Research Article Correlation between Arterial Lactate and Central Venous Lactate in Children with Sepsis

Similar documents
Research Article Identifying Prognostic Criteria for Survival after Resuscitation Assisted by Extracorporeal Membrane Oxygenation

Effects of combined vasopressin-noradrenaline in pediatric patients with refractory septic shock

Conference Paper Antithrombotic Therapy in Patients with Acute Coronary Syndromes: Biological Markers and Personalized Medicine

Case Report Complete Obstruction of Endotracheal Tube in an Infant with a Retropharyngeal and Anterior Mediastinal Abscess

Case Report Asymptomatic Pulmonary Vein Stenosis: Hemodynamic Adaptation and Successful Ablation

Research Article Predictions of the Length of Lumbar Puncture Needles

Current State of Pediatric Sepsis. Jason Clayton, MD PhD Pediatric Critical Care 9/19/2018

Research Article Predictive Factors for Medical Consultation for Sore Throat in Adults with Recurrent Pharyngotonsillitis

Correspondence should be addressed to Taha Numan Yıkılmaz;

Research Article Opioid Use Is Not Associated with Incomplete Wireless Capsule Endoscopy for Inpatient or Outpatient Procedures

Research Article Reduction of Pain and Edema of the Legs by Walking Wearing Elastic Stockings

Case Report Internal Jugular Vein Thrombosis in Isolated Tuberculous Cervical Lymphadenopathy

BC Sepsis Network Emergency Department Sepsis Guidelines

Clinical Study Metastasectomy of Pulmonary Metastases from Osteosarcoma: Prognostic Factors and Indication for Repeat Metastasectomy

Clinical Study The Incidence and Management of Pleural Injuries Occurring during Open Nephrectomy

Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016

SEPSIS SYNDROME

Septic Shock. Rontgene M. Solante, MD, FPCP,FPSMID

Baris Beytullah Koc, 1 Martijn Schotanus, 1 Bob Jong, 2 and Pieter Tilman Introduction. 2. Case Presentation

Early-goal-directed therapy and protocolised treatment in septic shock

Research Article Comparison of Colour Duplex Ultrasound with Computed Tomography to Measure the Maximum Abdominal Aortic Aneurysmal Diameter

Research Article Measures of Adherence and Challenges in Using Glucometer Data in Youth with Type 1 Diabetes: Rethinking the Value of Self-Report

Research Article Urinary Catheterization May Not Adversely Impact Quality of Life in Multiple Sclerosis Patients

DESIGNER RESUSCITATION: TITRATING TO TISSUE NEEDS

Case Report Formation of a Tunnel under the Major Hepatic Vein Mouths during Removal of IVC Tumor Thrombus

Case Report Intra-Articular Entrapment of the Medial Epicondyle following a Traumatic Fracture Dislocation of the Elbow in an Adult

Presented by: Indah Dwi Pratiwi

Fluid bolus of 20% Albumin in post-cardiac surgical patient: a prospective observational study of effect duration

Early Goal-Directed Therapy

Case Report An Undescribed Monteggia Type 3 Equivalent Lesion: Lateral Dislocation of Radial Head with Both-Bone Forearm Fracture

Case Report Pseudothrombocytopenia due to Platelet Clumping: A Case Report and Brief Review of the Literature

Clinical Study The Impact of the Introduction of MELD on the Dynamics of the Liver Transplantation Waiting List in São Paulo, Brazil

Case Report Successful Closed Reduction of a Lateral Elbow Dislocation

SHOCK. Emergency pediatric PICU division Pediatric Department Medical Faculty, University of Sumatera Utara H. Adam Malik Hospital

Clinical Study Incidence of Retinopathy of Prematurity in Extremely Premature Infants

Correspondence should be addressed to Martin J. Bergman;

Case Report Computed Tomography Angiography Successfully Used to Diagnose Postoperative Systemic-Pulmonary Artery Shunt Narrowing

Clinical Study Patient Aesthetic Satisfaction with Timing of Nasal Fracture Manipulation

Case Report Long-Term Outcomes of Balloon Dilation for Acquired Subglottic Stenosis in Children

Sebastião Rodrigues Ferreira-Filho, Camila Caetano Cardoso, Luiz Augusto Vieira de Castro, Ricardo Mendes Oliveira, and Renata Rodrigues Sá

What is. InSpectra StO 2?

Research Article Hb A1c Separation by High Performance Liquid Chromatography in Hemoglobinopathies

Case Report Bilateral Distal Femoral Nailing in a Rare Symmetrical Periprosthetic Knee Fracture

Case Report Evolution of Skin during Rehabilitation for Elephantiasis Using Intensive Treatment

Research Article The Cost of Prolonged Hospitalization due to Postthyroidectomy Hypocalcemia: A Case-Control Study

Research Article The Impact of the Menstrual Cycle on Perioperative Bleeding in Vitreoretinal Surgery

Irreversible shock can defined as last phase of shock where despite correcting the initial insult leading to shock and restoring circulation there is

Case Report Five-Year Survival after Surgery for Invasive Micropapillary Carcinoma of the Stomach

Research Article Patient Attitudes to Tonsillectomy

Correspondence should be addressed to Alicia McMaster;

Are Patients Hypoperfused in the ED? Rapid Perfusion Assessment in the Emergency Department

Research Article Prevalence and Trends of Adult Obesity in the US,

Clinical Study The Value of Programmable Shunt Valves for the Management of Subdural Collections in Patients with Hydrocephalus

Research Article Maintenance of the Results of Stage II Lower Limb Lymphedema Treatment after Normalization of Leg Size

Sylwia Mizia, 1 Dorota Dera-Joachimiak, 1 Malgorzata Polak, 1 Katarzyna Koscinska, 1 Mariola Sedzimirska, 1 and Andrzej Lange 1, 2. 1.

Case Report Three-Dimensional Dual-Energy Computed Tomography for Enhancing Stone/Stent Contrasting and Stone Visualization in Urolithiasis

Clinical Study Mucosal Melanoma in the Head and Neck Region: Different Clinical Features and Same Outcome to Cutaneous Melanoma

Research Article Epidemiological Patterns of Varicella in the Period of 1977 to 2012 in the Rijeka District, Croatia

Staging Sepsis for the Emergency Department: Physician

Case Report Sinus Venosus Atrial Septal Defect as a Cause of Palpitations and Dyspnea in an Adult: A Diagnostic Imaging Challenge

Evidence-Based. Management of Severe Sepsis. What is the BP Target?

Conference Paper Oncothermia Basic Research at In Vivo Level: The First Results in Japan

Case Report Overlap of Acute Cholecystitis with Gallstones and Squamous Cell Carcinoma of the Gallbladder in an Elderly Patient

EFFECT OF EARLY VASOPRESSIN VS NOREPINEPHRINE ON KIDNEY FAILURE IN PATIENTS WITH SEPTIC SHOCK. Alexandria Rydz

Iron-deficiency anemia as a rare cause of cerebral venous thrombosis and pulmonary embolism. NICASTRO, Nicolas, SCHNIDER, Armin, LEEMANN, Béatrice

Research Article Clinical Outcome of a Novel Anti-CD6 Biologic Itolizumab in Patients of Psoriasis with Comorbid Conditions

6/5/2014. Sepsis Management and Hemodynamics. 2004: International group of experts,

Research Article Subcutaneous Single Injection Digital Block with Epinephrine

Aletta P. I. Houwink 1,2, Saskia Rijkenberg 1, Rob J. Bosman 1 and Peter H. J. van der Voort 1,3*

R. J. L. F. Loffeld, 1 P. E. P. Dekkers, 2 and M. Flens Introduction

Research Article Photovoice: A Novel Approach to Improving Antituberculosis Treatment Adherence in Pune, India

NYSDOH Sepsis Q&A Session from February 2018 Data Abstraction Meetings Table of Content

Case Report PET/CT Imaging in Oncology: Exceptions That Prove the Rule

Clinical Study Rate of Improvement following Volar Plate Open Reduction and Internal Fixation of Distal Radius Fractures

Alireza Bakhshaeekia and Sina Ghiasi-hafezi. 1. Introduction. 2. Patients and Methods

Facilitating EndotracheaL Intubation by Laryngoscopy technique and Apneic Oxygenation Within the Intensive Care Unit (FELLOW)

Research Article The Effect of Alcohol Intoxication on Mortality of Blunt Head Injury

Case Report Medial Radial Head Dislocation Associated with a Proximal Olecranon Fracture: A Bado Type V?

Research Article Continuous Positive Airway Pressure Device Time to Procurement in a Disadvantaged Population

Mandana Moosavi 1 and Stuart Kreisman Background

Correspondence should be addressed to Lantam Sonhaye;

Research Article The Effect of Elevated Triglycerides on the Onset and Progression of Coronary Artery Disease: A Retrospective Chart Review

Hemodynamic Monitoring and Circulatory Assist Devices

Correspondence should be addressed to Vitharon Boon-yasidhi;

Research Article Abdominal Aortic Aneurysms and Coronary Artery Disease in a Small Country with High Cardiovascular Burden

Research Article Prognostic Factors in Advanced Non-Small-Cell Lung Cancer Patients: Patient Characteristics and Type of Chemotherapy

SHOCK AETIOLOGY OF SHOCK (1) Inadequate circulating blood volume ) Loss of Autonomic control of the vasculature (3) Impaired cardiac function

Sepsis Management: Past, Present, and Future

Case Report Intracranial Capillary Hemangioma in the Posterior Fossa of an Adult Male

The Ever Changing World of Sepsis Management. Laura Evans MD MSc Medical Director of Critical Care Bellevue Hospital

Sepsis is an important issue. Clinician s decision-making capability. Guideline recommendations

Devendra V. Kulkarni, Rahul G. Hegde, Ankit Balani, and Anagha R. Joshi. 2. Case Report. 1. Introduction

Case Report A Rare Case of Near Complete Regression of a Large Cervical Disc Herniation without Any Intervention Demonstrated on MRI

New Strategies in the Management of Patients with Severe Sepsis

What the ED clinician needs to know about SEPSIS - 3. Anna Morgan Consultant EM Barts Health

Daofang Zhu, Xianming Dou, Liang Tang, Dongdong Tang, Guiyi Liao, Weihua Fang, and Xiansheng Zhang

IDENTIFYING SEPSIS IN THE PREHOSPITAL SETTING

Case Report Tortuous Common Carotid Artery: A Report of Four Cases Observed in Cadaveric Dissections

The Usefulness of Sepsis Biomarkers. Dr Vineya Rai Department of Anesthesiology University of Malaya

William W. Hale III, 1 Quinten A. W. Raaijmakers, 1 Anne van Hoof, 2 and Wim H. J. Meeus 1,3. 1. Introduction

Transcription:

Critical Care Research and Practice Volume 2016, Article ID 7839739, 5 pages http://dx.doi.org/10.1155/2016/7839739 Research Article Correlation between Arterial Lactate and Central Venous Lactate in Children with Sepsis Jaime Fernández Sarmiento, 1 Paula Araque, 2 María Yepes, 2 Hernando Mulett, 2 Ximena Tovar, 3 and Fabio Rodriguez 3 1 Pediatric Critical Care Department, Fundación Cardioinfantil, Universidad de la Sabana, Bogotá, Colombia 2 Pediatric Critical Care Department, Universidad del Rosario, Bogotá, Colombia 3 Pediatrics and Research Department, Universidad de la Sabana, Bogotá, Colombia Correspondence should be addressed to Jaime Fernández Sarmiento; jaimefe@unisabana.edu.co Received 11 June 2016; Revised 6 August 2016; Accepted 22 September 2016 Academic Editor: Antonio Artigas Copyright 2016 Jaime Fernández Sarmiento et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Introduction. Lactate is an important indicator of tissue perfusion. The objective of this study is to evaluate if there are significant differences between the arterial and central venous measurement of lactate in pediatric patients with sepsis and/or septic shock. Methods. Longitudinal retrospective observational study. Forty-two patients were included between the age of 1 month and 17 years, with a diagnosis of sepsis and septic shock, who were admitted to the intensive care unit of a university referral hospital. The lactate value obtained from an arterial blood sample and a central venous blood sample drawn simultaneously, and within 24 hours of admission to the unit, was recorded. Results. The median age was 2.3 years (RIC 0,3 15), with a predominance of males (71.4%), having a 2.5 : 1 ratio to females. Most of the patients had septic shock (78.5%) of pulmonary origin (50.0%), followed by those of gastrointestinal origin (26.1%). Using Spearman s Rho, a 0.872 (p < 0.001) correlation was found between arterial and venous lactate, which did not vary when adjusted for age (p < 0.05) and the use of vasoactive drugs (p < 0.05). Conclusion. Thereisa good correlation between arterial and venous lactate in pediatric patients with sepsis and septic shock, which is not affected by demographic variables or type of vasoactive support. 1. Introduction Sepsis is a disease characterized by a hypercatabolic state, with an increased tissue oxygen demand. When there is an imbalance between the supply and demand of oxygen, both tissue hypoperfusion and hypoxia lead to anaerobic metabolism with the ultimate production of lactate [1]. Under critical conditions homeostasis is altered, producing reversible or irreversible multiple organ injury. The length of exposure to the damaging stimulus determines the reversibility of the organ dysfunction (2-3). Therefore, early detection of sepsis and organ dysfunction is important in critically ill patients in order to begin appropriate therapeutic measures [1, 2]. Traditionally, identification of organ dysfunction in patients was made based on clinical signs and symptoms (oliguria, altered consciousness) and identification of circulatory failure and consequent tissue hypoperfusion, with the presence of persistent and refractory hypotension (4-5). This approach is complicated due to the lack of sensitivity of the clinical findings to predict the presence or absence of an organlesionortissuehypoperfusion,especiallyinthepediatric population with physiological variables changing and complementary tests are typically needed [1]. Serum lactate is a biomarker which estimates the probability and extent of tissue hypoperfusion and also evaluates the therapeutic response and prognosis [2]. A value greater than 4 mmol/l in severe sepsis indicates the need for aggressive resuscitation according to the sepsis consensus [3]. Arterial lactate levels are the ideal sample for determining hyperlactatemia, with the latter being a severity marker [3] which may be more specific than the customary hemodynamic

2 Critical Care Research and Practice Patients diagnosed with sepsis and/or septic shock N: 226 <1 month N: 114 1 month---17 years and 11 months N: 112 Inclusion criteria N: 42 Exclusion criteria N: 70 Figure 1: Flow chart of children included in the study. measurements and therefore must be interpreted according to the patient s context. In light of the difficulty in drawing an arterial sample in patients, especially in the pediatric age group, the need to employ another, more accessible, type of sample for its measurement is proposed, in order to determine this pathological condition. For this reason, a correlation between arterial and venous lactate in children with sepsis and/or septic shock is sought; considering that there are no existing studies in the pediatric population the objective of our study was to assess whether there was a correlation between arterial and venous lactate in children with sepsis [4, 5]. 2. Materials and Methods 2.1. Study Design. A longitudinal retrospective observational study diagnostic test was carried out on Pediatric Intensive Care Unit patients at the Fundación Cardioinfantil-Instituto de Cardiología, a quaternary care institution in Bogotá, Colombia, South America, where there is electronic chart review. The study was previously analyzed and approved by this institution s Ethics Committee and all requirements were met including informed consent. 2.2. Study Population. Patients admitted to the Pediatric IntensiveCareUnitoftheFundación Cardioinfantil between January 1, 2009, and May 31, 2012, with a diagnosis of sepsis and/or septic shock, according to the 2005 International Pediatric Sepsis Consensus were included [3]. Patients from 1 month old to 17 years and 11 months old who were admitted to the Pediatric Intensive Care Unit with a diagnosis of sepsis and/or septic shock, who required invasive or noninvasive mechanical ventilation, and who had central venous access as well as an arterial line were included. Children with congenital cardiopathies, intra- or extracardiac shunting, diabetic ketoacidosis, insulin use at the time of blood sampling or 24 hours priorly, suspected inborn errors of metabolism, or patients with intoxication, chronic or acute liver failure, and chronic renal failure with or without dialysis, were not included [4] (Figure 1). The electronic medical records were reviewed, and the required information was recorded on a questionnaire developed for this purpose. The recorded arterial and central venous gas samples corresponded to the first sample taken simultaneously within the first 24 hours following admission as is usual protocol in the Pediatric Intensive Care Unit. The information recorded in the medical records was verified with the institution s clinical laboratory s official data base. The blood drawing technique was reviewed with the PICU nursing staff; the technique is standardized for drawing arterial and venous blood samples simultaneously by two staff members. The arterial blood was obtained from a radial or femoral arterial line, while the venous blood was extracted through a central venous catheter located in the subclavian, internal jugular vein (the distal tip should lie in the superior vena cava in the cavoatrial union) or femoral vein. All samples were collected in heparinized syringes, leaving no spaces or bubblesinthem.forthearterialblooddraw,5mlofblood was extracted through the arterial line, and then 1 ml was collected in the heparinized syringe; following this, the initially extracted 5 ml was returned through the arterial line, thus avoiding the anemization of patients. For the venous sample, 10 ml of blood was extracted through the central venous catheter, and then 1 ml was collected in the heparinized syringe, and the original 10 ml of blood was returned to the patient. The samples were immediately sent through the pneumatic tube system, guaranteeing their processing in the least amount of time possible, not greater than 5 minutes by institutional standards. All blood samples were analyzed on the Siemens Rapidlab 1265 series blood gas machine, which performed an analysis of arterial and central venous gases, reportingthelactatelevelsofeachsampletype.thetime elapsed between blood samples draws and processing in the laboratory was a maximum of 15 minutes as part of a standardized protocol at our institution. A data base was created with the variables of interest, and statistical analysis was performed. 2.3. Statistical Analysis. All the information was collected in a database whose source was the electronic medical record. The SPSS version 15.0 program was used for data analysis. A descriptive analysis of the variables was carried out, using means, medians, and standard deviation (SD) for continuous variables and proportions in categorical variables. A comparison of the means, medians, and SD of the lactate from the arterial and central venous samples was performed using Mann Whitney U test. The normality of the arterial and central venous lactate was evaluated with the Kolmogorov- Smirnov test, finding that the lactates did not fulfill the assumption of normal distribution [6]. Therefore, Spearman s correlation coefficient was then calculated and a dispersion diagram was obtained to determine the basic nature of the relationship between the variables of arterial lactate, central venous lactate, weight, and age. 3. Results 3.1. Descriptive Analysis. The sample size was 42 patients, with median age of 4.5 years (RIC 0,3 15,4). There were 12 females (28.5%) and 30 males (71.4%), with a male to female ratioof2.5:1.themaindiagnosisfoundwassepticshockin 78.6% of cases (n =33) and 21,4% was sepsis (n =9); the main source was pulmonary origin, 50%, followed by gastrointestinal, 26.1% (mainly gastroenteritis) (Table 1). There was a median 1.4 mmol/l (SD 0.88 mmol/l) lactate measurement for arterial lactate, observing a minimum value of 0.3 and

Critical Care Research and Practice 3 Table 1: Demographic variables. Age (median years) 4.5 Sex n (%) Female 12 (28,5) Male 30 (71,4) Weight n (%) <10 kg 11 (27) 11 20 kg 21 (50) 21 30 kg 4 (9,5) >30 kg 6 (14) Weight (kg) Table 2: Features of sepsis in the population. The difference between arterial and venous lactate according to the severity of the disease, its origin, and the use of vasopressors described. Variables n (%) Arterial versus venous lactate difference p value Severity of disease 0.8 Sepsis 9 (21,4) Septic shock 33 (78,5) Etiology of sepsis 0.1 Pulmonary 21 (50,0) Gastrointestinal 11 (26,1) Vasopressors 0.53 Yes 38 (90,4) No 4 (9,5) Age between arterial lactate and central venous lactate of 0.917. The confounding variables were proven not to influence the beta values (0.92) (Table 4). L. venous L. arterial Weight (kg) Age L. arterial L. venous Figure 2: Dispersion diagram of the study variables. a maximum of 4.8 mmol/l. For central venous lactate, the median was 1.6 mmol/l (SD 0.9 mmol/l), with a minimum of 0.2 mmol/l and a maximum of 4.7 mmol/l. 3.2. Bivariate Analysis. A bivariate analysis was carried out by calculating the correlation coefficient using Spearman s Rho statistical test. The correlation for central venous and arterial lactate proved to be statistically significant (p < 0.001), with Spearman s index of 0.897. There was no correlation between arteriallactateandvenouslactatewiththeweightandage variables (Figure 2). Likewise, the relationship was analyzed between the use of vasoactive drugs (epinephrine, dopamine, and norepinephrine) during hospitalization and potentially increase lactate values with the different numerical variables, without finding any difference (p = 0.53)(Table2). In bivariate analysis between the different numerical variables and categorical variables, through the medium compared with the Mann Whitney U test, the behavior of the blood lactate and central venous according to gender, type of sepsis, and vasoactive drugs was determined (Table 3). 3.3. Linear Regression. The analysis was completed with a nonparametric quantile regression model with the median. Application of the regression model showed a beta level 4. Discussion Our study found a good correlation between arterial and central venous lactate in pediatric patients with sepsis and/or septic shock who are in intensive care (Spearman s index 0.897 and p < 0.001). When we analyzed the results we found no statistically significant differences between arterial lactate andcentralvenouslactatewithrespecttoage,weight,and diagnosis, keeping in mind that the severity and stages of illnesscanvaryrapidly[3,7,8].likewise,inspiteofthefactthat body surface changes with age (p = 0.14) andweight(p= 0.74), significant differences were not found either, which makes lactate a reliable indicator, not influenced by these variables [1, 5, 9]. Furthermore, it was noted that the use of vasoactive drugs and medications described in the literature as hyperlactatemia producers did not, in our sample, alter the central venous lactate levels with respect to the arterial lactate (p = 0.068). This finding is very important in critically ill patients in whom it is sometimes difficult to obtain arterial accessduetotheirstateofshockorthehighvasopressor support, which makes the procedure difficult. In addition, the consideration that arterial and venous lactate results are correlated, regardless of how compromised their removal mechanism may be (due to lactate dehydrogenase or to the oxidative capacity of the tissues), has a significant added value because it provides the clinician with more tools with which to evaluate the critical patient when an arterial or central venous line is not available. In other words, regardless of the origin of lactate analysis both production and the arterial and venous elimination behave uniformly. No pediatric studies were found in the reviewed literature which would allow a comparison of the central venous and arterial lactate results in septic patients with our findings. Our study suggests conclusions which have been concordant with findings obtained in adult patients, in whom few studies have been carried out on this particular aspect. Bucuvalas et al. [9] compared the arterial lactate and peripheral venous lactate

4 Critical Care Research and Practice Table 3: Bivariate analysis arterial lactate versus venous lactate. Relationship between arterial and venous lactate and factors like sex, vasopressors, severity of illness, and other medications such as antibiotics and sedatives. Arterial lactate p value Venous lactate n=42 n=42 Sex Female (mean ± SD) 1.905 (1.128) 0.031 2.188 (1.226) Male (mean ± SD) 1.295 (0.725) 1.374 (0.740) Type of sepsis Sepsis (mean ± SD) 1,594 (0,667) 0,624 1,59 (0,758) Septic shock (mean ± SD) 1,435 (0,947) 1,612 (1,023) Vasoactive Yes (mean ± SD) 1,452 (0,912) 0,915 1,617 (0,992) No (mean ± SD) 1,63 (0,718) 1,51 (0,739) Medications Yes (mean ± SD) 1,545 (1,129) 0,762 1,707 (1,211) No (mean ± SD) 1,386 (0,534) 1,497 (0,598) p value 0.522 0,124 0,068 0,641 Table 4: Nonparametric regression model. Model description of relationship between arterial and venous lactate factors that may affect the outcome. Arterial lactate Coefficient Std. err t p 95% CI Medications 0,0803 0,1347 0,6 0,555 0,3541 0,1933 Weight 0,0532 0,1638 0,33 0,747 0,3862 0,2797 Vasoactive 0,1257 0,2013 0,62 0,537 0,2835 0,535 Diagnosis 0,0439 0,1765 0,25 0,805 0,4027 0,3148 Sex 0,1973 0,1673 1,18 0,246 0,1427 0,5374 Age 0,0529 0,0353 1,5 0,143 0,0188 0,1246 Venous lactate 0,924 0,0748 12,35 0,000 0,7719 1,076 Constant 0,3501 0,5095 0,69 0,497 1,3856 0,6853 values of patients over 18 years old with or without sepsis who presented to the emergency room, finding a good correlation of 0.89 (p < 0.05) between these values. More recently, Nascente et al. [1] evaluated the correlation between the lactate values obtained from different anatomic sites in a population of adult patients with severe sepsis or septic shock. This study showed that central venous blood lactate has a good correlationwitharteriallactatelevels,withacorrelationindex of 0.84 (p < 0.00001). Oneofthelimitationsofourstudyisthatsimultaneous measurement of arterial and central venous lactate was not always performed. In addition, in spite of the fact that the sample size was calculated according to the findings in previous studies, it corresponds to the experience of a single reference site, which should be corroborated with prospective studies in the pediatric population which would also determine the sensitivity and specificity of these tests as clinical determinants in patients being treated for sepsis or septic shock. Within the reviewed literature, our study is the first research to compare arterial and central venous lactate in critically ill children with a potentially lethal pathology such as sepsis and septic shock. Likewise, although lactate is analyzed at a specific point in time, having central venous lactate as a reliable alternative to arterial lactate provides a monitoring tool and, above all, can serve as another tool to help determine the severity of the illness. A goal-guided approach, according to the studies by Nguyen et al. [10], has shown that it modifies thecourseofthediseaseandmayreducemortality. Technical difficulties in obtaining an arterial line in pediatrics are very common, especially when the patient is in shock, but also for all those cases where an arterial vascular access is not necessary or during the initial phase of stabilization before an arterial vascular access can be obtained. These are why being able to assume that lactate obtained from a central vein is just as reliable as arterial lactate provides alternatives when establishing therapeutic goals on the admission of our patients. We recommend carrying out prospective studies that will evaluate the behavior of lactate over time, its clearance, and its relationship to the clinical course of the patient. 5. Conclusion There is a good correlation between arterial and central venous lactate in children with septic shock, after statistically adjusting the different variables inherent to the critically ill patient, such as the use of vasoactive support, medications, and demographic variables, serving as a good indicator of tissue perfusion in critically ill children.

Critical Care Research and Practice 5 Additional Points (1) Lactate is a good coadjuvant for establishing tissue perfusion and guiding fluid resuscitation in pediatric patients with septic shock. (2) The existing correlation between arterial and central venous lactate allows the latter to be taken as a reliable value for making clinical decisions. (3) The comprehensive evaluation of the patient, correlating it with clinical and paraclinical variables, allows the establishment of clear objectives whichmaymodifythecourseofchildrenwithsepticshock. Competing Interests The authors declare no conflict of interests. References [1] A. P. M. Nascente, M. Assunção,C.J.Guedesetal., Comparison of lactate values obtained from different sites and their clinical significance in patients with severe sepsis, Sao Paulo Medical Journal,vol.129,no.1,pp.11 16,2011. [2] O. N. Okorie and P. Dellinger, Lactate: biomarker and potential therapeutic target, Critical Care Clinics,vol.27,no.2,pp.299 326, 2011. [3] B. Goldstein, B. Giroir, and A. Randolph, International pediatric sepsis consensus conference: definitions for sepsis and organ dysfunction in pediatrics, Pediatric Critical Care Medicine,vol.6,no.1,pp.2 8,2005. [4] E. J. Gallagher, K. Rodriguez, and M. Touger, Agreement between peripheral venous and arterial lactate levels, Annals of Emergency Medicine,vol.29,no.4,pp.479 483,1997. [5] R.F.Lavery,D.H.Livingston,B.J.Tortella,J.T.Sambol,B.M. Slomovitz,andJ.H.Siegel, Theutilityofvenouslactatetotriage injured patients in the trauma center, the American College of Surgeons,vol.190,no.6,pp.656 664,2000. [6]J.Levraut,C.Ichai,I.Petit,J.-P.Ciebiera,O.Perus,andD. Grimaud, Low exogenous lactate clearance as an early predictor of mortality in normolactatemic critically ill septic patients, Critical Care Medicine,vol.31,no.3,pp.705 710,2003. [7] R. H. Riffenburgh, Statistics in Medicine, Academic Press, New York, NY, USA, 3rd edition, 2012. [8] J.A.Carcillo, Pediatricsepticshockandmultipleorganfailure, Critical Care Clinics,vol.19,no.3,pp.413 440,2003. [9] J. Bucuvalas, N. Yazigi, and R. H. Squires Jr., Acute liver failure in children, Clinics in Liver Disease, vol. 10, no. 1, pp. 149 168, 2006. [10] H. B. Nguyen, E. P. Rivers, B. P. Knoblich et al., Early lactate clearance is associated with improved outcome in severe sepsis and septic shock, Critical Care Medicine, vol. 32, no. 8, pp. 1637 1642, 2004.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity