Metabolite and Fatty Acid Analysis of Yeast Cells and Culture Supernatants Liwei Chen and Wei Ning Chen *

Similar documents
Automated Sample Preparation for Profiling Fatty Acids in Blood and Plasma using the Agilent 7693 ALS

Fatty Acid Mass Spectrometry Protocol Updated 10/11/2007 By Daren Stephens

Rapid and Robust Detection of THC and Its Metabolites in Blood

Fatty Acid Methylation Kits

Automated Sample Preparation for FAME Analysis in Edible Oils Using an Agilent 7696A Sample Prep WorkBench

Lutein Esters from Tagetes Erecta

Interested in conducting your own webinar?

Analysis of FAMEs Using Cold EI GC/MS for Enhanced Molecular Ion Selectivity

Core E Analysis of Neutral Lipids from Human Plasma June 4, 2010 Thomas J. Leiker and Robert M. Barkley

3-Acetyldeoxynivalenol. 15-Acetyldeoxynivalenol

Determination of Gamma-Hydroxy-Butyrate (GHB) in Biological Samples

Determination of 6-Chloropicolinic Acid (6-CPA) in Crops by Liquid Chromatography with Tandem Mass Spectrometry Detection. EPL-BAS Method No.

using the Agilent 7696A Sample Prep

EXPERIMENT 13: Isolation and Characterization of Erythrocyte

Determination of Bath Salts (Pyrovalerone Analogs) in Biological Samples

Determination of β2-agonists in Pork Using Agilent SampliQ SCX Solid-Phase Extraction Cartridges and Liquid Chromatography-Tandem Mass Spectrometry

Analysis of HMF by HPLC

Improving the Analysis of Fatty Acid Methyl Esters Using Automated Sample Preparation Techniques

Extraction of 11-nor-9-carboxy-tetrahydrocannabinol from Hydrolyzed Urine by ISOLUTE. SLE+ Prior to GC/MS Analysis

PLFA extraction protocols

Detection of Low Level of Chloramphenicol in Milk and Honey with MIP SPE and LC-MS-MS

Proficiency testing performance of Turkish laboratories on determination of relative composition of fatty acids in sunflower oil

Analysis of several common. organic acids in tobacco leaf, snus, and moist snuff

Determination of red blood cell fatty acid profiles in clinical research

FATTY ACIDS IN PLASMA BY GC/MS - Code GC75010

Relative Measurement of Zeaxanthin Stereoisomers by Chiral HPLC

LC/MS Method for Comprehensive Analysis of Plasma Lipids

High Throughput Extraction of Opiates from Urine and Analysis by GC/MS or LC/MS/MS)

THERMALLY OXIDIZED SOYA BEAN OIL

Analysis of Organic Acids and Alcohols Using the Agilent J&W DB-624UI Ultra Inert GC Column

Modified QuEChERS Procedure for Analysis of Bisphenol A in Canned Food Products

Recipes for Media and Solution Preparation SC-ura/Glucose Agar Dishes (20mL/dish, enough for 8 clones)

[application note] Simultaneous detection and quantification of D 9 THC, 11-OH-D 9 T H C and D 9 THC-COOH in whole blood by GC tandem quadrupole MS

Title Revision n date

Technical Report. Abstract: 2. Experiment. 1. Introduction. Hiroshi Tsugawa 1,*, Eiichiro Fukusaki 1

E17 ETHYLCELLULOSE. Revision 3 Stage 4

Analysis of short chain organic acids in tobacco and in some flavored e-liquids

Fast determination of residual glycerol and glycerides in biodiesel by SFC/MS using the Agilent 1260 Infinity Analytical SFC System

Lipidomic Analysis by UPLC-QTOF MS

THERMALLY OXIDIZED SOYA BEAN OIL interacted with MONO- and DIGLYCERIDES of FATTY ACIDS

DIRECT EXTRACTION OF BENZODIAZEPINE METABOLITE WITH SUPERCRITICAL FLUID FROM WHOLE BLOOD

Authors. Abstract. Introduction. Environmental

Application. Detection of Cannabinoids in Oral Fluid Using Inert Source GC/MS. Introduction. Authors. Abstract. Forensic Toxicology

Analysis of Acrylamide in French Fries using Agilent Bond Elut QuEChERS AOAC kit and LC/MS/MS

Application Note. Authors. Abstract. Petrochemical

Sucrose Esters of Fatty Acids

Supplementary Material (ESI) for Chemical Communications This journal is (c) The Royal Society of Chemistry 2008

Supporting Information. for. Pd-catalyzed decarboxylative Heck vinylation of. 2-nitro-benzoates in the presence of CuF 2

Determination of Tetracyclines in Chicken by Solid-Phase Extraction and High-Performance Liquid Chromatography

DETERMINATION OF FATTY ACIDS IN EDIBLE OILS BY CAPILARY GC

Carotenoid Extraction and Quantification from Capsicum annuum Richard D. Richins, James Kilcrease, Laura Rodgriguez-Uribe and Mary A.

STANDARD OPERATING PROTOCOL (SOP)

Fatty acid profile analysis: Grape Seed Oil Sample Set Two ( )

Dienes Derivatization MaxSpec Kit

Application Note. Author. Abstract. Introduction. Food Safety

ARTESUNATE TABLETS: Final text for revision of The International Pharmacopoeia (December 2009) ARTESUNATI COMPRESSI ARTESUNATE TABLETS

9( )- Hydroxyoctadecadienoic Acid ELISA

Analyze Drugs of Abuse with Agilent J&W Ultimate Plus Tubing in an Inert Flow Path

Screening by immunoassay and confirmation & quantitation by GC-MS of buprenorphine and norbuprenorphine in urine, whole blood and serum

Global Histone H3 Acetylation Assay Kit

Analysis of L- and D-Amino Acids Using UPLC Yuta Mutaguchi 1 and Toshihisa Ohshima 2*

Protocol for purification of recombinant protein from 300 ml yeast culture

Application Note Soy for Isoflavones by HPLC. Botanical Name: Glycine max L. Common Names: Parts of Plant Used: Beans.

The Development of LC/MS Methods for Determination of MDMA (Ecstasy) and Metabolites in Biological Samples

AS Application Note 1602

The challenging extraction of non-polar contaminants out of a non-polar vegetable oil sample

Quantitative Analysis of -Hydroxybutyrate in Hair Using Target Analyte Finding Processing of Comprehensive GC-HRT Data

PHOTOCATALYTIC DECONTAMINATION OF CHLORANTRANILIPROLE RESIDUES IN WATER USING ZnO NANOPARTICLES. DR. A. RAMESH, Ph.D, D.Sc.,

AppNote 3/2013. Automated Determination of Total Fat, Saturated Fat, Monounsaturated Fat and Trans Fat Content in Food Samples KEYWORDS ABSTRACT

Designer Fentanyls Drugs that kill and how to detect them. Cyclopropylfentanyl

Total Phosphatidic Acid Assay Kit

XCF TM COMPLETE Exosome and cfdna Isolation Kit (for Serum & Plasma)

Amphetamines, Phentermine, and Designer Stimulant Quantitation Using an Agilent 6430 LC/MS/MS

DETERMINATION OF COMPOSITION OF TRIACYLGLYCEROLS AND COMPOSITION AND CONTENT OF DI-ACYLGLYCEROLS BY CAPILLARY GAS CHROMATOGRAPHY, IN VEGETABLE OILS

Chromatography Vacuum Ultraviolet Spectroscopy

XTRAKT FFPE Kit / Manual

ab Lipid Peroxidation (MDA) Assay kit (Colorimetric/ Fluorometric)

PAPRIKA EXTRACT SYNONYMS DEFINITION DESCRIPTION FUNCTIONAL USES CHARACTERISTICS

FLUNITRAZEPAM Latest Revision: January 24, 2006

Rapid Analysis of 37 FAMEs with the Agilent 8860 Gas Chromatograph

Supplementary Information

ISOMALT. Chemical formula 6-O-alpha-D-Glucopyranosyl-D-sorbitol: C 12 H 24 O 11 1-O-alpha-D-Glucopyranosyl-D-mannitol dihydrate: C 12 H 24 O 11 2H 2 O

Screening of Antihistamine Agents (Diphenhydramine) with Blood and Urine Samples by REMEDi-HS System

Analysis of Omega 3 and Omega 6 FAMEs in Fish Oil and Animal Fat Using an Agilent J&W DB-FATWAX Ultra Inert GC Column

Comprehensive Study of SLE as a Sample. Preparation Tool for Bioanalysis

Analysis of the fatty acids from Periploca sepium by GC-MS and GC-FID

Carnitine / Acylcarnitines Dried Blood Spots LC-MS/MS Analysis Kit User Manual

Determination of Adulterants in Olive Oil Analysis of Waxes and Fatty Acid Methyl and Ethyl Esters with Capillary GC and Agilent OpenLAB Software

Metabolic Profiling of Yeast Sterols Using the Agilent 7200 Series GC/Q-TOF System

EPIGENTEK. EpiQuik Global Histone H3 Acetylation Assay Kit. Base Catalog # P-4008 PLEASE READ THIS ENTIRE USER GUIDE BEFORE USE

Midi Plant Genomic DNA Purification Kit

Quenching and Metabolites Extraction from adherent cell lines and cell supernatant for metabolic profiling

Liquid Liquid Extraction of Gamma Hydroxybutyric Acid (GHB) in Blood and Urine for GC-MS analysis

LC-Based Lipidomics Analysis on QTRAP Instruments

EASI-EXTRACT BIOTIN Product Code: P82 / P82B

EPIGENTEK. EpiQuik Global Histone H4 Acetylation Assay Kit. Base Catalog # P-4009 PLEASE READ THIS ENTIRE USER GUIDE BEFORE USE

Experiment 1. Isolation of Glycogen from rat Liver

Transcription:

Metabolite and Fatty Acid Analysis of Yeast Cells and Culture Supernatants Liwei Chen and Wei Ning Chen * School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore *For correspondence: WNChen@ntu.edu.sg [Abstract] Metabolite and fatty acid analysis play important roles in evaluating the metabolic state of microorganisms. To examine the growth state and metabolism response of cells to environmental stress or genetic modification, intracellular and extracellular metabolites including fatty acids are usually analyzed to help understand the cellular biochemical changes in microorganisms. In this protocol, (gas chromatography-mass spectrometry based analysis was employed to investigate the fatty acids and other metabolites in yeast cells. Materials and Reagents 1. Saccharomyces cerevisiae (S. cerevisiae) cells (EUROSCARF) 2. Methanol (Sigma-Aldrich, catalog number: 322415) 3. Ethanol (Sigma-Aldrich, catalog number: 277649) 4. Chloroform (Sigma-Aldrich, catalog number: C2432) 5. Acetic acid (Sigma-Aldrich, catalog number: 320099) 6. Heptadecanoic acid (Sigma-Aldrich, catalog number: H3500) 7. Heptanoic acid (Sigma-Aldrich, catalog number: 75190) 8. Ribitol (Sigma-Aldrich, catalog number: A5502) 9. Fatty acid methyl esters (FAMEs) mix C8-C24 (Sigma-Aldrich, Supelco, catalog number: 18918) 10. 10% BF3-methanol (Fluka, catalog number: 15716) 11. Hexane (Sigma-Aldrich, catalog number: 34859) 12. SPE column (200 mg/3 ml) (Phenomenex, Strata, model: C18-E) 13. Adapter (Sigma-Aldrich, Supelco, catalog number: 57020-U) 14. Disposable syringe (Sigma-Aldrich, catalog number: Z116866) 15. Sodium chloride (Sigma-Aldrich, catalog number: 746398) 16. Methoxyamine hydrochloride (Sigma-Aldrich, catalog number: 226904) 17. N-methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA) with 1% trimethylchlorosilane (TMCS) (Fluka, catalog number: 69478) 18. Agilent Technologies Vial Scr Fix Insert Clr PK100 (Agilent, catalog number: 5188-6591) Copyright 2014 The Authors; exclusive licensee Bio-protocol LLC. 1

19. 10 mg/ml heptadecanoic acid (see Recipes) 20. 10 mg/ml heptanoic acid (see Recipes) 21. 2 mg/ml ribitol (see Recipes) 22. Saturated NaCl solution (see Recipes) Equipment 1. Glass beads (acid-washed, 425-600 µm) (Sigma-Aldrich, catalog number: G8772) 2. Fume hood 3. SSI 2341-S0S screw cap tubes 4. 10 ml PP conical bottom tubes 5. HP-5MS capillary column (30 m x 0.250 mm i.d.; film thickness: 0.25 µm) (Agilent) 6. Centrifugal Evaporator RC10.09 (Thermo Fisher Scientific, catalog number: 11176780) 7. Thermostatic Cabinet Lovibond ET619-4 (Tintometer GmbH, catalog number: ET2428210) 8. Vortex mixer (CabNet) 9. Thermo-shaker 10. Eppendorf centriguge 5810R (10,000 rpm) (Eppendorf) 11. Thermo scientific Sorvall Legend Micro 21R centrifuge (12,000 rpm-14,000 rpm) (Thermo Fisher Scientific) 12. 30 C Orbital shaker incubator (Yihder Technology, model: LM-570RD) 13. NanoDrop 2000c spectrophotometer (Thermo Fisher Scientific) 14. FastPrep -24 instrument (MP Biomedicals, model: 6004-500) 15. Gas chromatography-mass spectrometry (GC-MS) system (Agilent, model: 7890A- 5975C) with an autoinjector G4513A Software 1. Agilent MSD Chemstation data analysis software Procedure Note: Workflow of metabolite and fatty acid analyses of yeast cells and culture supernatants is shown in Figure 1. A. Sample preparation for metabolite and fatty acid analysis 1. Samples of the yeast culture were collected at different time points and the OD600 was measured using a NanoDrop 2000c spectrophotometer. Copyright 2014 The Authors; exclusive licensee Bio-protocol LLC. 2

http://www.bio-protocol.org/e1219 Vol 4, Iss 17, Sep 05, 2014 Figure 1. Workflow of metabolite and fatty acid analysis of yeast cells and culture supernatants Note: For Saccharomyces cerevisiae cells, OD600 of 1 is roughly equal to 1 x 107 cells/ml. When the OD of cells cultured in medium containing fatty acid is determined, the cells should be washed by 0.9% NaCl solution at least 3 times before OD measurement, since the fatty acid affects the spectral absorbance. If the cells are cultured in YNB or YPD medium, no washing step is needed. Usually, S. cerevisiae cells were cultured at 30 C. 2. After centrifugation for 10 min at 10,000 rpm, 4 C, the supernatant was transferred into a fresh tube by a micropipettor. The cell pellet was resuspended in 0.9% NaCl solution to same OD600. 3. An equal number of yeast cells (8 x 107) were collected by centrifugation from different yeast cultures and/or time points for metabolite and fatty acid extraction (proceed to step A4). An equal volume of cell culture supernatant (10 ml) was collected for extracellular fatty acid analysis (proceed to step A5). 4. The cell pellet collected in step A3 was washed twice with cold methanol (< -40 C) and then collected. The intracellular metabolites and lipids were extracted from control and Copyright 2014 The Authors; exclusive licensee Bio-protocol LLC. 3

experimental cells using a chloroform:methanol (2:1) method adapted from Browse et al. (1986). a. The cell pellet was resuspended in 1 ml of 0.9% NaCl solution and then acidified with 200 µl of acetic acid. b. As internal standard (IS) to correct for metabolite loss during sample preparation, 10 µl of 10 mg/ml heptadecanoic acid and heptanoic acid dissolved in ethanol and 10 μl of 2 mg/ml ribitol dissolved in water were added to the extraction solvent. c. After adding approximately 300 µl of glass beads, the cells were disrupted in a FastPrep -24 instrument for 30 sec and cooled in ice for 30 sec; this procedure was repeated 4 times. d. 3 ml of a chloroform-methanol 2:1 mixture was added, and the samples were inverted several times, vortexed vigorously, and centrifuged at 10,000 x g for 10 min at 4 C. The aqueous layer (upper) and cell debris (middle layer) were transferred to a new tube using a micropipetor. e. Chloroform layer (lower) was collected. An additional 2 ml of the chloroform was added to the aqueous and cell debris layer to further extract lipids. The generated chloroform layer (lower) was also collected. f. The chloroform layer was combined and rotary evaporated to dryness using a Centrifugal Evaporator at 30 C. g. For metabolite profiling, 1 ml of the aqueous phase layer (generated in step A4e) was collected and evaporated at 30 C overnight to dryness too. The residual aqueous layer and cell debris was discarded. Note: Samples need to be completely dry otherwise the remaining water could inhibit the following reaction. 5. For the fatty acids in the culture medium, the Solid-Phase Extraction (SPE) method (Horak et al., 2009) was adopted. a. First, 0.5 ml 1 M HCl, 2 µl 10 mg/ml heptadecanoic acid and 2 µl 10 mg/ml heptanoic acid were added into 10 ml culture supernatant and mixed. b. Next, the SPE column was activated with 2.5 ml methanol and washed with 5 ml water. After that, the 10 ml culture supernatant in step A5a was passed through the SPE column. Note: Syringe and adapter were used to load liquid onto the SPE column. c. The SPE column was washed with 5 ml water and dried at room temperature. Note: The SPE column must be dried. Otherwise the reproducibility will be affected. d. 1.5 ml chloroform was loaded onto the SPE column for fatty acid elution. The effluent chloroform from the column was collected and also evaporated to dryness. It can be Copyright 2014 The Authors; exclusive licensee Bio-protocol LLC. 4

evaporated in a rotary evaporator at 30 C for several hours or by leaving the tube open in a fume hood overnight. B. Fatty acid analysis 1. Fatty acid derivatization was performed according to previous work (Horak et al., 2009). Fatty acid methyl esters (FAMEs) mix C8-C24 was used as a standard. a. The dried lipid residue from step A4f or A5d was redissolved in 500 µl 10% BF3- methanol and incubated in a sealed screw cap tube in a 95 C heat block for 20 min. b. Cool down the tube to near room temperature. 300 µl saturated NaCl in water was added into the reaction, and FAMEs were extracted from the mixture with 300 µl n- hexane. Samples were centrifuged at 14,000 rpm for 1 h at room temperature. The upper hexane layer was next transferred to glass vials for GC-MS analysis. 2. Chromatography was performed using Agilent Technologies GC-MS system equipped with a HP-5MS capillary column. a. Samples of 1 µl were injected into the column by splitless mode using an autoinjector. Helium was used as a carrier gas at 1.1 ml/min. The inlets and MS source temperatures were maintained at 250 and 230 C, respectively. The oven temperature was maintained at 80 C for 1 min and ramped to 250 C at a rate of 7 C/min, then held at 250 C for 10 min. Data were acquired in a full scan from 35 to 600 m/z. The representative GC-MS spectra for yeast fatty acid profile is shown in Figure 2. b. The detected FAME peaks were integrated after noise reduction and baseline correction. FAME standard curves were made by running different concentrations (0.125-1 mg/ml) of FAMEs mix C8-C24 and IS. The amount of fatty acids were calculated based on extrapolation for the IS and the relative response factors were also calculated. A representative standard curve of C16: 1 m.e. is shown in Figure 3. C. Metabolic profiling 1. The sample for metabolic profiling was derivatized according to previous work (Wang et al., 2010). a. The dry residue from step A4g was re-dissolved in 50 µl of 20 mg/ml solution of methoxyamine hydrochloride in pyridine and kept at 37 C for 60 min for carbonyls protection. b. 100 µl of N-methyl-N-(trimethylsilyl)-trifluoroacetamide (MSTFA) with 1% trimethylchlorosilane (TMCS) was further added to each sample, and silylation was carried out at 70 C for 30 min. Copyright 2014 The Authors; exclusive licensee Bio-protocol LLC. 5

c. After incubation, samples were centrifuged at 14,000 rpm for 1 h at room temperature and then transferred to glass vials for GC-MS analysis. Note: It would be better that all samples were analyzed within 12 h after they are obtained. The samples can be stored in the sealed vials for a maximum of 2 days at - 20 C. Because the derivative metabolites might be unstable after long term storage, the concentration might decrease. 2. The same GC-MS system and column (as indicated in step B2) were used. a. Samples of 1 µl were injected into the column by splitless mode using an autoinjector. Helium was used as a carrier gas at 1.1 ml/min. The inlets and MS source temperatures were maintained at 250 and 230 C, respectively. The oven temperature was maintained at 75 C for 4 min and raised at 4 C/min to a final temperature of 280 C and held for 2 min. Mass spectra were recorded from 35 to 600 m/z. b. Chromatogram acquisition and mass spectra identification were obtained using the Agilent MSD Chemstation Data Analysis software. Chemical identification of the detected metabolite peaks was performed by searching the NIST08 mass spectral library. The compounds were quantified from the peak area relative to the IS ribitol. No response factors were calculated. The representative GC-MS spectra for yeast metabolic profile are shown in Figure 4. Representative data Figure 2. The representative GC-MS spectra for a S. cerevisiae fatty acid profile. Fatty acid composition and concentration may differ from those shown here as a result of altered cell culturing conditions and/or alternative genetic backgrounds of the yeast cells employed. Copyright 2014 The Authors; exclusive licensee Bio-protocol LLC. 6

Figure 3. A representative palmitoleic acid methyl ester standard curve. Different concentrations (0.125-0.75 mg/ml) of FAMEs standard were used for GC-MS analysis. To make individual FAME standard curves, the concentration of FAME was determined by mutiplying its percent concentration (as indicated on the cerificate of analysis from the supplier) by the prepared concentrations (0.125-0.75 mg/ml). Figure 4. A representative GC-MS spectra for L-Alanine derived from total ion chromatograms. Intracellular metabolites were extracted from the S. cerevisiae cells and metabolic profiling was conducted. The metabolite composition and concentration may differ from those shown here as a result of altered cell culturing conditions and/or alternative genetic backgrounds of the yeast cells employed. Copyright 2014 The Authors; exclusive licensee Bio-protocol LLC. 7

Notes 1. For the metabolite and fatty acid analysis, at least three independent experiments were conducted. 2. To ensure the reproducibility and comparability, please ensure the detector is well maintained and perform required maintenance for the machine, including cleaning the EI source and replacing the filament as necessary and in accordance with the manufacturers guidelines. For accurate comparisons, it is important that control and experimental cell samples be processed and analyzed in parallel. 3. Adding or collecting organic solvent was carried out in the fume hood. Recipes 1. 10 mg/ml heptadecanoic acid (20 ml) Mix 200 mg of heptadecanoic acid with 15 ml ethanol Dissolved, add ddh2o to 20 ml Stored at 4 C 2. 10 mg/ml heptanoic acid Mix 217.9 µl heptanoic acid with 15 ml ethanol Dissolved, add ddh2o to 20 ml Stored at 4 C 3. 2 mg/ml ribitol (20 ml) Mix 40 mg of ribitol with 15 ml ddh2o Dissovled, add ddh2o to 20 ml Stored at 4 C 4. Saturated NaCl solution Mix 35.7 g of NaCl with 80 ml of ddh2o Dissolved, add ddh2o to 100 ml Stored at room temperature Acknowledgments This protocol was adapted from previous work (Chen et al., 2014). This research is supported by a Competitive Research Programme (CRP) grant from the National Research Foundation of Singapore. Copyright 2014 The Authors; exclusive licensee Bio-protocol LLC. 8

References 1. Browse, J., McCourt, P. J. and Somerville, C. R. (1986). Fatty acid composition of leaf lipids determined after combined digestion and fatty acid methyl ester formation from fresh tissue. Anal Biochem 152(1): 141-145. 2. Chen, L., Zhang, J. and Chen, W. N. (2014). Engineering the Saccharomyces cerevisiae β-oxidation pathway to increase medium chain fatty acid production as potential biofuel. PLoS One 9(1): e84853. 3. Horak, T., Culik, J., Cejka, P., Jurkova, M., Kellner, V., Dvorak, J. and Haskova, D. (2009). Analysis of free fatty acids in beer: comparison of solid-phase extraction, solid-phase microextraction, and stir bar sorptive extraction. J Agric Food Chem 57(23): 11081-11085. 4. Wang, M., Bai, J., Chen, W. N. and Ching, C. B. (2010). Metabolomic profiling of cellular responses to carvedilol enantiomers in vascular smooth muscle cells. PLoS One 5(11): e15441. Copyright 2014 The Authors; exclusive licensee Bio-protocol LLC. 9