Obstruction of the distal end of the catheter has to be treated as a surgical emergency because it results in an increase in the

Similar documents
Ventriculoperitoneal Shunt with Communicating Peritoneal & Subcutaneous Pseudocysts Formation

Treatment Approaches for Abdominal Migration of Peritoneal Catheter of Ventriculoperitoneal Shunt

Laparoscopic Management of Ventriculoperitoneal and Lumboperitoneal Shunt Complications

Shunt malfunction and Slight edema surrounding the ventricles: Ten case series

Anesthetic Management of Laparoscopic Surgery for a Patient with

Case Report Ventriculoperitoneal Shunt Peritoneal Catheter Knot Formation

Ventriculo-Peritoneal/ Lumbo-Peritoneal Shunts

Original Article. Emergency Department Evaluation of Ventricular Shunt Malfunction. Is the Shunt Series Really Necessary? Raymond Pitetti, MD, MPH

INGUINAL HERNIA REPAIR PROCEDURE GUIDE

Viscus Perforation in Children caused by Peritoneal Shunt Catheters : Case series of 10 patients and review of literature

Hernias Umbilical Hernia When to See a Surgeon? What Are Symptoms of an Umbilical Hernia? How is Repair Performed?

Laparoscopic Inguinal Hernia Repair in Children

Children s Hospital Of Wisconsin

Researcher 2018;10(3)

Review Article Single Port Laparoscopic Orchidopexy in Children Using Surgical Glove Port and Conventional Rigid Instruments

Our Experience in Laparoscopic Appendectomy in Federal Teaching Hospital, Gombe

Case report. Open Access. Abstract

Role of Prolene Mesh in the repair of Recurrent Congenital Inguinal Hernia: a Pilot Study

Occult Cerebrospinal Fluid Fistula between Ventricle and Extra-Ventricular Position of the Ventriculoperitoneal Shunt Tip

Nature and Science 2017;15(7) Surgical Options for Treatment of Posterior Fossa Tumors with Hydrocephalus

First Transumbilical Transabdominal Preperitoneal Inguinal Hernia Repair in the Middle East

Consecutive, Bilateral Obturator Hernia in a Single Case HO Aydın¹, EHA Soy¹, T Avcı¹, T Tezcaner¹, S Yıldırım ABSTRACT

Surgery without incisions; experiences in single incision laparoscopic surgery (SILS) for infants and children

Internal supravesical hernia - a rare cause of intestinal obstruction: report of two cases

Case Report: A Giant Abdominal Cerebrospinal Fluid Pseudocyst

Incisional Hernia Following Ventriculoperitoneal Shunt Positioning

Hernia. emoryhealthcare.org

Pancreatic pseudocysts (PP) are chronic collections of

Transabdominal pre peritoneal (TAPP) vs totally extraperitoneal (TEP) laparoscopic techniques for inguinal hernia repair

Clinical Study Two Ports Laparoscopic Inguinal Hernia Repair in Children

Perhaps the most controversial of new laparoscopic operations is the repair of the inguinal hernia. The

Early View Article: Online published version of an accepted article before publication in the final form.

Clinical Study Endoscopic Third Ventriculostomy in Previously Shunted Children

Diagnostic Laparoscopy patient information from your surgeon & SAGES

Hydrocephalus 1/16/2015. Hydrocephalus. Functions of Cerebrospinal fluid (CSF) Flow of CSF

Life Science Journal 2017;14(1) Single port versus multiport laparoscopic trans abdominal preperitoneal hernia repair.

An Unusual Iatrogenic Cerebrospinal Fluid Leakage from Ventriculoperitoneal Shunt

Comparative Study Of Laparoscopic Versus Open Peptic Perforation Closure

2015 General Surgery Survival Guide

Left Side Approach in Laparoscopic Transabdominal Preperitoneal Inguinal Herniorrhaphy is Feasible for Any Type of Inguinal Hernia

Index. Note: Page numbers of article titles are in boldface type.

Gallstone ileus:diagnostic and therapeutic dilemma

STOMA SITING & PARASTOMAL HERNIA MANAGEMENT

NEUROSURGEON VS. HOSPITALIST Pediatric Hospital Medicine meeting Nashville, TN July 21, 2017*±

The pillars defining our quality care. We Care!

Ventral Hernia Repair

Nature and Science 2017;15(2)

Title at a Single Institution. Issue Date Right.

Inadvertent Enterotomy in Minimally Invasive Abdominal Surgery

Diagnostic Laparoscopy

Hydrocephalus in children. Eva Brichtova, M.D., Ph.D., Department of Pediatric Sugery, Orthopaedics and Traumatology, University Hospital Brno

One-Trocar Laparoscopic Transperitoneal Closure of Inguinal Hernia in Children

The Emergency Hernia or The call you don t want at 2:00 a.m.*

Laparoscopic treatment for hydrocele of the canal of Nuck

Takayuki; Eguchi, Susumu; Kanematsu. Citation Pediatric surgery international, 27

VIDEO ASSISTED RETROPERITONEAL DEBRIDEMENT IN HUGE INFECTED PANCREATIC PSEUDOCYST

Novel type of peritoneocentesis trocar assisted distal ventriculoperitoneal shunt placement with supervision via a one port laparoscope

Title: Post traumatic Diaphragmatic hernia in children: Diagnostic Dilemmas and lessons learned. Type: Original article

Anorectal malformations include a wide spectrum of

Troubleshooting the Dysfunctional PD Catheter

Two-Stage Management of Mega Occipito Encephalocele

Thoracoscopic repair of esophageal atresia with a distal fistula lessons from the first 10 operations

Posterior Rectus Sheath Hernia Causing Intermittent Small Bowel Obstruction

Clinical Study Adhesive Intestinal Obstruction in Infants and Children: The Place of Conservative Treatment

7/2/2015. Incidence. *Mudge M et al, Br. J. Surg, 1985, 72:70-71

Department of Radiology, Universiti Kebangsaan Malaysia Medical Centre (UKMMC), Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia.

Surgical management of the undescended testis is performed

Laparoscopic Inguinal Hernia Repair

Colorectal procedure guide

Journal of Pediatric Surgery CASE REPORTS

Pediatric Surgery MUHC MCH Siste. Objectives of Training

Early experience of laparoscopic varicocelectomy in College

Missed And Delayed Diagnosis Of Diaphragmatic Hernia: A Case Report

A comparative study of open versus laparoscopic incisional hernia repair

Keyhole Laparoscopic Hernia Repairs: What s the Benefit for Your Patients?

CLINICAL PRESENTATION AND RADIOLOGY QUIZ QUESTION

NOTES NOTES???? 9/7/2009. M. Hagen. Center for the Future of Surgery University of California San Diego

The Impalpable Testicle Peeping Through the Key Hole

Small bowel perforation: a rare complication of ventriculoperitoneal shunt placement

Single-Incision Laparoscopic Surgery Versus Standard Laparoscopic Surgery for Unroofing of Hepatic Cysts

Fistula First? Vascular Symposium 4/28/18

A Case Report of a Repair of a Ruptured Incisional Hernia Using Polypropylene Mesh and Component Separation Technique A Rambhajan, T Bernard ABSTRACT

Uroradiology Tutorial For Medical Students

Diaphragmatic Hernia Presenting With Intrathoracic Perforation

World Journal of Colorectal Surgery

West Yorkshire Major Trauma Network Clinical Guidelines 2015

Non-Neonatal Intestinal Obstruction in children: 3 Years Experience and review of literature.

Abdominal Wall Modification for the Difficult Ostomy

Single Incision Laparoscopic Assisted Appendectomy: Experience in Paediatric Patients

UNDERSTANDING X-RAYS: ABDOMINAL IMAGING THE ABDOMEN

Prevalence and Surgical Outcome of Inguinal Hernia in Childrenat Tertiary Care Hospital in India

COMPLICATIONS OF HERNIA REPAIR

Guidelines in the management of neural tube defects and hydrocephalus

Hydrocephalus. Patient and Family Education. What is hydrocephalus? What are the signs and symptoms of hydrocephalus?

4/30/2010. Options for abdominal wall reconstruction. Scott L. Hansen, MD

Abdomen Sonography Examination Content Outline

A Comparative Study between the Outcome of Laparoscopic Repair and Open Repair of Paediatric Inguinal Hernia

Glue for mesh fixation in laparoscopic ventral hernia repair. An experimental comparison with conventional fixation.

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August ISSN

Transcription:

16 Original article Laparoscopic management of pediatric and adolescent patients with intra-abdominal complications of ventriculoperitoneal shunt Hisham A. Almetaher a, Mohamed I. El-Sawaf b, Ashraf Elattar b and Essam A. Elhalaby a Background/purpose Ventriculoperitoneal (VP) shunt is the most common operative procedure performed in the treatment of hydrocephalus. The aim of this procedure is to drain CSF from the ventricles to the peritoneal cavity, thus to decrease the intracranial pressure. Numerous complications as a result of this technique are reported in the literature and are most commonly located around the peritoneal end of the shunt tube. The standard approach for management is laparotomy and correction of the complication. This approach, although solves the problem, causes the formation of adhesions, which are also not devoid of consequences. The aim of this study is to present our experience and outline the role of laparoscopy in the management of intraabdominal complications of VP shunt in pediatric and adolescent patients. Patients and Methods Over a period of 4 years, 14 patients were managed and recruited in this study. All patients were presented with recurrent abdominal signs and symptoms or elevated intracranial pressure. All patients were managed laparoscopically according to the final diagnosis. Results Fourteen patients (9 men and 5 women) with abdominal complications of VP shunt catheter were managed. Their ages at operation were ranged from 10 months to 15 years. All patients were investigated, diagnosed and managed laporoscopically. The median operative time of the laparoscopic procedure varied according to the diagnosis. It was 120 minutes in pseudocysts, 45 minutes in recurrent congenital inguinal hernias, 100 minutes in adhesive intestinal obstruction and 35 minutes in subcutaneous cyst and 30 minutes in umbilical fistula. Follow up period extended for 24 months after the procedure and all patients had complete resolution of their presenting abdominal or neurological symptoms. The length of the postoperative hospital stay ranged from one day in recurrent congenital hernias up to 4 days in the other procedures. There were no intra- or postoperative complications related to the laparoscopic technique. Conclusion Laparoscopic is a very useful diagnostic and therapeutic tool in dealing with intra-abdominal complications of VP shunt with high safety and an excellent outcome. Ann Pediatr Surg 14:16 20 c 2018 Annals of Pediatric Surgery. Annals of Pediatric Surgery 2018, 14:16 20 Keywords: hydrocephalus, laparoscopic management, ventriculoperitoneal shunt a Department of General Surgery and b Department of Pediatric Surgery, Faculty of Medicine, Tanta University Hospital, Tanta University, Tanta, Egypt Correspondence to Hisham A. Almetaher, MD, Department of Pediatric Surgery, Faculty of Medicine, Tanta University Hospital, Tanta University, Tanta 31111, Egypt Tel: + 20 122 826 6136; fax: + 20 040 331 7564; e-mail: hishamalmohamady@yahoo.com Received 29 May 2017 accepted 6 June 2017 Introduction Ventriculoperitoneal (VP) shunt is the most common operative procedure performed in the treatment of hydrocephalus. The aim of this procedure is to drain cerebrospinal fluid (CSF) from the ventricles to the peritoneal cavity, thus decreasing the intracranial pressure. The peritoneal cavity is considered the best site to drain CSF because of its capacity for absorption and low rate of complications [1]. Numerous complications as a result of this technique are reported in the literature and are located most commonly around the peritoneal end of the shunt tube [2]. The rate of occurrence of these complications ranges between 5 and 47% [3,4]. These complications include subcutaneous collection of CSF, peritoneal pseudocyst formation, CSF ascites, extraperitoneal retraction of the catheter, and the development of incisional and inguinal hernias [4 6]. Complications less commonly reported in the literature include gastric perforation and catheter disconnection, as well as pleural, bladder, and scrotal irritation [7 9]. These complications may present either as local abdominal signs or with elevated intracranial pressure. Obstruction of the distal end of the catheter has to be treated as a surgical emergency because it results in an increase in the intracranial pressure, leading to associated complications that include considerable morbidity and possible death [4]. The standard approach for management is laparotomy and correction of the complication. This approach, although solves the problem, leads to the formation of adhesions, which are also not devoid of consequences [10]. With the advent of minimally invasive techniques, these complications currently are managed laparoscopically [11,12]. The aim of this study was to present our experience and outline the role of laparoscopy in the management of intra-abdominal complications of VP shunt in pediatric and adolescent patients. Patients and methods This is a prospective study conducted on patients admitted in the Pediatric Surgery Unit of General Surgery Department, Tanta University, and affiliated hospitals during the period from January 2013 to May 2017. The study was approved by the Ethical Committee of Tanta Faculty of Medicine and informed consent was obtained from patients guardians. Fourteen patients 1687-4137 c 2018 Annals of Pediatric Surgery DOI: 10.1097/01.XPS.0000521012.05800.60

laparoscopic VP shunt complication management Almetaher et al. 17 Fig. 1 Fig. 3 Adhesiolysis with monoplolar electrocautery. Aspiratin of pseudocyst, excision of the cyst wall, and freeing up of the catheter. Fig. 2 Fig. 4 A pseudocyst containing cerebrospinal fluid. Repositioning of shunt catheter in the peritoneal cavity. under the age of 15 years were recruited in this study. They were admitted following referral from the neurosurgical team and presented with different abdominal complaints such as persistent abdominal pain (five cases), intestinal obstruction (four cases), abdominal distention and mass (four cases), recurrent inguinal swelling (four cases), and CSF discharge from the umbilicus or manifestations of increased intracranial tension (seven cases). All patients underwent a complete clinical assessment including a thorough history taking, abdominal examination, and neurological examination. Investigations were based on their presentation and included routine laboratory investigations, plain radiography of the abdomen, abdominal ultrasound, and computed tomography (CT) scans of the head and abdomen. According to the clinical findings and the results of investigations, a proper diagnosis was achieved and treatment plan was designed accordingly. All patients were managed laparoscopically. Laparoscopic technique A dose of prophylactic fourth-generation cephalosporin 100 mg/kg was given to all patients with induction of general anesthesia. The patient was placed in the supine position with tilting of the head to the right or left depending on the position of the shunt tube in the previous surgery. We used open technique for introduction of 5 mm umbilical port for a 301 scope. The abdominal cavity was inspected first and then two 3 or 5 mm ports were introduced according to the patient s age. The site of the trocars varied according to the diagnosis.

18 Annals of Pediatric Surgery 2018, Vol 14 No 1 Fig. 5 Fig. 8 Repositioning of the shunt catheter under laparoscopic vision. Recurrent congenital inguinal hernia. Fig. 6 Fig. 9 Umbilical fistula discharging cerebrospinal fluid. Dissection and division of the hernial sac and ligation with absorbable sutures. Fig. 10 Fig. 7 Aspiration of subcutaneous cyst and extraction of the shunt catheter. Dissection of the fistulous tract and freeing up the catheter.

laparoscopic VP shunt complication management Almetaher et al. 19 Four patients had mechanical intestinal obstruction due to adhesions to the abdominal wall. Adhesiolysis was performed using laparoscopic scissors and bipolar electrocautery (Fig. 1) and the catheter was repositioned in the peritoneal cavity. Four patients presented with a cyst containing CSF. In two patients, the pseudocyst was aspirated using a laparoscopic suction device, the cyst wall was excised, and the catheter was freed up and repositioned in the peritoneal cavity (Figs 2 4). In the third case, no definite cyst wall was found and the intestinal adhesions were taken down to free the catheter, which was repositioned in the subhepatic region. In the fourth one, a large infected amalgamated cyst was found making laparoscopic dissection technically unsafe. This case was converted, complete excision of the cyst was performed, and the catheter was removed and reinserted 3 months later after subsidence of the abdominal infection. Four patients presented with recurrent inguinal hernias. In these cases, the hernial sac was disconnected using sharp dissection with laparoscopic scissors or monopolar hook diathermy using cutting mode at the internal ring and a muscular arch repair stitch taking the conjoint tendon to the ileopubic tract to narrow the internal ring was performed, followed by peritoneal closure using absorbable sutures (Vicryl, Ethicon, USA, 2, 3, or 4/0) (Figs 5 and 6). One patient who presented with right abdominal wall swelling proved to be subcutaneous cyst with shunt displacement. Aspiration of the cyst and complete excision of its wall were performed by repositioning the shunt catheter in the peritoneal cavity under laparoscopic vision and closure of the defect to avoid recurrence (Figs 7 and 8). One case presented with umbilical fistulous tract discharging CSF. Laparoscopic dissection of the fistulous tract was performed using laparoscopic scissors; the tract was opened and the catheter was freed up and repositioned under laparoscopic vision in the right iliac fossa and the umbilical defect was closed using nonabsorbable sutures (Figs 9 and 10). Results Over a period of 4 years, 14 (nine men and five women) patients with abdominal complications of VP shunt catheter were managed. Their ages at operation ranged from 10 months to 15 years (Table 1). All patients were investigated, diagnosed, and managed laparoscopically. Plane abdominal radiographs showed shunt tube coiled in a soft tissue mass that displaces adjacent bowel loops Table 1 Patient demographics and presentation Demographics N =14 Age (years) <1 2 1 6 9 6 15 3 Sex Male 9 Female 5 Presentation Increased intracranial tension 7 Persistent abdominal pain 5 Adhesive intestinal obstruction 4 Abdominal pseudocyst (mass) 4 Recurrent congenital inguinal hernia 4 Subcutaneous cysts 1 Umbilical cerebrospinal fluid discharge 1 Fig. 11 Computed tomography of the abdomen showing a cyst containing homogeneous water density fluid, in which the shunt tip was identified within the cyst. Table 2 Operative data Operative time (min) Abdominal pseudocysts 120 Recurrent inguinal hernia 45 Adhesive intestinal obstruction 100 Subcutaneous cyst 35 Umbilical fistula 30 Conversion Large amalgamated cyst 1 case (six cases), air fluid level denoting intestinal obstruction (four cases), and catheter in inguinal hernia (two cases). Abdominal ultrasound showed a well-defined sonolucent mass (cyst), with posterior acoustic enhancement containing the catheter tip (four cases), and a subcutaneous cyst (one case). CTexamination showed a cyst containing homogeneous water density fluid, in which the shunt tip was identified within the cyst (four cases) (Fig. 11). The mean operative time of the laparoscopic procedure varied according to the diagnosis. It was 120 min in abdominal pseudocysts, 45 min in recurrent inguinal hernias, 100 min in adhesive intestinal obstruction, and 35 min in subcutaneous cyst (Table 2). All patients were completed laparascopically except one patient with large amalgamated infected abdominal pseudocyst; it was converted to laparotomy with complete excision of the cyst and removal of the catheter until the abdominal infection subsided. A new catheter was then inserted 3 months later. In all other cases, operations were completed laparoscopically. Complications were resolved and the catheter was functioning well and repositioned safely in the abdominal cavity under direct vision. Follow-up period rangedfrom3to24monthswithameanof27.1months;all patients had complete resolution of their presenting abdominal or neurological symptoms. The length of the postoperative hospital stays ranged from 1 day in recurrent hernias to 4 days in the other procedures. There were no intraoperative or postoperative complications related to the laparoscopic technique. Discussion The overall abdominal complication rate in VP shunt patients remains high, ranging between 5 and 47% [6].

20 Annals of Pediatric Surgery 2018, Vol 14 No 1 The most common intraperitoneal complications are VP shunt obstruction, shunt disconnection, intestinal perforation, adhesive intestinal obstruction, CSF ascites, pseudocyst formation, development of inguinal hernia, and chronic peritoneal infection [6,13 15]. The occurrence of complications is warranted by development of abdominal signs and symptoms or the recurrence of intracranial hypertension. The abdominal signs include the following: the presence of an abdominal mass in case of CSF cyst formation; obstructive symptoms if the catheter twists aroundanintestinalloop;oranacuteabdomenincasesof perforation or peritonitis [3,16]. In some cases there may be ascites, an inguinal hernia, or hydrocele. The catheter rarely causes perforation of the abdominal wall with external CSF leakage [17 20]. Seven of our patients presented with elevated intracranial tension, typically with headaches, vomiting, and fatigue. Persistent abdominal pain was seen in five cases and abdominal distention and mass in four cases, whereas adhesive intestinal obstruction was the presentation in four cases. Moreover, four cases of recurrent inguinal hernias presented with inguinal swelling, bilateral in one case and unilateral in three cases. CT proved very useful in our cases, as it not only facilitated the diagnosis but also allowed visualization of the fragment of the VP shunt displaced into the abdomen or pelvis. Until recently, distal VP shunt catheter complications were managed with a laparotomy incision and often removal of the existing shunt to be replaced later on. In addition to the inconvenience of a large incision and longer hospitalization due to more postoperative pain, the patients were at high risk of developing adhesions and their related complications [21] and wound dehiscence and sometimes even burst abdomen. Currently, laparoscopic techniques are used not only for shunt placement but also for revision [3,6,12,22,23]. Our series reinforces the feasibility and safety of laparoscopic management for distal catheter complications. The advantages of the laparoscopic approach include a shorter hospital stay because of less postoperative pain, and early return of bowel movements and a better cosmetic outcome. The catheter is positioned under direct vision with less bowel manipulation, thus reducing the risk for bowel injury and the development of adhesions [3]. Laparoscopy allowed us to replace the shunts in the abdominal cavity under direct visual guidance and to direct it to the proper position. In addition, laparoscopy is a diagnostic tool that can be used to exclude any other intra-abdominal process possibly causing abdominal pain. Laparoscopy can be repeated several times in case of further complications because it is less invasive. This is not the case with laparotomy, which is more traumatic [3]. The potential problem that has been raised is retrograde leakage of carbon dioxide into the ventricle. This was not recognized in our series and has not been reported previously. A recent in-vitro study found that none of the valves tested showed any signs of leak associated with increased gaseous back pressure below a pressure of 80 mmhg [24]. Conclusion Laparoscopy is a very useful diagnostic and therapeutic option in dealing with intra-abdominal complications of VP shunt with high safety and an excellent outcome. It carries several advantages, including decreased risk for adhesions and preservation of the peritoneal space, elimination of the potential for future complications, and a shortened postoperative hospital stay in addition to improved cosmoses due to the minimal access technique. Conflicts of interest There are no conflicts of interest. References 1 Anderson CM, Sorrells DL, Kerby JD. Intraabdominal pseudocysts as a complication of ventriculoperitoneal shunts. JAmCollSurg2003; 196:297 300. 2 Grosfeld JL, Cooney DR, Smith J, Campbell RL. Intra-abdominal complications following ventriculoperitoneal shunt procedures. Pediatrics 1974; 54:791 796. 3 Esposito C, Porreca A, Gangemi M, Garipoli V, De Pasquale M. The use of laparoscopy in the diagnosis and treatment of abdominal complications of ventriculo-peritoneal shunts in children. Pediatr Surg Int 1998; 13:352 354. 4 Lortat-Jacob S, Pierre-Kahn A, Renier D, Hirsch JF, Martelli H, Pellerin D. Abdominal complications of ventriculo-peritoneal shunts in children. 65 cases. Chir Pediatr 1984; 25:17 21. 5 Pernas JC, Catala J. Case 72: pseudocyst around ventriculoperitoneal shunt. Radiology 2004; 232:239 243. 6 Acharya R, Ramachandran CS, Singh S. Laparoscopic management of abdominal complications in ventriculoperitoneal shunt surgery. J Laparoendosc Adv Surg Tech A 2001; 11:167 170. 7 Deinsberger W, Langhans M, Winking M, Boker DK. Retrieval of a disconnected ventriculoperitoneal shunt catheter by laparoscopy in a newborn child: case report. Minim Invasive Neurosurg 1995; 38:123 124. 8 Samdani AF, Storm PB, Kuchner EB, Garonzik IM, Sciubba D, Carson B. Ventriculoperitoneal shunt malfunction presenting with pleuritic chest pain. Pediatr Emerg Care 2005; 21:261 263. 9 Naradzay JF, Browne BJ, Rolnick MA, Doherty RJ. Cerebral ventricular shunts. J Emerg Med 1999; 17:311 322. 10 Prabhu S, Cochran W, Azmy AF. Wandering distal ends of ventriculoperitoneal shunts. Z Kinderchir 1985; 40:80 81. 11 Paddon AJ, Horton D. Knotting of distal ventriculoperitoneal shunt tubing. Clin Radiol 2000; 55:570 571. 12 Kusano T, Miyazato H, Shimoji H, Hirayasu S, Isa T, Shiraishi M, et al. Revision of ventriculo-peritoneal shunt under laparoscopic guidance in patients with hydrocephalus. Surg Laparosc Endosc 1998; 8:474 476. 13 Jain S, Bhandarkar D, Shah R, Vengsarkar U. Laparoscopic management of complicated ventriculoperitoneal shunts. Neurol India 2003; 51:269 270. 14 Blount JP, Campbell JA, Haines SJ. Complications in ventricular cerebrospinal fluid shunting. Neurosurg Clin N Am 1993; 4:633 656. 15 Salomao JF, Leibinger RD. Abdominal pseudocysts complicating CSF shunting in infants and children. Report of 18 cases. Pediatr Neurosurg 1999; 31:274 278. 16 Waldschmidt J, Schier F. Laparoscopic surgery in neonates and infants. Eur J Pediatr Surg 1991; 1:145 150. 17 Adeloye A. Spontaneous extrusion of the abdominal tube through the umbilicus complicating peritoneal shunt for hydrocephalus. Case report. J Neurosurg 1973; 38:758 760. 18 DeSousa AL, Worth RM. Extrusion of peritoneal catheter through abdominal incision: report of a rare complication of ventriculoperitoneal shunt. Neurosurgery 1979; 5:504 506. 19 Porreca A, de Luca U, Gangemi M, Donati PA, Esposito C. Laparoscopy in the diagnosis and treatment of an unusual complication of ventriculoperitoneal shunt. Endoscopy 1987; 19:84 85. 20 Wakai S. Extrusion of a peritoneal catheter through the abdominal wall in an infant. Case report. J Neurosurg 1982; 57:148 149. 21 Delarue A, Guys JM, Louis-Borrione C, Simeoni J, Esposito C. Pediatric endoscopic surgery: pride and prejudice. EurJPediatrSurg1994; 4:323 326. 22 Oh A, Wildbrett P, Golub R, Yu LM, Goodrich J, Lee T. Laparoscopic repositioning of a ventriculo-peritoneal catheter tip for a sterile abdominal cerebrospinal fluid (CSF) pseudocyst. Surg Endosc 2001; 15:518. 23 Hirano Y, Sasajima H, Mineura K, Itoh Y, Ohta T, Hanyu N, et al. Laparoscopic retrieval of a dislocated ventriculoperitoneal shunt catheter: report of three cases and a review of the literature. No Shinkei Geka 1997; 25:629 633. 24 Neale ML, Falk GL. In vitro assessment of back pressure on ventriculoperitoneal shunt valves. Is laparoscopy safe? Surg Endosc 1999; 13:512 515.