning electron microscope (SEM), analysis of X-ray diffraction, differential scanning calorimetry (DSC), Fourier Transform Infrared spectroscopy (FT-IR), and solubility test. MATERIALS and METHODS Telmisartan (TMS) (Dr. Reddy s Laboratories, India), HPMC E5 LV (Wuhan Senwayer, China), KH 2 PO 4 (Bratachem, Indonesia), NaOH and distilled water. All materials were used as received. Preparation of solid dispersion Preparation of solid dispersion TMS and HPMC E5LV was conducted using co-grinding method in a planetary ball mill (Fritsch, Pulverissete 7, Germany) at 500 rpm. Solid dispersion was prepared at three ratio of TMS:HPMC E5 LV 2:1, 1:1 and 1:2 (w/w) and grounded for 60 minutes. The milled powder then was kept in a desiccator. Preparation of physical mixture Preparation of physical mixture was done at ratio of TMS:HPMC E5 LV 1:1 (w/w). The mixture was mixed homogenously in a sealed container and the mixed powder then was also kept in a desiccator. Powder X-Ray Diffraction Analysis Intact TMS, intact HPMC E5 LV, physical mixture and solid dispersion at different ratio were analyzed the crystallinity degree using an X-ray diffractometer (X Pert XRD Powder type PW 30/40 PANalytical, The Netherlands). Samples were placed on the sample holder and levelled to prevent particle orientation during sample preparation. Analysis was carried out at 2ϴ range 5-40. Measurement condition was as follow: target metals Cu, Ka filter, voltage 45 kv, and current 40 ma. Scanning Electron Microscopy (SEM) analysis Sample powder was placed on an aluminum sample holder and the voltage was set at 10kV and current 12 ma to observe surface and morphology of TMS and HPMC E5 LV before and after mixing and co-grinding. Sample was observed on various magnifications using SEM (HITACHI type S-3400N, Japan). SEM analysis was done for intact TMS, intact HPMCE5LV, physical mixture and solid dispersions at all ratio. FT-IR spectroscopy analysis FT-IR spectroscopy analysis was done using a PerkinElmer FT-IR Spectrophotometer, where the samples absorption spectra were recorded at wave number 4000-400 cm -1 in order to observe and confirm the functional groups and fingerprint of each sample. FT-IR spectroscopy analysis was done for intact TMS, intact HPMC E5 LV, physical mixture and solid dispersions at all ratio. Differential Scanning Calorimetry The thermal properties of intact TMS, intact HPMC E5 LV, physical mixture and solid dispersions at all ratio were determined using a thermal analyzer (Mettler Toledo FP90, Switzerland) which has been calibrated with Indium temperature. Each sample in a small amount was placed on an aluminum pan and the instrument temperature was set in a range from 50 C to 300 C at 10 C per minute of heating rate. Solubility test An excessive amount intact TMS, physical mixture and solid dispersions at all ratio were dissolved in 100 ml of distilled water. Solubility test

Zaini et al., Orient. J. Chem., Vol. 33(2), 873-878 (2017) 875 was conducted for 72 hours in an orbital shaker at room temperature. Samples were analyzed using UV spectrophotometer (Shimadzu UV-1700, Japan) at the wavelength of TMSmaximum absorption 295.2 nm. All experiments were done triplicated. RESULTS and DISCUSSIONs Powder X-Ray Diffraction Analysis The diffractogram of intact TMS, intact HPMC E5 LV, physical mixture, and solid dispersions can be seen in Figure 1. Intact TMS showed the sharp peak indicated its form as crystalline, while HPMC E5 LV showed an amorphous phase as no sharp peak observed due to HPMC E5 LV is a hydrophilic polymer. The physical mixture showed a decrease of peak intensity. In addition, the greater the amount of HPMC E5 LV, the greater decrease of peak intensity in solid dispersion. Solid phase changes of telmisartan was occured during co-grinding process such as partial amorphization. The position of 2ϴ and intensity of the peak for intact TMS, physical mixture and solid dispersion at all ratio is shown in Table 1. This result indicated that preparation of solid dispersion at all ratio give an impact in decreasing the TMS crystallinity, which decrease the rigidity of TMS and likely increase the solubility 11. Solid dispersion at 1:2 showed the greatest reduction of peak intensity at 2ϴ (14.1781, 15.0101, 22.2641 and 24.9421) which decrease 4.7; 2.5; 3.4; and 2.6 fold, respectively. Scanning Electron Microscopy Analysis The morphology of intact TMS, intact HPMC E5 LV, physical mixture, and solid dispersions all ratio is shown in Figure 2. TMS looked like needles in crystalline form, while HPMC E5 LV looked like a fiber. The physical mixture of TMS HPMC E5 LV and solid dispersion depicted that TMS was on the surface of HPMC E5 LV, but the difference in morphology among them could not be distinguished based on SEM result. In solid dispersion system, Fig. 1: Diffractogram of (A) TMS, (B) HPMC E5LV, (C) Physical Mixture, (D) Solid Dispersion 2:1, (E) Solid Dispersion 1:1, and (F) Solid Dispersion 1:2 Table 1: Peak intensity of TMS, physical mixture and solid dispersions Position Peak intensity (2θ) Intact Physical Solid Solid Solid telmisartan mixture dispersion dispersion dispersion 1:1 2:1 1:1 1:2 14.1781 8713.11 3905.11 3625.59 3471.25 2051.43 15.0101 3623.26 2032.64 2157.86 2084.26 1449.26 22.2641 6801.54 3011.58 4138.31 3675.67 2014.06 24.9421 4090.83 2112.23 2659.64 2307.47 1589.82

876 Zaini et al., Orient. J. Chem., Vol. 33(2), 873-878 (2017) fine particles of TMS embedded on HPMC E5 LV, a hydrophilic carrier, and, LV, and contributed to the improvement solubility of TMS. Thus, solid dispersion of TMS in a hydrophilic carrier increase wettability TMS. FT-IR Spectroscopy Analysis The FT-IR spectra of intact TMS, intact HPMC E5 LV, physical mixture and solid dispersion is shown in Figure 3. TMS showed the OH strain at wavenumber 3047.63 cm -1 from carboxylic acid and C-H aliphatic strain at wave number 2939.80 cm -1. On the other hand, wave length of HPMC E5 LV for OH strain was at 3400.43cm -1 and C-H aliphatic strain were 2902.97cm -1, 1590.77cm -1 and 1046.36cm -1. There was a shift wave numbers of OH strain A from carboxylic acidat 3045.61 cm -1 ; 2881.97 cm -1 ; 2879.97 cm -1 ; and 2878.99 cm -1 for physical mixture and solid dispersion 1:2; 1:1; 2:1, respectively. This wavelength shift was still within the range of strain OH. Moreover, shift wave number of C-H aliphatic group of physical mixture and solid dispersion 1: 2; 1: 1; 2: 1 were at 2953.03 cm -1 ; 2959.22 cm -1 ; 2959.21 cm -1 ; and 2960.61 cm -1, respectively. Thus, there was no new functional group observed which indicated no chemical interaction occurred between TMS and HPMC E5 LV in both physical mixture and solid dispersion at all ratio. This result was anticipated since the preparation of solid dispersion was not purposed to produce new substance, yet to modify the physicochemical properties 13. B C D E F Fig. 2: Scanning Elctrom Microscopy of (A) TMS, (B) HPMC E5 LV, (C), Physical Mixture, (D) Solid Dispersion 2:1, (E) Solid Dispersion 1:1, and (F) Solid Dispersion 1:2

Zaini et al., Orient. J. Chem., Vol. 33(2), 873-878 (2017) 877 Differential Scanning Calorimetry (DSC) Analysis Thermal properties of intact TMS, intact HPMC E5 LV, physical mixture and solid dispersion at all ratio can be seen in Figure 4. Based on DSC thermogram, TMS showed a sharp endothermic peak (T peak 268.96 C)Corresponding to its melting event, indicating its crystallinity phase. Meanwhile, DSC thermogram of HPMC E5 LV showed a broad endothermic peak in the range 95.96 C, which may be attributed to dehydration of water molecules. The physical mixture and solid dispersions showed two peaks which represented TMS and HPMC E5 LV. Based on the thermogram data, there was a decrease of TMS melting point. The melting point of TMS in physical mixture was 267.54 C while at solid dispersions 2:1, 1:1 and 1:2 were 268.41 C, 267.47 C and 266.90, respectively. This result is in accordance with PXRD result, where the solid dispersion at 1:2 showed the lowest peak intensity 3,9. Materials Table 2: Result of solubility test Solubility Enhancement (μg/ml) of solubility Intact TMS 0.49±0.03 - Physical mixture 1.87±0.18 3.8 fold Solid dispersion 2:1 5.36±0.48 10.9 fold Solid dispersion 1:1 7.24±1.73 14.7 fold Solid dispersion 1:2 14.89±1.49 30.3 fold However, the characteristic endothermic peak corresponding to drug melting point was broadened and shifted toward lower temperature with reduced intensity. Solubility test The result of solubility test can be seen in Table 2. There was a trend observed as the increasing the amount of HPMC E5 LV, the solubility of TMS increased significantly (P<0.05). Moreover, the solubility of physical mixture was also increased. This result is in accordance with the PXRD and DSC analysis. As the crystallinity degree of TMS decreased, the solubility of TMS increased. In addition, the mechanism of HPMC E5 LV on increasing solubility was also due to the intrinsic characteristic of HPMC as the hydrophilic polymer which soluble in the water 10,11,12. Mechanical energy supplied during co-grinding process TMS HPMC E5 LV in a planetary ball mill apparatus may cause crystalline phase of TMS underwent partial amorphization and TMS dispersed in a hydrophilic polymer network in the form of fine particles 14. Thus, the dominant factors affecting drug dissolution from the co-grinding particles were the reduction of drug crystallinity, a probable decrease in drug particle size, an increase in the de-aggregation and wettability of hydrophobic drug particles. Similar observations have been reported for mebendazole and norfloxacin where the solubility of this poorly water soluble was improved by high wettability and reduction of drug crystallinity 15-16. Fig. 3: FT-IR Spectra of (A) TMS, (B) HPMC E5 LV, (C), Physical Mixture, (D) Solid Dispersion 1:2, (E) Solid Dispersion 1:1, and (F) Solid Dispersion 2:1 Fig. 4: Thermogram DSC of (A) TMS, (B) HPMC E5 LV, (C) Physical Mixture, (D) Solid Dispersion 1:2, (E) Solid Dispersion 1:1, and (F) Solid Dispersion 2:1

878 Zaini et al., Orient. J. Chem., Vol. 33(2), 873-878 (2017) CONCLUSION In the conclusion, the co-grinding method was successfully applied to prepare solid dispersions of telmisartan with hydrophilic polymer HPMC E5 LV. Solid dispersions of TMS with HPMC E5 LV has higher solubility than intact TMS and its physical mixture. The enhancement of the solubility may be due to partial amorphization of TMS crystalline phase. ACKNOWLEDGMENT The authors would like to thank for research granted by Hibah Klaster Guru Besar Andalas University No 17/UN.16/HKRGB/LPPM/2016. The authors also thank Mr. Mulyadi Sirin from PT. Tata Rasa Primatama for providing TMS in this research. REFERENCES 1. Sharpe, M.; Jarvis, B.;& Goa, K. L. Drugs, 2001, 61(10), 1501-1529. 2. Marasini, N.; Tran, T. H.; Poudel, B. K.; Cho, H. J.; Choi, Y. K.; Chi, S. C.; Choi, H.G.; Yong C.S.& Kim, J. O. Int. J. Pharm., 2013, 441(1), 424-432. 3. Isaac, J.; Ganguly, S. & Ghosh, A. Eur. J. Pharm. Biopharm., 2016, 101, 43-52. 4. Patel, J.; Dhingani, A.; Garala, K.; Raval, M. & Sheth, N. Powder Technol., 2014, 258, 331-343. 5. Borba, P. A. A.; Pinotti, M.; Andrade, G. R. S.; da Costa, N. B.; Olchanheski, L. R.; Fernandes, D.;de Campos, C.E.M.& Stulzer, H. K. Carbohydr. Polym., 2015, 133, 373-383. 6. Alatas, F.; Ratih, H.& Soewandhi, S. N. Int. J. Pharm. Pharm. Sci., 2015, 7(3), 423-426. 7. Chadha, R.; Bhandari, S.; Haneef, J.; Khullar, S. & Mandal, S. Cryst.Eng.Comm, 2014, 16(36), 8375-8389. 8. Dukeck, R.; Sieger, P.; & Karmwar, P. Eur. J. Pharm. Sci., 2013, 49(4), 723-731. 9. Fitriani, L.; Haqi, A.& Zaini, E. J. Adv. Pharm. Tech. Res, 2016, 7(3), 105. 10. Leuner, C. & Dressman, J. Eur. J. Pharm. Biopharm., 2000, 50(1), 47-60. 11. Salman, Ardiansyah, Nasrul, E.; Rivai, H.; Ben, E. S.& Zaini, E. Int. J. Pharm. Pharm. Sci., 2014, 7(2), 209-212. 12. Vasconcelos, T.; Sarmento, B. & Costa, P. Drug Discovery Today, 2007, 12(23), 1068-1075. 13. Jamadar, S.; Pore, Y.& Sayyad, F. Part. Sci. Technol., 2014, 32(5), 512-519. 14. Muehlenfeld, C.; Kann, B.; Windbergs, M. & Thommes, M. J. Pharm. Sci., 2013, 102(11), 4132-4139. 15. García-Rodriguez, J. J.; Paloma, M.; Vegas- Sánchez, M. C.; Torrado-Durán, S.; Bolás- Fernández, F. & Torrado-Santiago, S. Int. J.Pharm., 2011, 403(1), 23-28. 16. Loh, G. O. K.; Tan, Y. T. F. & Peh, K. K. Powder Technol., 2014, 256, 462-469.