Yijuan Sun, Amarpreet Sandhu, Darlene Gabaldon, Jonathan Danaraj, Karen S. Servilla, and Antonios H. Tzamaloukas

Similar documents
Case Report A Case of Proliferative Glomerulonephritis with Monoclonal IgG Deposits That Showed Predominantly Membranous Features

Interesting case seminar: Native kidneys Case Report:

Glomerular pathology in systemic disease

Monoclonal Gammopathies and the Kidney. Tibor Nádasdy, MD The Ohio State University, Columbus, OH

Jo Abraham MD Division of Nephrology University of Utah

Histopathology: Glomerulonephritis and other renal pathology

Monoclonal gammopathies consist of. Monoclonal GammopathyeAssociated Proliferative Glomerulonephritis REVIEW

FIBRILLARY GLOMERULONEPHRITIS DIAGNOSTIC CRITERIA, PITFALLS, AND DIFFERENTIAL DIAGNOSIS

Pathology of Complement Mediated Renal Disease

Multiple Myeloma Advances for clinical pathologists & histopathologists

Mayo Clinic/ RPS Consensus Report on Classification, Diagnosis, and Reporting of Glomerulonephritis

Case Report Nephrotic Syndrome Secondary to Proliferative Glomerulonephritis with Monoclonal Immunoglobulin Deposits of Lambda Light Chain

Surgical Pathology Report

Dr Ian Roberts Oxford. Oxford Pathology Course 2010 for FRCPath Illustration-Cellular Pathology. Oxford Radcliffe NHS Trust

Glomerular diseases with organized deposits

A Case of IgG2 Heavy Chain Deposition Disease in a Patient with Kappa Positive Plasma Cell Dyscrasia

Laboratory Examination

CASE 3 AN UNUSUAL CASE OF NEPHROTIC SYNDROME

A clinical syndrome, composed mainly of:

WE PRESENT a patient with non insulindependent

Ordering Physician. Collected REVISED REPORT. Performed. IgG IF, Renal MCR. Lambda IF, Renal MCR. C1q IF, Renal. MCR Albumin IF, Renal MCR

Tarek ElBaz, MD. Prof. Internal Medicine Chief, Division of Renal Medicine Al Azhar University President, ESNT

Renal Pathology 1: Glomerulus. With many thanks to Elizabeth Angus PhD for EM photographs

Expanding Spectrum of Diseases Associated with Plasma Cell Dyscrasias

Dr Ian Roberts Oxford. Oxford Pathology Course 2010 for FRCPath Illustration-Cellular Pathology. Oxford Radcliffe NHS Trust

RENAL HISTOPATHOLOGY

Forms Revision: Myeloma Changes

Disorders of the kidney. Urine analysis. Nephrotic and nephritic syndrome.

M-Protien, what to do next? Ismail A Sharif MD, FRCPc Internal Medicine Day 22 nd April 2016

Light-Chain Mediated Acute Tubular Interstitial Nephritis. A Poorly Recognized Pattern of Renal Disease in Patients With Plasma Cell Dyscrasia

Comparison of amyloid deposition in human kidney biopsies as predictor of poor patient outcome

CORE CURRICULUM IN NEPHROLOGY Renal Manifestations of Plasma Cell Disorders

Elevated Serum Creatinine, a simplified approach

Case 3. ACCME/Disclosure. Laboratory results. Clinical history 4/13/2016

Clinical Study Glomerulonephritis with Crescents in Children: Etiology and Predictors of Renal Outcome

Case Presentation Turki Al-Hussain, MD

Multiple intra-renal pathological injury patterns in resistant myeloma

Year 2004 Paper one: Questions supplied by Megan

Index. electron microscopy, 81 immunofluorescence microscopy, 80 light microscopy, 80 Amyloidosis clinical setting, 185 etiology/pathogenesis,

Classification of Glomerular Diseases and Defining Individual Glomerular Lesions: Developing International Consensus

C1q nephropathy the Diverse Disease

Lec-14 د.خالد نافع. Medicine. Multiple Myeloma

Article. Laser Microdissection and Proteomic Analysis of Amyloidosis, Cryoglobulinemic GN, Fibrillary GN, and Immunotactoid Glomerulopathy

Early View Article: Online published version of an accepted article before publication in the final form.

Rituximab treatment for fibrillary glomerulonephritis

Case Report Diaphragmatic Amyloidosis Causing Respiratory Failure: A Case Report and Review of Literature

Plasma cell myeloma (multiple myeloma)

THE URINARY SYSTEM. The cases we will cover are:

A Case of Immunotactoid Glomerulopathy with Rapid Progression to End-Stage Renal Disease

THE URINARY SYSTEM. The cases we will cover are:

ESRD Dialysis Prevalence - One Year Statistics

Case Report Nonsecretory Multiple Myeloma and AL Amyloidosis Presenting with Nephrotic Range Proteinuria

Renal manifestations of IgG4-related systemic disease

Amyloidosis. James J. Stark, MD, FACP Medical Director Cancer Program Maryview Medical Center. Professor of Medicine Eastern Virginia Medical

Favorable effect of bortezomib in dense deposit disease associated with monoclonal gammopathy: a case report

Southern Derbyshire Shared Care Pathology Guidelines. MGUS (Monoclonal Gammopathy of Undetermined Significance)

RENAL EVENING SPECIALTY CONFERENCE

substance staining with IgG, C3 and IgA (trace) Linear deposition of IgG(+), IgA.M(trace) and C3(+++) at the DEJ

Clinical history. 73 yo man with chest pain Systemic hypertension and WG Stress EKG N Stress echocardiogram: Cardiac catheterization: no CAD

Journal of Nephropathology

A case of heavy chain deposition disease complicated by acquired angioedema.

RECURRENT AND DE NOVO RENAL DISEASES IN THE ALLOGRAFT

Clinicopathological analysis of proliferative glomerulonephritis with monoclonal IgG deposits in 5 renal allografts

Multiple myeloma Biological & Clinical Aspects Isabelle Vande Broek, MD, PhD

Glomerular Pathology- 1 Nephrotic Syndrome. Dr. Nisreen Abu Shahin

A Case of Myeloma Kidney With Glomerular C3 Deposition

Case Report Denosumab Chemotherapy for Recurrent Giant-Cell Tumor of Bone: A Case Report of Neoadjuvant Use Enabling Complete Surgical Resection

Jon Von Visger 1, Clarissa Cassol 2, Uday Nori 1, Gerardo Franco-Ahumada 1, Tibor Nadasdy 2 and Anjali A. Satoskar 2*

Osteosclerotic Myeloma (POEMS Syndrome)

Long-Term Follow-up of Monoclonal Gammopathy of Undetermined Significance

The New England Journal of Medicine

Instructions for Plasma Cell Disorders (PCD) Post-HCT Data (Form 2116 Revision 3)

Amyloidosis is caused by extracellular deposition of

Szervusz [hi]everybody!

Membranoproliferative Glomerulonephritis Secondary to Monoclonal Gammopathy

Case Studies: Renal and Urologic Impairments Workshop

Mr. I.K 58 years old

Sheena Surindran Grand Rounds 2/15/11

Michael Joffe ST6 Haematology SpR

Serum free light chain ratio is an independent risk factor for progression in monoclonal gammopathy of undetermined significance

Glomerular diseases mostly presenting with Nephritic syndrome

CASE 4 A RARE CASE OF INTRALUMINAL GLOMERULAR CAPILLARY DEPOSITS

Approach to Glomerular Diseases: Clinical Presentation Nephrotic Syndrome Nephritis

IgD Heavy-Chain Deposition Disease: Detection by Laser Microdissection and Mass Spectrometry

Hematology 101. Rachid Baz, M.D. 5/16/2014

THE KIDNEY AND SLE LUPUS NEPHRITIS

Vasishta Tatapudi, M.D. October 23 rd, 2012.

Case # 2 3/27/2017. Disclosure of Relevant Financial Relationships. Clinical history. Clinical history. Laboratory findings

Proliferative Glomerulonephritis with Monoclonal IgG Deposits Recurs in the Allograft

Renal Involvement in Plasma Cell Dyscrasias

Case Report AL-Amyloidosis Presenting with Negative Congo Red Staining in the Setting of High Clinical Suspicion: A Case Report

Plasma cell dyscrasia with renal impairment including MGRS

Minimal change disease: A case report of an unusual relationship

Multiple myeloma evolves from a clinically silent premalignant

Understanding the Serum Free Light Chain Assays. Anne L Sherwood, PhD Director of Scientific Affairs The Binding Site, Inc.

Overview of glomerular diseases

Proteinuria. Louisiana State University

RECURRENT AND DE NOVO RENAL DISEASES IN THE ALLOGRAFT. J. H. Helderman,MD,FACP,FAST

C3 GLOMERULOPATHIES. Budapest Nephrology School Zoltan Laszik

Ultrasound-guided percutaneous renal biopsyinduced accessory renal artery bleeding in an amyloidosis patient

Transcription:

Case Reports in Nephrology Volume 2012, Article ID 573650, 5 pages doi:10.1155/2012/573650 Case Report Development of Renal Failure without Proteinuria in a Patient with Monoclonal Gammopathy of Undetermined Significance: An Unusual Presentation of AL Kappa Amyloidosis Yijuan Sun, Amarpreet Sandhu, Darlene Gabaldon, Jonathan Danaraj, Karen S. Servilla, and Antonios H. Tzamaloukas Division of Nephrology, Raymond G. Murphy Veterans Affairs Medical Center, The University of New Mexico School of Medicine and VA Medical Center (111C), 1501 San Pedro SE, Albuquerque, NM 87108, USA Correspondence should be addressed to Yijuan Sun, yijuan.sun@va.gov Received 31 August 2012; Accepted 23 September 2012 Academic Editors: C. Garcia, C. I. Obialo, A. K. Saxena, and S. Zerbi Copyright 2012 Yijuan Sun et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. AL amyloidosis complicating monoclonal gammopathy of undetermined significance (MGUS) has usually a predominant glomerular deposition of lambda light chain. Heavy proteinuria is one of its cardinal manifestations. A 78-year-old man with a 9-year history of IgG kappa light-chain-mgus and normal urine protein excretion developed severe renal failure. Serum levels of kappa light chain and serum IgG had been stable while proteinuria was absent throughout the nine-year period. For the first eight years, he had stable stage III chronic kidney disease attributed to bladder outlet obstruction secondary to prostatic malignancy. In the last year, he developed progressive serum creatinine elevation, without any increase in the serum or urine levels of paraproteins or any sign of malignancy. Renal ultrasound and furosemide renogram showed no evidence of urinary obstruction. Renal biopsy revealed AL amyloidosis, with reactivity exclusive for kappa light chains, affecting predominantly the vessels and the interstitium. Glomerular involvement was minimal. Melphalan and prednisone were initiated. However, renal function continues deteriorating. Deposition of AL kappa amyloidosis developing during the course of MGUS predominantly in the wall of the renal vessels and the renal interstitium, while the involvement of the glomeruli is minimal, leads to progressive renal failure and absence of proteinuria. Renal biopsy is required to detect both the presence and the sites of deposition of renal AL kappa light chain amyloidosis. 1. Introduction The term monoclonal gammopathy of undetermined significance (MGUS) covers a spectrum of conditions characterized by production of a monoclonal immunoglobulin. The characteristic features of MGUS are a plasma concentration of the monoclonal protein less than 3 gm/dl, plasma cells representing less than 10% of all bone marrow cells, and absence of hypercalcemia, elevated serum creatinine, anemia (above 1.5 mg/dl), lytic bone lesions or severe symptomatic osteoporosis, and B-cell lymphoproliferative malignancy [1]. The prevalence of MGUS increases with age. In Olmsted County, MN, USA, 3.2% of the subjects 50 years old or older and 5.3% of the subjects 70 years old or older had MGUS [2]. A variety of life-threatening conditions may complicate MGUS. The risk of development of one of these conditions is approximately 1% per year of followup [3]. The list of conditions complicating MGUS includes multiple myeloma, Waldenstrom s macroglobulinemia, other lymphoproliferative malignancies such as chronic lymphocytic leukemia and IgM lymphoma, other hematologic malignancies, AL amyloidosis, chronic inflammatory demyelinating polyradiculopathy, autonomic neuropathy, osteoporosis, fractures of vertebrae and hips, liver and kidney transplants, hypercalcemia, and urticaria [3 5]. Renal disease, with a variety of histological pictures, complicates frequently the course of MGUS [6]. A distinct form of MGUS, light-chain-monoclonal gammopathy of undetermined significance (LC-MGUS), with a similar frequency of renal disease as the classical MGUS entity, has also been recognized [7]. AL amyloidosis with renal deposits of light chains is one of the conditions which may complicate

2 Case Reports in Nephrology MGUS [6]. Nephrotic syndrome is the most frequent clinical presentation of this type of amyloidosis [6]. We present a patient who developed renal AL kappa amyloidosis manifested by progressive renal failure without proteinuria after several years of MGUS with stable paraprotein levels and renal function. Absence of extensive amyloid deposits in the glomeruli was the apparent reason for the absence of proteinuria in this patient. 2. Case Report A 78-year-old Caucasian man presented with stage V chronic kidney disease (CKD) in June 2012. MGUS had been diagnosed in early 2003. At that time, serum protein immunoelectrophoresis revealed a paraprotein with a concentration of 1.4 g/dl and characterized as IgG kappa by immunofixation; serum IgG was 2,263 mg/dl (normal range 694 1618 mg/dl); hemogram and serum IgA, IgM, albumin, calcium, and uric acid levels were normal; serum creatinine was 1.2 mg/dl; and urinalysis had no proteinuria. Bone marrow examination was not performed. In August 2003, he had a radical suprapubic prostatectomy for prostatic adenocarcinoma. He subsequently developed urinary incontinence with several bouts of urinary tract infection and stage III CKD with serum creatinine levels between 1.2 and 1.5 mg/dl. In November 2004, he had surgery for creation of artificial urinary sphincter. Between 2003 and 2012, his renal function remained stable. Serum levels of the paraprotein fluctuated between 1.4 and 2.3 g/dl, while serum IgG levels fluctuated between 1.4 and 2.4 g/dl. Serum-free kappa chain fluctuated between 38.3 and 258.7 mg/dl (normal range 3.3 19.4 mg/dl), and kappa/lambda ratio fluctuated between 4.20 and 8.36 (normal range 0.26 1.65). Blood hemoglobin, white cell and platelet counts, and serum calcium and albumin remained within normal limits. Skeletal surveys showed no lytic bone lesions, while dual-energy X-ray absorptiometry (DEXA) studies showed osteopenia, but no osteoporosis. Serum creatinine was 2.28 mg/dl in January 2012 and increased progressively afterwards. He had not been on antihypertensive medications in the past and had no elevations of his blood pressure after the start of the rise in serum creatinine. Small amounts of IgG-kappa paraprotein (0.3 10.3 mg/dl) were repeatedly detected in the urine. However, proteinuria, evaluated numerous times by urinalysis, spot urine protein to creatinine ratios and urine protein electrophoresis, had consistently remained in the normal range, even during episodes of urinary tract infection when pyuria and hematuria were present. Only one spot sample done while serum creatinine was 5.44 mg/dl in July 2012 had a small elevation of the urine protein/creatinine ratio to 0.3 mg/mg (normal values 0.2 mg/mg). Subsequent determinations of urine protein/creatinine ratio were all <0.2 mg/mg. Ultrasonography of kidneys, ureters and urinary bladder, and furosemide renogram did not disclose a urinary tract obstruction. A percutaneous kidney biopsy was performed in June 2012. At that time, serum creatinine was 3.86 mg/dl. Figure 1: Light microscopy. Adjacent efferent arteriole with significant deposits of amorphous eosinophilic material; glomerulus with same limited and segmental deposits in its wall; interstitium with the same deposits. The biopsy sample contained 45 glomeruli. On light microscopy, 15 glomeruli (33%) were globally sclerosed or severely hypoperfused. Discrete segmental expansion of the mesangial space by amorphous proteinaceous material was noted. Focal infiltration of the peritubular interstitium by amorphous, homogenous, acellular, and eosinophilic material was also noted. Approximately 50% of the sample showed extensive tubular atrophy and interstitial fibrosis. Arteries and arterioles showed the most striking finding: their walls were prominently infiltrated by the same amorphous eosinophilic material. The infiltrates caused severe narrowing of the vessels (Figure 1). Congo red staining of the biopsy revealed red affinity of the amorphous eosinophilic material (Figure 2(a)) and green birefringence upon examination under polarized light (Figure 2(b)). Immunofluorescence revealed reactivity for kappa light chains (Figure 3(a)) but negative for lambda light chain (Figure 3(b)). The kappa light chain deposits were small, discrete and segmental in the glomeruli, coarse and irregular in the interstitium, and pronounced, coarse and confluent in the wall of the vessels (Figure 3(a)). Electron microscopy showed very small and segmental deposits of nonbranching fibrils of 11.5 nm width in the mesangial areas and the subepithelial spaces of glomeruli and market thickening of the wall of arterioles by extensive accumulation of these nonbranching fibrils (Figures 4 and 5). The final histologic diagnosis was AL amyloidosis, with reactivity for kappa light chains exclusively and affecting predominantly the vessels and the interstitium, and only very focally and segmentally the glomeruli. Echocardiogram was not consistent with cardiac amyloidosis. He was started on melphalan and prednisone. However, his renal function progressively deteriorated, and hemodialysis was started in August 2012. 3. Discussion A great variety of renal histological lesions has been associated with MGUS. Table 1 shows histological patterns of renal disease associated with MGUS reported in the literature [6, 8 25]. This large variety of renal lesions associated with

Case Reports in Nephrology 3 (a) (b) Figure 2: Congo red staining with red affinity primarily in the wall of the vessels and in the interstitium (a). The same structures show green birefringence on polarized light (b). (a) (b) Figure 3: Immunofluoresence study showing reactivity of the amorphous eosinophilic material for kappa light chains predominantly in vessels, limited in glomerulusc (a), but not lambda light chains (b). MGUS, the fact that the urinary findings may not conform to the expected findings in patients with a specific histological picture, which is illustrated by the patient of this report, plus the finding of renal pathology not associated with MGUS directly in some patients with MGUS and renal disease [6, 24], render kidney biopsy an indispensable tool for the diagnosis and management of renal disease complicating the course of MGUS. This point, however, has been established. The main point about AL amyloidosis secondary to MGUS illustrated by our patient is that the sites of deposition of amyloid in the kidneys are not always uniform and that clinical manifestations of renal disease are determined by the various sites of amyloid deposition. Moreover, this case presents with an uncommon deposition of kappa rather than lambda light chain. In addition to Bence Jones proteinuria, glomerular proteinuria, often in the nephrotic range, is a prominent manifestation of MGUS-related AL amyloidosis [6, 13]. The predominant site of AL amyloid deposition in the kidneys of patients with MGUS is the mesangium. In the study of Paueksakon et al. [6], all the 13 patients with MGUS and AL amyloidosis had mesangial expansion, and nephrotic syndrome was the most common clinical manifestation. Glomerular proteinuria is also a cardinal feature in patients with MGUS and other types of renal disease with primary glomerular involvement [7, 8, 11, 14, 16, 21 23]. Renal AL amyloidosis is not deposited exclusively in the glomeruli. Other kidney structures can be involved. In the study of Paueksakon et al. [6], AL amyloid deposits were also found in the renal interstitium in 8 of 13 patients and in the wall of the interlobular arteries in 7 of 13 patients.

4 Case Reports in Nephrology Table 1: Renal histological lesions during the course of MGUS. Figure 4: Electron microscopy picture showing a greatly thickened renal vessel wall with accumulation of fibrils. Renal histology References Cryoglobulinemic glomerulonephritis [6] AL amyloidosis [6, 13, 15, 24] Light chain cast nephropathy [6, 14, 24] Light chain deposition disease [6, 14, 19, 24] Heavy chain deposition disease [6, 14, 24] Light chain and heavy chain deposition disease [6, 14] Light chain tubular crystal deposition [6] Waldenstrom s macroglobulinemic glomerulonephritis [8] Proliferative glomerulonephritis (several types) [9, 24, 25] Fibrillary or immunotactoid glomerulopathy [10, 11, 16, 18] Membranoproliferative glomerulonephritis [12, 22] Tubulointerstitial nephritis [17] Acute tubular necrosis [20] Membranous nephropathy [21] Dense deposit disease [23] Mixed lesions [14, 15] Acknowledgment Pathological figures are provided by the Division of Pathology, Brigham and Women s Hospital, Harvard Medical School, Boston, MA, USA. Figure 5: Higher magnification electron microscopy showing clearly the nonbranching fibrils in the wall of a renal vessel. One patient with MGUS and AL amyloid deposits exclusively in the arteries had heavy proteinuria, but she also had glomerular immune-type deposits [15]. The glomerular deposits of AL amyloid were minimal in our patient, while the deposits in the wall of the arteries, and to a lesser extent, the interstitium, were prominent. Commensurate with the paucity of glomerular deposits was a persistent and complete absence of glomerular proteinuria. Predominant amyloid deposits in sites other than the glomeruli have been described in AA amyloidosis. AA amyloidosis involving primarily tubular basement membranes presents with a picture of interstitial nephritis [26], while AA amyloidosis involving primarily the renal vessels presents with minimal or no proteinuria and progressive renal failure [27, 28]. We propose that in addition to AA amyloidosis, AL amyloidosis developing during the course of MGUS may also in rare instances involve predominantly the renal arteries and arterioles and cause renal failure without proteinuria. The fibrils in AL amyloidosis are derived from the variable region of lambda light chains in approximately 75 percent of cases and kappa in the remainder [29]. In this case, the diagnosis of AL kappa amyloidosis and its sites of deposition in the kidney by a kidney biopsy may guide the choice of treatment. References [1] P. Mollee, Current trends in the diagnosis, therapy and monitoring of the monoclonal gammopathies, The Clinical Biochemist Reviews, vol. 30, no. 3, pp. 93 103, 2009. [2] R. A. Kyle, T. M. Therneau, S. V. Rajkumar et al., Prevalence of monoclonal gammopathy of undetermined significance, New England Medicine, vol. 354, no. 13, pp. 1362 1369, 2006. [3] R. A. Kyle, T. M. Therneau, S. Vincent Rajkumar et al., A long-term study of prognosis in monoclonal gammopathy of undetermined significance, New England Medicine, vol. 346, no. 8, pp. 564 569, 2002. [4] S. Y. Kristinsson, M. Björkholm,T.M.L.Anderssonetal., Patterns of survival and causes of death following a diagnosis of monoclonal gammopathy of undetermined significance: a population-based study, Haematologica, vol. 94, no. 12, pp. 1714 1720, 2009. [5] J. P. Bida, R. A. Kyle, T. M. Therneau et al., Disease associations with monoclonal gammopathy of undetermined significance: a population-based study of 17,398 patients, Mayo Clinic Proceedings, vol. 84, no. 8, pp. 685 693, 2009. [6] P.Paueksakon,M.P.Revelo,R.G.Horn,S.Shappell,andA. B. Fogo, Monoclonal gammopathy: significance and possible causality in renal disease, American Kidney Diseases, vol. 42, no. 1, pp. 87 95, 2003. [7] A. Dispenzieri, J. A. Katzmann, R. A. Kyle et al., Prevalence and risk of progression of light-chain monoclonal gammopathy of undetermined significance: a retrospective population-based cohort study, The Lancet, vol. 375, no. 9727, pp. 1721 1728, 2010.

Case Reports in Nephrology 5 [8]L.Morel-Maroger,A.Basch,F.Danon,P.Verroust,andG. Richet, Pathology of the kidney in Waldenström s macroglobulinemia. Study of sixteen cases, New England Medicine, vol. 283, no. 3, pp. 123 129, 1970. [9] J. Lima, M. Monteagudo, M. Valles, F. Garcia-Bragado, M. Carrera, and M. Vilardell, Proliferative endo- and extracapillary glomerulonephritis and benign monoclonal IGM gammopathy, Nephron, vol. 56, no. 4, pp. 457 458, 1990. [10] C.Rollino,R.Coppo,G.Mazzuccoetal., Monoclonalgammopathy and glomeulonephritis with organized microtubular deposits, American Kidney Diseases, vol. 15, no. 3, pp. 276 280, 1990. [11] A. R. Esparza, J. A. Chazan, R. N. Nayak, and T. Cavallo, Fibrillary (immunotactoid) glomerulopathy: a possible role for kappa light chain in its etiology and/or pathogenesis, American Surgical Pathology, vol. 15, no. 7, pp. 632 643, 1991. [12] H. G. Rennke, Secondary membranoproliferative glomerulonephritis, Kidney International, vol. 47, no. 2, pp. 643 656, 1995. [13] A.Dysseleer,L.Michaux,J.P.Cosyns,E.Goffin, C. Hermans, and Y. Pirson, Benign monoclonal gammopathy turning to AL amyloidosis after kidney transplantation, American Kidney Diseases, vol. 34, no. 1, pp. 166 169, 1999. [14] J. Lin, G. S. Markowitz, A. M. Valeri et al., Renal monoclonal immunoglobulin deposition disease: the disease spectrum, JournaloftheAmericanSocietyofNephrology, vol. 12, no. 7, pp. 1482 1492, 2001. [15] G. S. Markowitz, M. P. Zdunek, and V. D. D Agati, Nephrotic syndrome, renal insufficiency, and a monoclonal gammopathy, American Kidney Diseases, vol.38,no.5,pp. 1135 1140, 2001. [16] T. Nagao, T. Okura, K. I. Miyoshi et al., Fibrillary glomerulonephritis associated with monoclonal gammopathy of undetermined significance showing lambda-type Bence Jones protein, Clinical and Experimental Nephrology, vol. 9, no. 3, pp. 247 251, 2005. [17] T. Hashimoto, K. Arakawa, Y. Ohta et al., Acquired fanconi syndrome with osteomalacia secondary to monoclonal gammopathy of undetermined significance, Internal Medicine, vol. 46, no. 5, pp. 241 245, 2007. [18] S. Sundaram, R. Mainali, E. R. Norfolk, J. H. Shaw, and P. L. Zhang, Case report: fibrillary glomerulopathy secondary to light chain deposition disease in a patient with monoclonal gammopathy, Annals of Clinical and Laboratory Science, vol. 37, no. 4, pp. 370 374, 2007. [19] T. Okura, K. I. Miyoshi, T. Nagao et al., Light chain deposition disease developing 15 years following the diagnosis of monoclonal gammopathy of undetermined significance, Internal Medicine, vol. 48, no. 2, pp. 101 104, 2009. [20] I. M. Hii, M. L. Chen, and C. C. Chang, Benign monoclonal gammopathy-associated acute kidney injury: case report and literature review, Renal Failure, vol. 32, no. 5, pp. 636 638, 2010. [21] S. de Seigneux, P. Bindi, H. Debiec et al., Immunoglobulin deposition disease with a membranous pattern and a circulating monoclonal immunoglobulin G with charge-dependent aggregation properties, American Kidney Diseases, vol. 56, no. 1, pp. 117 121, 2010. [22] S. Sethi, L. Zand, N. Leung et al., Membranoproliferative glomerulonephritis secondary to monoclonal gammopathy, Clinical the American Society of Nephrology, vol. 5, no. 5, pp. 770 782, 2010. [23] S. Sethi, W. R. Sukov, Y. Zhang et al., Dense deposit disease associated with monoclonal gammopathy of undetermined significance, American Kidney Diseases, vol. 56, no. 5, pp. 977 982, 2010. [24] P. Stratta, L. Gravellone, T. Cena et al., Renal outcome and monoclonal immunoglobulin deposition disease in 289 old patients with blood cell dyscrasias: a single center experience, Critical Reviews in Oncology/Hematology, vol. 79, no. 1, pp. 31 42, 2011. [25]F.Bidoux,S.Desport,V.Fremeaux-Bacchietal., Glomerulonephritis with isolated C3 deposits and monoclonal gammopathy: a fortuitous association? Clinical the American Society of Nephrology, vol. 6, no. 9, pp. 2165 2174, 2011. [26] L. Valdez-Boyle, P. Adams, D. Wheeler, D. Malhotra, M. Pierdy, and A. H. Tzamaloukas, Renal amyloidosis presenting as interstitial nephritis, Clinical Nephrology, vol. 50, no. 4, pp. 268 269, 1998. [27] H. M. Falck, T. Tornroth, and O. Wegelius, Predominantly vascular amyloid deposition in the kidney in patients with minimal or no proteinuria, Clinical Nephrology, vol. 19, no. 3, pp. 137 142, 1983. [28] H. Uda, A. Yokota, K. Kobayashi et al., Two distinct clinical courses of renal involvement in rheumatoid patients with AA amyloidosis, Rheumatology, vol. 33, no. 8, pp. 1482 1487, 2006. [29] V. Bellotti, G. Merlini, E. Bucciarelli, V. Perfetti, S. Quaglini, and E. Ascari, Relevance of class, molecular weight and isoelectric point in predicting human light chain amyloidogenicity, British Haematology, vol. 74, no. 1, pp. 65 69, 1990.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity