Identification and Quantification at ppb Levels of Common Cations and Amines by IC-MS

Similar documents
IC-MS Environmental Applications - Water Testing. Application Notebook

Determination of Ethyl Sulfate Impurity in Indinavir Sulfate Drug Using Ion Chromatography

Mercury Speciation Determinations in Asian Dietary Supplements

Measuring Phytosterols in Health Supplements by LC/MS. Marcus Miller and William Schnute Thermo Fisher Scientific, San Jose, CA, USA

Determination of Inorganic Ions and Organic Acids in Non-Alcoholic Carbonated Beverages

Robust and Fast Analysis of Tobacco-Specific Nitrosamines by LC-MS/MS

Improved Extraction and Analysis of Hexavalent Chromium from Soil and Water

Detection and Quantification of Inorganic Arsenic in Fruit Juices by Capillary Ion Chromatography with Suppressed Conductivity Detection

Determination of Benzoate in Liquid Food Products by Reagent-Free Ion Chromatography

Rapid determination of phosphate and citrate in carbonated soft drinks using ion chromatography

Determination of Carbachol In Ophthalmic Solutions Using a Reagent-Free Ion Chromatography System

A New HILIC/RP Mixed-Mode Column and Its Applications in Surfactant Analysis

Determination of Carbohydrates in Kombucha Using HPAE-PAD

Quantitative Analysis of Carbohydrates and Artificial Sweeteners in Food Samples Using GFC- MS with APCI Interface and Post-column Reagent Addition

Bioanalytical Quantitation of Biotherapeutics Using Intact Protein vs. Proteolytic Peptides by LC-HR/AM on a Q Exactive MS

Carl Fisher, Terri Christison, Hua Yang, Monika Verma, and Linda Lopez Thermo Fisher Scientific, Sunnyvale, CA, USA

Analysis of Testosterone, Androstenedione, and Dehydroepiandrosterone Sulfate in Serum for Clinical Research

High-Throughput, Cost-Efficient LC-MS/MS Forensic Method for Measuring Buprenorphine and Norbuprenorphine in Urine

High-Throughput Quantitative LC-MS/MS Analysis of 6 Opiates and 14 Benzodiazepines in Urine

Sialic Acid Determination in Glycoproteins: Comparison of Two Liquid Chromatography Methods. Experimental. Introduction. Method 1.

Determination of Water- and Fat-Soluble Vitamins in Nutritional Supplements by HPLC with UV Detection

Determination of Methacholine Chloride and Potential Impurities Using a Reagent-Free Ion Chromatography System

THE POWER OF MASS SPECTROMETRY FOR IC ANALYTICAL CHEMISTS. Unleash New Possibilities with Enhanced Detection for IC Applications

The Determination of Sugars in Molasses by High-Performance Anion Exchange with Pulsed Amperometric Detection

Determination of Trace Sodium in Cranberry Powder

UPLC/MS Monitoring of Water-Soluble Vitamin Bs in Cell Culture Media in Minutes

MS/MS as an LC Detector for the Screening of Drugs and Their Metabolites in Race Horse Urine

A HPAE-PAD Chromatographic Assay for Carbohydrates in Urine as a Measure of Intestinal Permeability

Determination of Amantadine Residues in Chicken by LCMS-8040

LC-MS/MS Method for the Determination of Tenofovir from Plasma

Determination of perchlorate in environmental waters using a compact ion chromatography system coupled with a single quadrupole mass spectrometer

Rapid and sensitive UHPLC screening of additives in carbonated beverages with a robust organic acid column

Rapid Determination of Phosphate and Citrate in Carbonated Soft Drinks Using a Reagent-Free Ion Chromatography System

Application Note 178 INTRODUCTION

Application Note. Agilent Application Solution Analysis of ascorbic acid, citric acid and benzoic acid in orange juice. Author. Abstract.

The Investigation of Factors Contributing to Immunosuppressant Drugs Response Variability in LC-MS/MS Analysis

Enhanced LC-MS Sensitivity of Vitamin D Assay by Selection of Appropriate Mobile Phase

Rapid and sensitive UHPLC screening for water soluble vitamins in sports beverages

LC-MS/MS Method for the Determination of 21 Opiates and Opiate Derivatives in Urine

[ APPLICATION NOTE ] Profiling Mono and Disaccharides in Milk and Infant Formula Using the ACQUITY Arc System and ACQUITY QDa Detector

Rapid and Accurate LC-MS/MS Analysis of Nicotine and Related Compounds in Urine Using Raptor Biphenyl LC Columns and MS-Friendly Mobile Phases

Providing a Universal, One-step Alternative to Liquid-Liquid Extraction in Bioanalysis

Ensuring High Sensitivity and Consistent Response in UHPLC-MS Analyses

Determination of Plant-Derived Neutral Oligo- and Polysaccharides Using the CarboPac PA200

Rapid Analysis of Water-Soluble Vitamins in Infant Formula by Standard-Addition

Separation of Chromium (III) and Chromium (VI) by Ion Chromatography

Impurity Profiling of Carbamazepine by HPLC/UV

SPE-LC-MS/MS Method for the Determination of Nicotine, Cotinine, and Trans-3-hydroxycotinine in Urine

GC-MS/MS Analysis of Benzodiazepines Using Analyte Protectants

Comparison of Full Scan MS2 and MS3 Linear Ion Trap Approaches for Quantitation of Vitamin D

UPLC-MS/MS Analysis of Azole Antifungals in Serum for Clinical Research

Determination of Organic Acids in Kombucha Using a High-Pressure Ion Chromatography System

Analysis of Rosuvastatin in Dried Blood Spot and Plasma Using ACQUITY UPLC with 2D Technology

Determination of Clinically Relevant Compounds using HPLC and Electrochemical Detection with a Boron-Doped Diamond Electrode

[ APPLICATION NOTE ] High Sensitivity Intact Monoclonal Antibody (mab) HRMS Quantification APPLICATION BENEFITS INTRODUCTION WATERS SOLUTIONS KEYWORDS

A RAPID AND SENSITIVE ANALYSIS METHOD OF SUDAN RED I, II, III & IV IN TOMATO SAUCE USING ULTRA PERFORMANCE LC MS/MS

ApplicationNOTE EXACT MASS MEASUREMENT OF ACTIVE COMPONENTS OF TRADITIONAL HERBAL MEDICINES BY ORTHOGONAL ACCELERATION TIME-OF-FLIGHT.

Simultaneous Analysis of Active Pharmaceutical Ingredients and Their Counter-Ions Using a Mixed-Mode Column

Analysis of anti-epileptic drugs in human serum using an Agilent Ultivo LC/TQ

Quantitative Analysis of Underivatized Amino Acids in Plant Matrix by Hydrophilic Interaction Chromatography (HILIC) with LC/MS Detection

Vitamin D3 and related compounds by ESI and APCI

columns CarboPac PA20 Column

[ Care and Use Manual ]

Increased Identification Coverage and Throughput for Complex Lipidomes

Detection of oxygenated polycyclic aromatic hydrocarbons (oxy-pahs) in APCI mode with a single quadrupole mass spectrometer

Detection of Cotinine and 3- hydroxycotine in Smokers Urine

Quantification of lovastatin in human plasma by LC/ESI/MS/MS using the Agilent 6410 Triple Quadrupole LC/MS system

Determination of Aflatoxins in Food by LC/MS/MS. Application. Authors. Abstract. Experimental. Introduction. Food Safety

Application Note. Author. Abstract. Introduction. Food Safety

A Rapid UHPLC Method for the Analysis of Biogenic Amines and Metabolites in Microdialysis Samples

Neosolaniol. [Methods listed in the Feed Analysis Standards]

Application Note 178. Brian DeBorba and Jeff Rohrer Thermo Fisher Scientific, Sunnyvale, CA, USA. 10 Typically, this requires the use of sample

Single Quadrupole Compact Mass Spectrometer for Liquid Sample

Rapid and Direct Analysis of Free Phytosterols by Reversed Phase HPLC with Electrochemical Detection

New Solvent Grade Targeted for Trace Analysis by UHPLC-MS

2D-LC as an Automated Desalting Tool for MSD Analysis

A Robustness Study for the Agilent 6470 LC-MS/MS Mass Spectrometer

Analysis of Food Sugars in Various Matrices Using UPLC with Refractive Index (RI) Detection

Analysis of Chloride, Phosphate, Malate, Sulfite, Tartrate, Sulfate, and Oxalate in Red and White Wine

Introduction to LC/MS/MS

New Solvent Grade Targeted for Trace Analysis by UHPLC-MS

Authors. Abstract. Introduction. Environmental

Application of LC/Electrospray Ion Trap Mass Spectrometry for Identification and Quantification of Pesticides in Complex Matrices

Cannabinoid Profiling and Quantitation in Hemp Extracts using the Agilent 1290 Infinity II/6230B LC/TOF system

Determination of red blood cell fatty acid profiles in clinical research

New Solvent Grade Targeted for Trace Analysis by UHPLC-MS

Fast Separation of Triacylglycerols in Oils using UltraPerformance Convergence Chromatography (UPC 2 )

Quantitative Analysis of THC and Main Metabolites in Whole Blood Using Tandem Mass Spectrometry and Automated Online Sample Preparation

Qualitative and quantitative determination of cannabinoid profiles and potency in CBD hemp oil using LC/UV and Mass Selective Detection

A Versatile Detector for the Sensitive and Selective Measurement of Numerous Fat-Soluble Vitamins and Antioxidants in Human Plasma and Plant Extracts

Quantitative Analysis of Vit D Metabolites in Human Plasma using Exactive System

Join the mass movement towards mass spectrometry

Robust extraction, separation, and quantitation of structural isomer steroids from human plasma by SPE-UHPLC-MS/MS

Direct Determination of Native N-linked Glycans by UHPLC with Charged Aerosol Detection

Vitamin D Metabolite Analysis in Biological Samples Using Agilent Captiva EMR Lipid

A Novel Solution for Vitamin K₁ and K₂ Analysis in Human Plasma by LC-MS/MS

Extraction of a Comprehensive Steroid Panel from Human Serum Using ISOLUTE. SLE+ Prior to LC/MS-MS Analysis

Evaluation of an LC-MS/MS Research Method for the Analysis of 33 Benzodiazepines and their Metabolites

Method Development for the Analysis of Endogenous Steroids Using Convergence Chromatography with Mass Spectrometric Detection

Transcription:

Application Note 269 Identification and Quantification at ppb Levels of Common Cations and Amines by IC-MS INTRODUCTION Ion chromatography (IC) has been extensively used as the preferred separation technique for ionic species such as inorganic anions/cations, small amines, organic acids, peptides and proteins, nucleic acids, and carbohydrates. In recent years, the increasing demands for higher sensitivity, selectivity, structural, and confirmatory information has led to the emergence of mass spectrometry (MS) as a powerful complementary detector to conductivity, UV, and electrochemical detections. Given the mass range of the target analytes, common cations and small amines are usually below 1 mass-to-charge ratio (m/z); therefore, an ideal MS detector for these analyses will have the features of mass accuracy and high mass transmission efficiency in the low mass range (15 1 m/z) while maintaining the necessary mass resolution. Compared with other commercially available MS detectors, the MSQ Plus single quadrupole MS detector requires low maintenance, is reasonably affordable, and provides substantially enhanced performance for low molecular weight analyses, covering most analytes for small-molecule IC applications. The work shown here demonstrates the use of IC with MS detection for the determination of six commonly found cations and selected amines. Confirmatory information was obtained using full-scan MS spectra showing positively charged cation species and characteristic adduct patterns. Quantification was achieved using selected ion monitoring (SIM) acquisitions for each target analyte. This IC-MS method was applied to the analysis of real-world water samples and the results are presented. Method performance with respect to calibration range, reproducibility, and method detection limits is also presented. EQUIPMENT Dionex ICS-2 or ICS-21 Reagent-Free Ion Chromatography (RFIC ) system MSQ Plus single quadrupole mass spectrometer Chromeleon Chromatography Data System (CDS) software, Version 6.8, SR9 (for instrument control, data acquisition, data processing, and report generation)

CHROMATOGRAPHIC CONDITIONS Column: IonPac CS12A 5 µm (3 15 mm) with guard column (3 5 mm) Temperature: 3 ºC Eluent: Eluent Source: Flow Rate: Isocratic 33 mm methanesulfonic acid (MSA) EGC II MSA with CR-CTC.5 ml/min Injection Volume: 1 µl Detection: Ionization Interface: Desolvation Solvent: Needle Voltage: Suppressed conductivity (external water at 2 ml/min delivered by an AXP-MS pump), MSQ Plus mass spectrometric detector Electrospray ionization (ESI) with positive polarity.2 ml/min isopropanol delivered by an AXP-MS auxiliary pump 2 kv Probe Temperature: 5 ºC Nebulizer Gas: MS Detection Mode: Nitrogen at 85 psi Selected Ion Monitoring (SIM) Details of SIM scans (Table 1) Table 1. SIM Scans for Studied Analytes Analyte t R (min) m/z Adduct* Cone Voltage (V) Potassium 3.5 39. K + 45 Trimethylamine 3.9 6. [M+H] + 5 Ethanolamine 3. 62. [M+H] + 4 Ammonium 2.9 78.1 [NH 4 +IPA] + 2 Diethanolamine 3.1 16.1 [M+H ]+ 4 Lithium 2.3 127.1 [Li+2IPA] + 3 Sodium 2.6 143.1 [Na+2IPA] + 2 Triethanolamine 3.5 15.1 [M+H] + 6 Magnesium 4. 192.2 [Mg+6IPA] 2+ 3 Calcium 4.8 265.2 [3Ca+5OH - +IPA] + 5 Reagents and Standards Prepared stock solutions at 1 ppm were purchased from Ultra Scientific: Ammonium (NH 4 ) (Ultra Scientific P/N CC-11) Lithium (Li) (Ultra Scientific P/N ICC-14) Sodium (Na) (Ultra Scientific P/N ICC-17) Potassium (K) (Ultra Scientific P/N ICC-16) Magnesium (Mg) (Ultra Scientific P/N ICC-15) Calcium (Ca) (Ultra Scientific P/N ICC-13) Dilute the cation stock solutions in deionized water to 1 ppm as the mixed working standard. Four amines were purchased from Sigma-Aldrich: Ethanolamine (EA) (Sigma Aldrich P/N 411) Diethanolamine (DEA) (Fluka P/N 31589) Triethanolamine (TEA) (Fluka P/N 9279) Trimethylamine (TMA) (Fluka P/N 92262) Prepare stock solution for each of the four amines in deionized water and then dilute to 1 ppm as working standards. Deionized water with 18.2 MΩ-cm resistivity (Millipore Corporation) Isopropanol (IPA) (General Chemical Corporation 119-9758-11-9, Class 1 certified grade) Acetonitrile (CH 3 CN) (Burdick & Jackson Cat. No. 15-4, HPLC/GC grade, Honeywell) Methanol (CH 3 OH) (Burdick & Jackson Cat. No. 23-4 HPLC/GC grade, Honeywell) Prepare calibration standards in deionized water at 1 partper-billion (ppb or µl), 2 ppb, 5 ppb, 1 ppb, 2 ppb, 5 ppb, 1 ppb, and 2 ppb. * Proposed adduct structures were based on observed m/z. 2 Identification and Quantification at ppb Levels of Common Cations and Amines by IC-MS

RESULTS AND DISCUSSION Chromatography Typical IC-MS chromatograms for six cations and four amines using suppressed conductivity and SIM detection are shown in Figure 1. The six commonly seen cations lithium, sodium, ammonium, potassium, magnesium, and calcium were separated using an IonPac CS12A 5 µm cation-exchange column within 6 min. The four selected common amines ethanolamine, diethanolamine, triethanolamine, and trimethylamine were not baseline resolved from the six common cations (i.e., coelution of some analytes was observed). However, using SIM detection, coeluted analytes are differentiated by mass-to-charge ratio (m/z), can be accurately quantified, and are a single peak in each monitored SIM channel in Figure 1. Mass Spectrometry Mass spectrometers are not inherently compatible with ion-exchange chromatography due to two factors: first, the highly ionic mobile phase can cause fouling or premature wear of the mass spectrometer entrance apertures, consequently leading to more frequent interruptions of normal operation for instrument maintenance; and second, the mobile phase used in IC is essentially 1% aqueous, and the ESI interface will require higher temperatures and/or higher nebulizer gas flow for optimization of the thermally assisted pneumatic nebulization process. To enable MS detection for IC, a self-regenerating suppressor and the addition of a desolvation solvent are used to ameliorate the afore-mentioned considerations for IC-MS applications. The suppressor currently used on IC instruments electrolytically replaces potassium/sodium with hydronium ions (anion-exchange applications) or methanesulfonate anion (MSA) with hydroxide ions (cation-exchange applications) in the mobile phase, thus converting the mobile phase to virtually deionized water which is more compatible with mass spectrometers. A desolvation solvent, such as acetonitrile, methanol, or IPA, can be added and mixed into the IC stream before entering the mass spectrometer to improve the evaporation of the mobile phase, thus improving the release of the ions from the liquid to gas phase. Chromatographic Conditions Column: IonPac CS12A 5 µm (3 15 mm) with guard column (3 5 mm) Temperature: 3 C Eluent: Isocratic 33 mm MSA Eluent Source: EGC II MSA with CR-CTC Flow Rate:.5 ml/min Inj. Volume: 1 µl Detection: Intensity (counts) 5.e4 1.2e5 TMA 1.2e5 EA 5.e5 NH 4 2.e5 DEA 9.e5 Li 4.e5 1.4e5 TEA 4.e5 Mg Na 1.2e5 Ca SIM_1: 265 m/z [3Ca + 5OH - + IPA] + 1 2 3 4 5 6.9 Li ECD_1 Response (µs) Suppressed conductivity (external water at 2 ml/min delivered by an AXP-MS pump), MSQ Plus mass spectrometric detector Ionization Electrospray ionization Interface: (ESI) with positive polarity Desolvation.2 ml/min isopropanol Solvent: delivered by an AXP-MS auxiliary pump Needle 2 kv Voltage: Probe Temp.: 5 C Nebulizer Nitrogen at 85 psi Gas: MS Detection Selected Ion Monitoring (SIM) Mode: Details of SIM scans (Table 1) 1 2 3 4 5 6 Minutes 27784 Figure 1. SIM and conductivity chromatograms of six cations and four amines. The addition of a moderate volume of an organic solvent not only improves the desolvation/ionization efficiency, but adding organic solvent to the IC eluent also promotes formation of analyte-solvent adducts with improved response intensity, and these adducts may be used as quantitative ions to achieve lower detection limits. K NH 4 TEA Na EA, DEA Mg, TMA K Ca SIM_1: 39 m/z K + SIM_2: 6 m/z SIM_3: 62 m/z SIM_4: 78 m/z [NH 4 + IPA] + SIM_5: 16 m/z SIM_6: 127 m/z [Li + 2IPA] + SIM_7: 143 m/z [Na + 2IPA] + SIM_8: 15 m/z SIM_9: 192 m/z [Mg + 6IPA] 2+ Application Note 269 3

Isopropanol was selected as the desolvation solvent because it showed relatively cleaner full-scan MS spectra, and higher observed analyte and/or adduct intensity. An example is shown in Figure 2 for the comparison of lithium mass spectra with three organic solvents. When using IPA as the desolvation solvent, the cleanest MS spectrum with the lowest background was observed, compared to the spectra obtained using CH 3 CN and CH 3 OH solvents. Higher intensity was also observed for the major IPA adduct ion: [Li+2 IPA] + at 4.75 x 1 5, compared to the major CH 3 CN adduct [Li+3CH 3 CN] + at 1.5 x 1 5. The specificity of each adduct to the original analyte was evaluated by extracting the individual adduct ion from the full-scan spectrum and confirmed by comparing the retention times of the adduct ion in extracted MS and the conductivity channels. The details of SIM scans for quantitative ions and adduct assignments are shown in Table 1. Method Performance The method performance was evaluated by measuring analytical parameters such as calibration range, correlation of determination, precision and accuracy, and detection limits. This method was also used to quantify the target analytes in water and beverage samples. Calibration curves were generated from calibration standards with concentrations from the lower limit of quantitation (LLOQ) to 1 ppb with correlation of determination (r 2 ) greater than.99 for each analyte using linear, quadratic, or cubic fittings. Figure 3 shows the calibration curves for magnesium and trimethylamine as examples. LLOQ was defined as the lowest concentration in calibration standards that consistently showed signalto-noise ratios greater than 1 (S/N >1) and within 2% bias of quantitation precision and accuracy. 111 NL: 1.1e5 Rel. Intensity [%] 48. 111 NL: 4.73e4 279.2 Rel. Intensity [%] Intensity [%] 111 NL: 4.74e5 13.1 [Li+2CH 3 CN] + [Li+3CH 3 CN] + 89.1 288.2 17.1 274.2 333.1 168.1 213.2 126.1 265.2 247.2 327.2 8.1 112.1 39.2 38.9 71. 135.1 181.3 213.3 393.5 439.1 127.2 [Li+2IPA]+ [Li+3IPA]+ 187.3 [Li+5IPA]+ 145.2 37.2 85.1 213.4 293.1 333.1 Acetonitrile Methanol Isopropanol Figure 2. MS spectra of Li with different desolvation solvents. The cone voltage was 5 V. 487.2 15 1 15 2 25 3 35 4 45 5 5.e5 Area [counts*min] Magnesium SIM_9: 192 m/z 1 1 ppb R 2 =.9982 m/z 2 4 6 8 1 12 Amount [ppb] 2.e5 Trimethylamine SIM_2: 6 m/z 5 1 ppb 2819 Area [counts*min] 2 4 6 8 1 12 Amount [ppb] 282 Figure 3. Calibration curves for magnesium and trimethylamine. 4 Identification and Quantification at ppb Levels of Common Cations and Amines by IC-MS

Table 2. Calibration, Coefficient of Determination, and Detection Limits Analyte Calibration Range Fitting r 2 RSD* MDL (ppb) LLOQ (ppb) S/N at LLOQ Potassium 1 1 Quadratic.9991 9.94%.54 1 53 Trimethylamine 5 1 Quadratic.9999 5.6% 1.75 5 26 Ethanolamine 1 1 Cubic.999 3.22%.2 1 21 Ammonium 1 1 Quadratic.9995 11.% 3.66 1 24 Diethanolamine 1 1 Cubic.9997 7.19%.42 1 15 Lithium 1 1 Cubic.9991 4.16%.26 1 377 Sodium 1 1 Quadratic.9984 6.64%.37 1 18 Triethanolamine 1 1 Quadratic.9995 4.31%.27 1 24 Magnesium 1 1 Quadratic.998 5.77%.35 1 58 Calcium 1 1 Linear.9995 8.5% 1.26 1 15 *RSD was calculated based on 7 replicate injections of a 2 ppb standard, except for trimethylamine, ammonium, and calcium, which were obtained from a 1 ppb standard. The LLOQ is also related to the background level of target analytes, with various levels of background contamination observed for trace level quantitation. In this study, ~2 ppb of ammonium and calcium were observed (estimated by peak area) in method blanks that may be attributed to the leaching of autosampler vials. Thus, the LLOQ for ammonium and calcium was set as 5 the observed background level, i.e. 1 ppb. Method detection limit (MDL) was statistically calculated by MDL = S t 99%, n=7 where S is the standard deviation and t is the Student s t at 99% confidence interval. Standard deviation was obtained from seven replicate injections of a calibration standard at 2 ppb, and relative standard deviation (RSD) was used to measure the precision of analysis. The evaluation results for method performance are summarized in Table 2. Application Note 269 5

Table 3. Cation Concentrations in Water Samples (mg/l) Sample Potassium Sodium Magnesium Calcium Municipal Drinking Water 1.7 33.7 8.49 17.3 Bottled Drinking Water 1.51 3.54 2.44 7.31 Bottled Mineral Water 3.77 67.5 48.8 12.4 Bottled Ice Tea Beverage >1 31.3 2.57 13. Bottled Deep Sea Drinking Water 4.37* 99.4 4.79* 2.63* *Based on 1:1 dilution. Water Sample Analysis This method was applied to the quantification of target analytes in several water and beverage samples: local municipal drinking water (A), bottled drinking water (B), bottled mineral water (C), bottled ice tea (D), and bottled deep sea drinking water (E). All water samples were diluted in deionized water at 1:1 ratio (sample E was diluted 1:1) and directly injected for analysis. (Filtering may be performed as required to remove sample particulates.) The results are shown in Table 3. The MS SIM and suppressed conductivity chromatograms of detected cations in sample E are shown in Figure 4. CONCLUSION The methods here demonstrate the use of IC-MS for the determination of six commonly occurring cations and four amines at ppb levels. With MS detection, confirmation of the analyte identity can be achieved from full-scan spectra, and quantitation can be achieved at low ppb levels with greater confidence by using selective SIM scans. Successful applications using this method for analysis of real-world samples have also been demonstrated. Note: The optimum settings and responses may vary on different instruments; thus, optimization of MSQ Plus local source conditions and acquisition parameters is highly recommended for best results. Chromatographic Conditions Column: IonPac CS12A 5 µm (3 15 mm) with guard column (3 5 mm) Temperature: 3 C Eluent: Isocratic 33 mm MSA Eluent Source: EGC II MSA with CR-CTC Flow Rate:.5 ml/min Inj. Volume: 1 µl Detection: Intensity [counts] 1.1e5 2.e6 8.e5 1.6e5.9 µs Suppressed conductivity (external water at 2 ml/min delivered by an AXP-MS pump), MSQ Plus mass spectrometric detector Sodium Sodium Ionization Electrospray ionization Interface: (ESI) with positive polarity Desolvation.2 ml/min isopropanol Solvent: delivered by an AXP-MS auxiliary pump Needle 2 kv Voltage: Probe Temp.: 5 C Nebulizer Nitrogen at 85 psi Gas: MS Detection Selected Ion Monitoring (SIM) Mode: Details of SIM scans (Table 1) Potassium Potassium Magnesium Magnesium Calcium Calcium 1 2 3 4 5 6 Minutes 2821 Figure 4. Cations in a bottled deep sea drinking water. SIM_1: 39 m/z SIM_7: 143 m/z SIM_9: 192 m/z SIM_1: 265 m/z ECD_1 Chromeleon and IonPac are registered trademarks, and Reagent-Free, and RFIC are trademarks of Dionex Corporation. MSQ Plus is a trademark of Thermo Fisher Scientific, Inc. Passion. Power. Productivity. Dionex Corporation North America Europe Asia Pacific 1228 Titan Way U.S./Canada (847) 295-75 Austria (43) 1 616 51 25 Benelux (31) 2 683 9768 (32) 3 353 4294 P.O. Box 363 Denmark (45) 36 36 9 9 France (33) 1 39 3 1 1 Germany (49) 6126 991 Sunnyvale, CA Ireland (353) 1 644 64 Italy (39) 2 51 62 1267 Sweden (46) 8 473 338 Taiwan (886) 2 8751 6655 South America 9488-363 Switzerland (41) 62 25 9966 United Kingdom (44) 1276 691722 Brazil (55) 11 3731 514 (48) 737-7 www.dionex.com Australia (61) 2 942 5233 China (852) 2428 3282 India (91) 22 2764 2735 Japan (81) 6 6885 1213 Korea (82) 2 2653 258 Singapore (65) 6289 119 LPN 2676 PDF 1/11 211 Dionex Corporation