Multiple Regression Models

Similar documents
Bivariate &/vs. Multivariate

Introduction to Path Analysis

Example of Interpreting and Applying a Multiple Regression Model

Psychology Research Process

Regression Including the Interaction Between Quantitative Variables

2-Group Multivariate Research & Analyses

Assignment 4: True or Quasi-Experiment

Multivariable Systems. Lawrence Hubert. July 31, 2011

Psychology Research Process

Inferential Statistics

Between Groups & Within-Groups ANOVA

The Logic of Data Analysis Using Statistical Techniques M. E. Swisher, 2016

THE STATSWHISPERER. Introduction to this Issue. Doing Your Data Analysis INSIDE THIS ISSUE

Research Questions, Variables, and Hypotheses: Part 2. Review. Hypotheses RCS /7/04. What are research questions? What are variables?

Chapter 11 Nonexperimental Quantitative Research Steps in Nonexperimental Research

Stepwise method Modern Model Selection Methods Quantile-Quantile plot and tests for normality

investigate. educate. inform.

Political Science 15, Winter 2014 Final Review

Study Guide #2: MULTIPLE REGRESSION in education

Research Designs. Internal Validity

15.301/310, Managerial Psychology Prof. Dan Ariely Recitation 8: T test and ANOVA

Chapter Eight: Multivariate Analysis

Carrying out an Empirical Project

1. You want to find out what factors predict achievement in English. Develop a model that

MS&E 226: Small Data

Propensity Score Methods for Estimating Causality in the Absence of Random Assignment: Applications for Child Care Policy Research

Data and Statistics 101: Key Concepts in the Collection, Analysis, and Application of Child Welfare Data

Chapter Eight: Multivariate Analysis

kxk BG Factorial Designs kxk BG Factorial Designs Basic and Expanded Factorial Designs

Business Statistics Probability

WELCOME! Lecture 11 Thommy Perlinger

Limitations of 2-cond Designs

Lesson 9: Two Factor ANOVAS

Progress Monitoring Handouts 1

Sheila Barron Statistics Outreach Center 2/8/2011

Assignment 4: True or Quasi-Experiment

Your goal in studying for the GED science test is scientific

Doing Quantitative Research 26E02900, 6 ECTS Lecture 6: Structural Equations Modeling. Olli-Pekka Kauppila Daria Kautto

12/30/2017. PSY 5102: Advanced Statistics for Psychological and Behavioral Research 2

Our goal in this section is to explain a few more concepts about experiments. Don t be concerned with the details.

CASE STUDY 2: VOCATIONAL TRAINING FOR DISADVANTAGED YOUTH

Class 7 Everything is Related

Chapter 13. Experiments and Observational Studies. Copyright 2012, 2008, 2005 Pearson Education, Inc.

How to Work with the Patterns That Sustain Depression

Chapter 13 Summary Experiments and Observational Studies

I don t want to be here anymore. I m really worried about Clare. She s been acting different and something s not right

Regression Discontinuity Analysis

Measuring and Assessing Study Quality

11/18/2013. Correlational Research. Correlational Designs. Why Use a Correlational Design? CORRELATIONAL RESEARCH STUDIES

Chapter 14: More Powerful Statistical Methods

7 Statistical Issues that Researchers Shouldn t Worry (So Much) About

CHAPTER TWO REGRESSION

Methodology for Non-Randomized Clinical Trials: Propensity Score Analysis Dan Conroy, Ph.D., inventiv Health, Burlington, MA

ACCTG 533, Section 1: Module 2: Causality and Measurement: Lecture 1: Performance Measurement and Causality

Clever Hans the horse could do simple math and spell out the answers to simple questions. He wasn t always correct, but he was most of the time.

Preliminary Report on Simple Statistical Tests (t-tests and bivariate correlations)

Analysis and Interpretation of Data Part 1

Regressions usually happen at the following ages 4 months, 8 months, 12 months, 18 months, 2 years.

Chapter 7: Descriptive Statistics

t-test for r Copyright 2000 Tom Malloy. All rights reserved

AFSP SURVIVOR OUTREACH PROGRAM VOLUNTEER TRAINING HANDOUT

Complex Regression Models with Coded, Centered & Quadratic Terms

Audio: In this lecture we are going to address psychology as a science. Slide #2

Our plan for giving better care to people with dementia Oxleas Dementia

3 CONCEPTUAL FOUNDATIONS OF STATISTICS

The Recovery Journey after a PICU admission

Structural Equation Modeling (SEM)

Motivation Series. Emotional Self-Awareness. Emotional Self-Awareness is the ability to recognize your. Emotional Intelligence.

11/24/2017. Do not imply a cause-and-effect relationship

A. Indicate the best answer to each the following multiple-choice questions (20 points)

Problem Situation Form for Parents

Limitations of 2-cond Designs

Sharing Our Stories. for a Better Health

Letter to the teachers

Author's response to reviews

Never P alone: The value of estimates and confidence intervals

Fixed Effect Combining

Chapter 7: Correlation

Objectives. Quantifying the quality of hypothesis tests. Type I and II errors. Power of a test. Cautions about significance tests

Chapter 19. Confidence Intervals for Proportions. Copyright 2010, 2007, 2004 Pearson Education, Inc.

CRITERIA FOR USE. A GRAPHICAL EXPLANATION OF BI-VARIATE (2 VARIABLE) REGRESSION ANALYSISSys

9 INSTRUCTOR GUIDELINES

In this chapter we discuss validity issues for quantitative research and for qualitative research.

Profile Analysis. Intro and Assumptions Psy 524 Andrew Ainsworth

Sampling Controlled experiments Summary. Study design. Patrick Breheny. January 22. Patrick Breheny Introduction to Biostatistics (BIOS 4120) 1/34

Recent advances in non-experimental comparison group designs

How to Work with the Patterns That Sustain Depression

18 INSTRUCTOR GUIDELINES

Chapter 19. Confidence Intervals for Proportions. Copyright 2010 Pearson Education, Inc.

Estimating indirect and direct effects of a Cancer of Unknown Primary (CUP) diagnosis on survival for a 6 month-period after diagnosis.

Stanford Youth Diabetes Coaches Program Instructor Guide Class #1: What is Diabetes? What is a Diabetes Coach? Sample

appstats26.notebook April 17, 2015

10. Introduction to Multivariate Relationships

Standard Deviation and Standard Error Tutorial. This is significantly important. Get your AP Equations and Formulas sheet

Correlation and Regression

Chapter 11. Experimental Design: One-Way Independent Samples Design

Why Is It That Men Can t Say What They Mean, Or Do What They Say? - An In Depth Explanation

Intro to Factorial Designs

1 The conceptual underpinnings of statistical power

Transcription:

Multiple Regression Models Advantages of multiple regression Parts of a multiple regression model & interpretation Raw score vs. Standardized models Differences between r, b biv, b mult & β mult Steps in examining & interpreting a full regression model Underspecification & Proxy Variables Searching for the model Advantages of Multiple Regression Practical issues better prediction from multiple predictors can avoid picking/depending on a single predictor can avoid non-optimal combinations of predictors (e.g., total scores) Theoretical issues even when we know in our hearts that the design will not support causal interpretation of the results, we have thoughts and theories of the causal relationships between the predictors and the criterion -- and these thoughts are about multicausal relationships multiple regression models allow the examination of more sophisticated research hypotheses than is possible using simple correlations gives a link among the various correlation and ANOVA models raw score regression each b y = b 1 x 1 + b 2 x 2 + b 3 x 3 + a represents the unique and independent contribution of that predictor to the model for a quantitative predictor tells the expected direction and amount of change in the criterion for a 1-unit change in that predictor, while holding the value of all the other predictors constant for a binary predictor (with unit coding -- 0,1 or 1,2, etc.), tells direction and amount of group mean difference on the criterion variable, while holding the value of all the other predictors constant a the expected value of the criterion if all predictors have a value of 0

Let s practice -- Tx (0 = control, 1 = treatment) depression = (2.0 * stress) - (1.5 * support) - (3.0 * Tx) + 35 apply the formula patient has stress score of 10, support score of 4 and was in the treatment group dep = 46 interpret b for stress -- for each 1-unit increase in stress, depression is expected to increase by 2, when holding all other variables constant interpret b for support -- for each 1-unit increase in support, depression is expected to decrease by 1.5, when holding all other variables constant interpret b for tx those in the Tx group are expected to have a mean depression score that is 3.0 lower than the control group, when holding all other variables constant interpret a -- if a person has a score of 0 on all predictors, their depression is expected to be 35 standard score regression Z y = βz x1 + βz x2 + βz x3 each β for a quantitative predictor the expected Z-score change in the criterion for a 1-Z-unit change in that predictor, holding the values of all the other predictors constant for a binary predictor, tells size/direction of group mean difference on criterion variable in Z-units, holding all other variable values constant As for the standardized bivariate regression model there is no a or constant because the mean of Zy always = Zy = 0 The most common reason to refer to standardized weights is when you (or the reader) is unfamiliar with the scale of the criterion. A second reason is to promote comparability of the relative contribution of the various predictors (but see the important caveat to this discussed below!!!). It is important to discriminate among the information obtained from... bivariate r & bivariate regression model weights r -- simple correlation tells the direction and strength of the linear relationship between two variables (r = β for bivariate models) r 2 -- squared correlation tells how much of the Y variability is accounted for,. predicted from or caused by X (r = β for bivariate models) b -- raw regression weight from a bivariate model tells the expected change (direction and amount) in the criterion for a 1-unit change in the predictor β -- standardized regression wt. from a bivariate model tells the expected change (direction and amount) in the criterion in Z-score units for a 1-Z-score unit change in that predictor, holding the value of all the other predictors constant

It is important to discriminate among the information obtained from... multivariate R & multivariate regression model weights Venn diagrams representing r, b and R 2 R 2 -- squared multiple correlation tells how much of the Y variability is accounted for,. predicted from or caused by the multiple regression model R -- multiple correlation (not used that often) tells the strength of the relationship between Y and the. multiple regression model r y,x1 r y,x2 x 2 x 3 b i -- raw regression weight from a multivariate model tells the expected change (direction and amount) in the criterion for a 1-unit change in that predictor, holding the value of all the other predictors constant β i -- standardized regression wt. from a multivariate model tells the expected change (direction and amount) in the criterion in Z-score units for a 1-Z-score unit change in that predictor, holding the value of all the other predictors constant x 1 y r y,x3 Remember that the b of each predictor represents the part of that predictor shared with the criterion that is not shared with any other predictor -- the unique contribution of that predictor to the model b x1 & β x1 b x2 & β x2 x 2 x 1 x 3 b x3 & β x2 y

Remember R 2 is the total variance shared between the model (all of the predictors) and the criterion (not just the accumulation of the parts uniquely attributable to each predictor). R 2 = + + + x 1 y x 2 x 3 Inspecting and describing the results of a multiple regression formula 0. Carefully check the bivariate correlations/regressions 1. Does the model work? F-test (ANOVA) of H0: R² = 0 (R=0) ( R² ) / k F = --------------------------------- (1 - R²) / (N - k - 1) k = # preds of in the model N = total number of subjects Find F-critical using df = k N-k-1 2. How well does the model work? R² is an effect size estimate telling the proportion of variance of the criterion variable that is accounted for by the model adjusted R² is an attempt to correct R² for the inflation possible when the number if predictors is large relative to the sample size (gets mixed reviews -- replication is better!!) 3. Which variables contribute to the model?? t-test of H0: b = 0 for each variable Rember: b tells the contribution of this predictor to this model 4. Which variables contribute most to the model careful comparison of the predictor s βs don t compare predictor s bs more about why later! A related question is whether one or more variables can be dropped from the model 5. Identify the difference between the bivariate story and the multivariate story Compare each multivariate b/β with the corresponding bivariate r and/or bivariate b/β Bivariate & different multivariate stories may differ

Model Specification & why it matters!!! What we need to remember is that we will never, ever (even once) have a properly specified multiple regression model one that includes all of & only the causal variables influencing the criterion! Thus our model is misspecified including only some of the causal variables influencing the criterion (underspecification) and maybe has variables that don t influence the (flooded). What s the problem with misspecification? Remember that each b (β) weight tells the direction and extent of the contribution of that variable to that model controlling for all the other variables in that model So, if we don t have a properly specified model, the regression weights for the variables that are in the model don t necessarily tell us what we hope to learn Said differently the unique contribution of a particular predictor might vary importantly, depending up on what other predictors have been included in the model What s the problem with under-/misspecification.. cont??? Since our model will tend to have fewer predictors than the complete model, predictors in the model are not competing with all the predictors that should be in model the amount of collinearity is less than it would be in the full model the collinearity mix is different than it would be in the full model weights are trying to make up for predictors not in the model So the resulting b weights will tend to overestimate the unique contribution of each predictor (increasing Type I errors) the resulting b weights might underestimate the unique contribution of each predictor (increasing Type II errors) the resulting b weights might have the wrong sign and misrepresent the unique contribution of a predictor (increasing Type III errors) What s the problem with underspecification.. some more??? Since our model will tend to have fewer predictors than the complete model The R 2 is smaller than it should be and the error variance (1- R 2 ) is larger than it should be Since this error term is used in the model F-test and each of the multiple regression weight t-tests, all of those tests tend toward missing effects (Type II error) Summary idea Behavior is complicated, and so, larger models are, on average, more accurate! When predictors are added (on average) R2 goes up and error terms go down reducing Type II errors The amount of collinearity increases limiting Type I errors The collinearity mix is more correct limiting Type III errors

What can we do about misspecification? running larger models with every available predictor in them won t help models with many predictors tend to get really messy our best hope is to base our regression models upon the existing literature & good theory and to apply programmatic research include variables that are known to be related to that criterion will help avoid Type I errors from a poor collinearity mix include only other variables that there are theoretical reasons to think may contribute to the model use the largest and most representative samples available run multiple models identify those variables that have consistent contribution (or not) across models with different subsets of predictors replicate a lot! Proxy variables Remember (again) we are not going to have experimental data! The variables we have might be the actual causal variables influencing this criterion, or (more likely) they might only be correlates of those causal variables proxy variables Many of the subject variables that are very common in multivariate modeling are of this ilk is it really sex, ethnicity, age that are driving the criterion or is it all the differences in the experiences, opportunities, or other correlates of these variables? is it really the number of practices or the things that, in turn, produced the number of practices that were chosen? Again, replication and convergence (trying alternative measure of the involved constructs) can help decide if our predictors are representing what we think the do!! Proxy variables In sense, proxy variables are a kind of confounds because we are attributing an effect to one variable when it might be due to another. We can take a similar effect to understanding proxys that we do to understanding confounds we have to rule out specific alternative explanations!!! An example r gender, performance =.4 Is it really gender? Motivation, amount of preparation & testing comfort are some variables that have gender differences and are related to perf. So, we run a multiple regression with all four as predictors. If gender doesn t contribute, then it isn t gender but the other variables. If gender contributes to that model, then we know that gender in the model is the part of gender that isn t motivation, preparation or comfort but we don t know what it really is.

Searching for the model with multiple regression A common question is, What is the best multiple regression model for this criterion? This certainly seems like an important question, because such a model would tell us what variables must be considered to predict or perhaps understand the criterion & what variables can be safely ignored in our theory and practice. A the model would have three important properties 1. Every predictor in the model contributes to the model (parsimony or necessity) 2. No other predictor would contribute to the model if it were added (sufficiency) 3. No other predictor, if added to the model, would change the structure of the model (i.e., regression weights of the other predictors in the model) Searching for the model with multiple regression There are four things that routinely thwart our attempts to find the model 1. Collinearity because of the correlations among the predictors (which are sometimes stronger than the predictors are correlated with the criterion) there are often alternative models that perform equally well 2. Underspecification there s just no way we can ever test that no other predictor would contribute (one solution is to decide theoretically on the set of predictors - almost cheating) 3. Also, again because of collinearity, it is possible to include a variable in model that, while it doesn t contribute to the model, does change the size or even the sign of other predictors in the model. If so, the more parsimonious model might not be the most accurate. 4. Sampling variability as always So, what are we to do? Rather than telling the model we need to tell the story (which also gives us the best chance of finding the model if it is out there ) the story is told from 1. Each predictor s correlation with the criterion and the collinearities among predictors 2. Each predictor s contribution to the full model (noting likely reasons why variables don t contribute and suppressors) 3. Relative utility (R 2 ) of alternative models and each predictor s contribution to each 4. Building a story of which predictors contribute to what model(s) when included in them

So, what are we to do? No really????? Concerns about underspecification, proxy s and modeling are all well and good, but we have to actually get a model once in a while!! Much as we fret about and include in the discussion sections of our article an admission of the procedural limitations of our research, we need to fret about and admit to the measurement & modeling limitations of our research. This is another example of the importance of replication and convergence via programmatic research! So, remember & worry about these things, but don t let that worry be debilitating! Work with the best variables & data you can get, test hypotheses (even mid-hoc ones) whenever possible, propose & test models and their alternatives, etc.