Downloaded from by guest on 02 October 2018

Similar documents
HIV and Parasite Load. Keith Keller

POSTGRADUATE INSTITUTE OF MEDICINE UNIVERSITY OF COLOMBO MD (MEDICAL PARASITOLOGY) EXAMINATION JANUARY, 2001 PAPER 1

Parasitic Protozoa, Helminths, and Arthropod Vectors

EVALUATION OF PROTOZOAN PARASITES CAUSING DIARRHOEA IN HIV POSITIVE PATIENTS

Apicomplexan structure: 1-polar ring, 2-conoid, 3- micronemes, 4-rhoptries, 5-nucleus, 6-nucleolus, 7- mitochondria, 8-posterior ring, 9-alveoli,

1. Parasitology Protozoa 4

Cryptosporidiosis. By: Nikole Stewart

Prevalence of Intestinal Parasites in HIV Seropositive Patients with and without Diarrhoea and its Correlation with CD4 Counts

Washington State Department of Health (DOH) Cryptosporidium in Drinking Water Position Paper. Purpose

EDUCATIONAL COMMENTARY EMERGING INFECTIOUS DISEASE AGENTS

Visceral leishmaniasis: an endemic disease with global impact

Vibrio Cholerae (non-o1, non-o139)

Waterborne Pathogens from Non-Human Sources and their Public Health Implications

Giardiasis Surveillance Protocol

Communicable Disease Avoidance for Lifeguards

Neglected Diseases (NDs) Landscape in Brazil and South America

Short Video. shows/monsters-inside- me/videos/toxoplasma-parasite/

Hepatitis E FAQs for Health Professionals

European Union comments

World Health Organization Department of Communicable Disease Surveillance and Response

Lecture-7- Hazem Al-Khafaji 2016

2013 Disease Detectives

Parasites List of Pinworm (Enterobius vermicularis) Giardia ( Giardia lamblia Coccidia ( Cryptosporidium

CONTINUED FROM PART 1

Cryptosporidium and Zoonoses. Extracts from Nibblers online discussion group

Hepatitis E in South Africa. Tongai Maponga

Intestinal Parasites. James Gaensbauer MD, MScPH Fellow, Pediatric Infectious Diseases University of Colorado School of Medicine November 12, 2012

Gastrointestinal Disease from 2007 to 2014

Better Training for Safer Food BTSF

Disease Transmission Methods

Giardia lamblia (flagellates)

Giardiasis. Table of Contents

Extra-intestinal coccidians

Example-exam Basics of Infectious Diseases (NEM-20806) 2015/16: [ANSWER (2 points): environment, infectious agent, and host]

Prevalence of Intestinal Parasitic Infections in HIV-Positive Patients

Understanding and Confronting Emerging Disease

Burton's Microbiology for the Health Sciences

Many of you asked about this topic

Apicomplexa Bowel infection Isosporiasis Blood & Tissue Cryptosporidiosis infection Sarcosporidiasis Toxoplasmosis Cyclosporiasis Babesiasis Malaria

Parasitic Protozoa, Helminths, and Arthropod Vectors

Communicable diseases. Gastrointestinal track infection. Sarkhell Araz MSc. Public health/epidemiology

Parasitology lab. ü interdiction

~Trichinella Spiralis:

Principles of Disease and Epidemiology

Running head: INFLUENZA VIRUS SEASON PREPAREDNESS AND RESPONSE 1

Toxoplasma gondii. Definitive Host adult forms sexual reproduction. Intermediate Host immature forms asexual reproduction

Annual Epidemiological Report

Cutaneous Leishmaniasis : Global overview

Traveler s Diarrhea Due to Intestinal Protozoa

The Struggle with Infectious Disease. Lecture 5

TYPES OF ORGANISM RELATIONSHIPS

Introduction. Transmission

Foodborne diseases: an ongoing global challenge

PARASITE MRS. OHOUD S.ALHUMAIDAN

For Vets General Information Prevalence and Risk Factors Humans

Understanding and Confronting Emerging Disease

Campylobacter ENTERITIS SURVEILLANCE PROTOCOL

WORLD HEALTH ORGANIZATION. Control of neurocysticercosis

Toxoplasmosis in immunocompetent and immunocompromised population of Constanta, Romania

Chapter 1 The Public Health Role of Clinical Laboratories

Future Challenges in Diagnostic Medical Parasitology

anemia a deficiency of red blood cells that results in pallor and weakness

Suggested Exercises and Projects 395

Overview IMPORTANCE CLASSIFICATION SPECIMEN COLLECTION PROTOZOA WORMS BLOOD PARASITES ARTHROPODS DELUSIONAL PARASITOSIS QUIZZES GROSS

Immune System. Before You Read. Read to Learn

DOWNLOAD OR READ : TROPICAL INFECTIOUS DISEASES SECOND EDITION PDF EBOOK EPUB MOBI

Hepatitis E in developing countries

Alberta Health and Wellness Public Health Notifiable Disease Management Guidelines August 2011

DISEASE DETECTIVES PRACTICE ACTIVITIES

Blood Smears Only 6 October Sample Preparation and Quality Control 15B-K

PMC ATM and ATR activities maintain replication fork integrity during SV40 chromatin replication. PLoS Pathog. 2013;9(4):e PMC

PREVALENCE OF INTESTINAL PARASITES IN HIV-POSITIVE/AIDS PATIENTS. O.O Oguntibeju

Introduction. Infections acquired by travellers

1. Toxoplasma gondii:

PARASITOLOGY CASE HISTORY 5 (HISTOLOGY) (Lynne S. Garcia)

Arbovirus Surveillance in Massachusetts 2016 Massachusetts Department of Public Health (MDPH) Arbovirus Surveillance Program

DISCLOSURES. I have no actual or potential conflicts of interest in this presentation.

Introduction to Medical Parasitology. Nimit Morakote, Ph.D

Addis Ababa Institute of Technology Department of Civil Engineering. Zerihun Alemayehu

New insights on leishmaniasis in immunosuppressive conditions

Ring Forms in Red Blood Cells (RBCs) Babesia? from Danish Chronically Ill Patients, All Clinically Suspect of Having Persistent Active Borreliosis!

Foodborne Disease in the Region of Peel

Introduction to Measles a Priority Vaccine Preventable Disease (VPD) in Africa

Sushi Worms Diagnostic Challenges

Parasites in food chains

Emerging Pathogens that Impact the Canadian Blood Supply Alberta Vein to Vein Conference March 18-19, 2016

CMV. Inclusions predominantly in endothelial cells. Immunostaining greater sensitivity than H&E alone.

Global Climate Change and Mosquito-Borne Diseases

Microspora, Pneumocystis & Blastocystis hominis

VIRAL GASTRO-ENTERITIS

EEB 4274 Lecture Exam #1 Protozoa September 2014

West Nile Virus Los Angeles County

Global Catastrophic Biological Risks

Emerging vector-borne diseases in the United States: What s next and are we prepared?

Public Health Microbiology. CE421/521 Lecture Prof. Tim Ellis

MEDICAL PARASITOLOGY

HDF Case CRYPTOSPORIDIOSE

Immunological Aspects of Parasitic Diseases in Immunocompromised Individuals. Taniawati Supali. Department of Parasitology

CRYPTOSPORIDIUM SPECIE AS A CAUSATIVE AGENT OF DIARRHOEA IN UNIVERSITY OF MAIDUGURI TEACHING HOSPITAL,MAIDUGURI.

Transcription:

FEMS Immunology and Medical Microbiology 18 (1997) 313^317 Emerging parasitic infections Stephanie L. James * Division of Microbiology and Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Solar Building, Room 3A10, 6003 Executive Boulevard, Bethesda, MD 20892, USA Keywords: Emerging parasitic diseases; Cryptosporidium parvum; Cyclospora cayetanensis; Enterocytozoon bieneusi; Septata intestinalis; Acanthamoeba; Leishmania mexicana; Trypanosoma cruzi; Taenia solium; Echinococcus multilocularis 1. Introduction It should come as no surprise that parasitic disease is on the rise. Many parasitic diseases currently appearing or reappearing in industrialized nations have a long history as public health problems in developing countries of the tropics, and several diseases previously thought to be under control in developing countries are increasing in incidence. The factors that in uence emergence or re-emergence of protozoal and helminthic diseases are the same as those that a ect other infectious diseases: a change in the parasite or the host that favors increased human infection or disease expression; any environmental or demographic change that favors increased human contact with the parasite; or increased recognition of a previously existing problem that had escaped detection or had been underestimated. In the case of parasitic infections, changes that a ect the invertebrate vector can also be very important. * Tel.: +1 (301) 496-2544; Fax: +1 (301) 402-2508; E-mail: sj13y@nih.gov 2. Cryptosporidia and cyclospora Two parasitic infections that have recently come to widespread public attention in the United States are Cryptosporidium parvum and Cyclospora cayetanensis. These protozoans, causes of enteritis with persistent diarrhea, are usually acquired by ingestion of contaminated water or food. Parasites of the genus Cryptosporidium were rst recognized as animal parasites around the turn of the century, and Cryptosporidium parvum has a surprisingly wide host range. It is estimated that over 90% of the dairy cattle herds in the United States are infected with this parasite, which may play a role in its transmission [1]. It was not until 1976 that the rst human case was diagnosed, followed in 1981 by the rst case in an AIDS patient. It is estimated that 10^15 percent of the chronic diarrhea and wasting observed in AIDS patients in the United States is due to infection with Cryptosporidium parvum; this estimate increases to 30^50 percent for AIDS patients in developing countries [1]. Since 1983, when the rst outbreak in a child-care center was observed, there have been numerous widely distributed outbreaks in the United States, many of them associated with surface water. Recent water-sampling surveys indicate that over 50 percent of rivers and lakes in the United States may be contaminated with this parasite [1]. But cryptosporidiosis came to general public attention in the U.S. in 1993 as a result of the very large outbreak that occurred in Milwaukee, WI, that a ected some 403 000 0928-8244 / 97 / $17.00 ß 1997 Federation of European Microbiological Societies. Published by Elsevier Science B.V. PII S0928-8244(97)00063-1

314 S.L. James / FEMS Immunology and Medical Microbiology 18 (1997) 313^317 people ^ approximately a quarter of the population of that city [2]. The `emergence' of this parasite resulted from several in uences, not the least of which has been enhanced recognition as a result of increased e orts to detect parasites in stool specimens. The AIDS epidemic was a major factor in improvement of the overall detection of cryptosporidiosis. Both infection levels and disease expression are markedly increased in those who are immunosuppressed. Thus, recognition of the association of this parasite with intense gastroenteritis in AIDS patients has contributed to a more widespread appreciation of its pathogenic potential in humans generally. Cryptosporidiosis also causes severe disease in both the very young and the elderly, whose immune defenses may be weakened by immaturity or advanced age. In fact, globally, in terms of actual numbers of people infected, cryptosporidiosis probably presents more of a problem in immunocompetent people than in AIDS patients. It has been documented to be an important cause of persistent diarrhea in children living in developing countries [3]. Various environmental and technological aspects have also contributed to the emergence of human cryptosporidosis. Major surface water outbreaks in the U.S. have almost always been associated with heavy rain or snowfall, as appeared to be the case in the Milwaukee outbreak, where water draining from surrounding cattle farms due to melting of an unusually heavy snowfall caused contamination of the city's major water supply [1]. It is important to note that ordinary water puri cation techniques do not completely remove or inactivate this parasite. Human transmission in the United States has also been enhanced by the increasing popularity of recreational water parks that accept young children. Unfortunately, there is still no adequate treatment for cryptosporidiosis, and in immunocompetent individuals the infection is usually allowed to self-resolve with only supportive care. But in the case of the very severe diarrhea that occurs in immunosuppressed individuals the drug Paromomycin has been applied, with reports of increased intestinal function and decreased infection intensity at least in a portion of these patients [3]. Relapses of illness, however, remain common after treatment. Cyclospora cayatenensis, another protozoan parasite, was also identi ed around the turn of the century in animals, but it wasn't until 1979 that it was rst diagnosed in human cases in Papua, NewGuinea. In that report it was described as a `previously undescribed coccidian'. In subsequent reports, the parasite was variously misidenti ed as a `blue-green algae' or a `cyanobacterium-like organism', or as Cryptosporidium muris, as was the case in the report of a limited outbreak that occurred in a Chicago hospital in 1990 which was traced to a contaminated water supply [4]. Not until 1993 was this parasite actually characterized and named in the course of ongoing studies in Peru [5]. Little attention was paid to subsequent sporadic reports of Cyclospora cayatenensis infection, but widespread public attention was aroused again in the summer of 1996 following reports of over 1500 cases from 14 states and Canada [6]. Globally, cyclospora infection probably a ects approximately equivalent numbers of immunocompetent and immunosuppressed individuals. Fortunately, unlike the case with cryptosporidiosis, cyclospora infection is readily susceptible to treatment with trimethoprim-sulfamethoxazole [3]. Like cryptosporidiosis, our understanding of the emergence of cyclospora infection has been in uenced by the AIDS epidemic and resultant improvements in diagnosis. Environmental in uences contribute to the contamination of water and fresh produce with the parasite, but advances in technology allowing increased long distance shipment of produce are facilitating wider public exposure to contaminated food. 3. Microsporidia The microsporidia, a huge phylum of organisms that includes over 700 species which infect every kind of insect and animal studied, are another important cause of parasitic infections that have been emerging in the context of the AIDS epidemic. Included among the four recognized as human pathogens are Enterocytozoon bieneusi and Septata intestinalis, both of which are intestinal parasites that cause chronic diarrhea in AIDS patients. Two encephalitozoon species also are capable of producing

S.L. James / FEMS Immunology and Medical Microbiology 18(1997) 313^317 315 disseminated disease. The microsporidia appear to be a bigger problem in AIDS patients than in non-immunocompromised individuals, as there have been only occasional sporadic reports of infection in immunocompetent individuals. Again, therapy is inadequate. It appears that Septata intestinalis is susceptible to albendazole treatment, but there is no e ective therapy for many of the other types of microsporidia [3]. 4. Other emerging parasites Cryptosporidia, cyclospora, and the microsporidia are not the only parasites that have been increasingly recognized in the context of the HIV-AIDS epidemic. Isospora belli is another protozoan parasite that causes diarrhea, and Toxoplasma gondii is a well-known protozoal parasite with a global distribution that is acquired by ingestion of either undercooked meat or food contaminated with feces from infected cats. Usually the latter infection is handled well in immunocompetent people, but in the presence of immunosuppression, latent infections can become reactivated, with severe neurological consequences. Other recently recognized parasites have not yet come to such widespread public attention as those mentioned above. For example, Acanthamoeba species represent another newly emerging parasitic infection, which can cause conditions ranging from chronic ulceration of the cornea to progressive disseminated disease. These free-living amoeba are usually acquired through contact with contaminated water or soil. Balamuthia species, identi ed in 1986, are also capable of producing a chronic progressive neurological disease known as granulomatous amoebic encephalitis (GAE) [7]. In the United States by late 1995, there were 26 cases of GAE resulting from balamuthia infection, along with 60 or more cases of acanthamoeba-related GAE. In addition, over 500 cases of chronic ulcerative disease of the cornea [8] had been reported to CDC (D.G. Colley, personal communication). Interesting new zoonotic infections are also gaining recognition. We have known for some time that tick-borne Babesia microti is a source of human infection in areas of the northeastern United States, but recent reports out of Wisconsin suggest that this species may be spreading. Moreover, observations from the western United States suggest that a previously unrecognized type of babesia can cause disease in splenectomized patients. This particular form appears to be more closely related to canine babesia than to Babesia microti [9]. While most emerging parasitic infections seem to be caused by protozoa, there are some cases where the human pathogenic potential of helminth parasites is only becoming fully appreciated. The raccoon round worm, Baylisascaris procyonis, has recently been recognized as a human pathogen due to several reports of serious, sometimes fatal, neurological disease following inadvertent ingestion of parasite eggs [10]. In addition, of course, there are periodic reports of outbreaks of acute illness due to anisakiasis or other intestinal helminth infections acquired by consumption of raw sh, which has gained increasing popularity in the U.S. In addition to those parasitic infections that appear to be newly emerging, either in terms of actual incidence or recognition, there are several others which were previously thought to be controlled but are recently `re-emerging' for various reasons. The tropical disease, leishmania, deserves more a detailed discussion in this context. Leishmania parasites are obligate intracellular protozoan parasites of macrophages. To a large extent the clinical manifestations ^ cutaneous, mucocutaneous or visceral disease ^ vary according to the species of infecting parasite. It is estimated that from three hundred million to three hundred fty million people live in areas where they are at risk for this parasite. It is not thought to be endemic in the United States, although a cutaneous form, Leishmania mexicana, has been detected in rodent populations in south Texas and there have been reports of locally acquired human cases in that region [11]. Leishmaniasis represents a classic example of parasite re-emergence in response to virtually every type of in uence imaginable. Like some of the abovementioned parasitoses, leishmaniasis has been affected by AIDS-related immunosuppression. An interesting experimental observation suggests that leishmania, and toxoplasma as well, may interact with HIV in a way that promotes the progression of both parasitic and viral diseases [12,13]. These parasites cause the macrophage to produce increased

316 S.L. James / FEMS Immunology and Medical Microbiology 18(1997) 313^317 levels of the cytokine, tumor necrosis factor alpha, which then stimulates the binding capability of the nuclear regulatory factor, NF kappa B, resulting in increased expression of HIV. Further, one might postulate that increased viral progression would in turn decrease the function of CD4+T lymphocytes and impair cell-mediated immunity, the protective arm of the immune response in the case of both of these protozoal infections, thus exacerbating subsequent parasite burden. An interesting, but preliminary, observation of altered leishmania infection in immunosuppressed individuals concerns a relatively obscure species of this parasite, Leishmania infantum, which is known to produce cutaneous disease in Mediterranean countries. There have been recent reports that normally dermotropic strains of this parasite tend to visceralize in immunosuppressed people. Moreover, new viceralizing strains not normally found in immunocompetent individuals have been observed. Thus, it appears that the parasite may be signi cantly changing its behavior in immunosuppressed individuals [14]. Among the other factors in uencing the re-emergence of leishmaniasis are ecological changes related to development projects. Water-management projects and changes in land use associated with the opening of the rain forest to commercial enterprises have led to an increased interaction between humans and the sand- y vector of this disease. In addition, changes in migration having to do with the movement of populations from non-endemic areas into endemic areas, and from rural endemic areas into previously non-endemic urban areas, are also signi cantly increasing the potential for transmission of this parasite to humans. Breakdown in public health infrastructure, either as a result of civil wars in endemic countries or as a result of lapses in national vector control programs, also has been shown to result in increased incidence of leishmania infection. And nally, there is evidence that this parasite is developing resistance in many parts of the world to antimonial drugs, long the treatment of choice. Although emphasis has been placed here on parasitic diseases that are currently either emerging or reemerging, it is important to remember that other parasitic infections are likely candidates for re-emergence in the future. For the purpose of this discussion, three in particular come to mind. One of these is the tape-worm parasite, Echinococcus multilocularis, which causes a zoonotic disease normally maintained in foxes and other wild canines. In people it can cause extensive damage to the liver and other organs. Unlike the many parasitic infections which are thought of as tropical, this particular parasite appears to be restricted to the northern hemisphere. The reason this tape worm is thought to have the potential for re-emergence as a human infection has to do with the observation of its increased prevalence in foxes, both in the United States and in Europe, and the spread of these foxes to regions that were not previously known to be endemic for the parasite. For example, in the continental U.S. it is thought that this parasite was introduced into southern Canada sometime prior to the 1960s in a region around the border between Canada and North Dakota. It has since spread into the midwestern states as far down as central Illinois, and there have been recent reports of the translocation of infected foxes from these areas to the southeastern United States for hunting purposes [15]. A more rapid southerly spread of the disease in wild animals might therefore be expected in the near future. The protozoan parasite, Trypanosoma cruzi, is the causative agent of Chagas disease or South American trypanosomiasis. It is prevalent throughout Latin America, where in its chronic form it causes cardiomyopathy and conditions known as megaesophagus and megacolon. In these endemic regions there has been an increased observation of the parasite in association with HIV infection and other immunosuppressive conditions. A very limited, unpublished, survey conducted a few years ago found seropositivity for this parasite of approximately one out of eighty- ve hundred blood donors in the Los Angeles and Miami areas, providing evidence for the potential emergence of this parasite in areas where infection is not currently endemic. The pork tape worm, Taenia solium, is also highly prevalent in Latin America and focally distributed in several other parts of the world where it has been shown to be a very signi cant factor in the occurrence of seizure disorders. Certainly this parasitic infection, like the others, has the potential to be spread as a result of increased travel and migration.

S.L. James /FEMS Immunology and Medical Microbiology 18 (1997) 313^317 317 In order to show that this is a real threat, we have only to look at the fact that there have been several locally acquired cases documented in the United States in people who have never traveled to endemic areas [16]. 5. Conclusion In conclusion, it is clear from the data presented in this paper and in others included in this conference that protozoan and helminthic parasites, like other microbial pathogens, are emerging and re-emerging throughout the world. The association of certain parasitic infections with immunosuppression has led to improved diagnosis, and thus renewed our recognition of the potential health importance of parasitic diseases endemic within developed countries. Moreover, given the dramatic changes that are occurring in human demographics, travel, and technology, it is unwise for residents of industrialized countries to ignore the global public health threat posed by `exotic' pathogens that are so common in developing countries. Unfortunately, there is a lack of solid epidemiological data on which to base accurate assessment of the current and potential impact of any of these emerging parasites, either in the United States or in the world. There are many extremely important epidemiological, basic and applied research questions that remain to be answered, especially those regardingmechanisms of transmission and pathogenicity. These questions concern: the role of asymptomatic infection, potential reservoir hosts, and other environmental sources of contamination; the role of strain variability in epidemic situations; and the nature of immunity to infection. The global nature of these diseases emphasizes the need for increased international collaboration to derive answers to these questions and to develop improved methods for detection and intervention. References [1] Widmer, G., Carraway, M. and Tzipori, S. (1996) Waterborne Cryptosporidium: a perspective from the USA. Parasitol. Today 12, 286^290. [2] MacKenzi, M.D. et al. (1994) A massive outbreak in Milwaukee of Cryptosporidium infection transmitted through the public water supply. New Engl. J. Med. 331, 161^167. [3] Goodgame, R.W. (1996) Understanding intestinal spore-formingprotozoa: cryptosporidia, microsporidia, isospora and cyclospora. Ann. Intern. Med. 124, 429^441. [4] CDC (1991). Outbreaks of diarrheal illness associated with cyanobacteria (blue-green algae) -like bodies, Chicago and Nepal, 1989 and 1990. Morb. Mortal. Weekly Rep. 40, 325^ 327. [5] Ortega, Y.R., Gilman, R.H. and Sterling, C.R. (1994) A new coccidian parasite (Apicomplexa: Eimeriidae) from humans. J. Parasitol. 80, 625^629. [6] CDC (1996) Outbreaks of Cyclospora cayetanensis infection - United States. Morb. Mortal. Weekly Rep. 45, 549^551. [7] Visvesvara, G.S., Schuster, F.L. and Martinez, A.J. (1993) Balamuthia mandrillaris, new genus, new species, agent of meningo-encephalitis in humans and animals. J. Eukaryot. Microbiol. 40, 504^514. [8] Stehr-Green, J.K., Marily, T.M. and Visvesvara, G.S. (1990) The epidemiology of Acanthamoeba keratitis in the United States. Am. J. Opthalmol. 107, 331^336. [9] Persing, D.H. et al. (1995) Infection with a Babesia-like organism in northern California. New Engl. J. Med. 332, 298^ 303. [10] Fox, A.S. et al. (1985) Fatal eosinophilic meningoencephalitis and visceral larva migrans caused by the raccoon ascarid Baylisascaris procyonis. New Engl. J. Med. 312, 1619^1623. [11] Kerr, S.F., McHugh, C.P. and Dronen, Jr., N.O. (1995) Leishmaniasis in Texas: prevalence and seasonal transmission of Leishmania mexicana in Neotoma micropus. Am. J. Trop. Med. Hyg. 53, 73^77. [12] Bernier, R. et al. (1995) Activation of Human Immunode ciency Virus Type 1 in monocytoid cells by the protozoan parasite Leishmania donovani. J. Virol. 69, 7282^7285. [13] Gazzinelli, R.T. et al. (1996) Infection of Human Immunode- ciency Virus 1 transgenic mice with Toxoplasma gondii stimulates proviral transcription in macrophages in vivo. J. Exp. Med. 183, 1645^1655. [14] Gradoni, L. and Gramiccia, M. (1994) Leishmania infantum tropism: strain genotype or host immune status? Parasitol. Today 10, 264^267. [15] Kammerer, W.S. and Schantz, P.M. (1993) Echinococcal disease. Infect. Dis. Clin. North Am. 7, 605^618. [16] Tsang, V.C.W. and Wilson, M. (1995) Taenia solium cysticercosis: an under-recognized but serious public health problem. Parasitol. Today 11, 124^126.