Optimizing Imaging Quality and Radiation Dose by the Age-Dependent Setting of Tube Voltage in Pediatric Chest Digital Radiography

Similar documents
Radiation Protection Dosimetry Advance Access published April 22, 2008

Doses from pediatric CT examinations in Norway Are pediatric scan protocols developed and in daily use?

Diagnostic imaging evaluating image quality using visual grading characteristic (VGC) analysis

EVALUATION OF EXPOSURE INDEX (lgm) IN ORTHOPAEDIC RADIOGRAPHY L. Lança 1, * and A. Silva 2

Mean glandular dose values used for the mammography screening program in Poland according to the type of image registration system

Evaluation and Optimization of Exposure Index in Lumbar Spine and Pelvis X-Ray

Survey of patients CT radiation dose in Jiangsu Province

Electronic collimation and radiation protection in paediatric digital radiography: revival of the silver lining

A Standardised Approach to Optimisation

RADIATION PROTECTION IN DIAGNOSTIC AND INTERVENTIONAL RADIOLOGY. L19: Optimization of Protection in Mammography

Debra Pennington, MD Director of Imaging Dell Children s Medical Center

THE LEVEL OF COMPLIANCE OF SELECTED NIGERIAN X-RAY DEPARTMENTS TO EUROPEAN GUIDELINES ON GOOD RADIOGRAPHIC TECHNIQUES

Patient dose in routine X-ray examinations in Yazd state

Measurement of Entrance Skin Dose and Calculation of Effective Dose for Common Diagnostic X-Ray Examinations in Kashan, Iran

Iranian Journal of Medical Physics

1 Course Syllabus + Study Guide for Lecture and Laboratory

Radiation exposure of the Yazd population from medical conventional X-ray examinations

"Optimal Dose Techniques and Image Quality: Can We Have Both?" Lorusso, J. R., Fitzgeorge, L., Lorusso, D., & Lorusso, E. 2014

CT Optimisation for Paediatric SPECT/CT Examinations. Sarah Bell

Evaluation of radiation dose and image quality following changes to tube potential (kvp) in conventional paediatric chest radiography

Survey of dose area product received by patients undergoing common radiological examinations in four centers in Nigeria

Estimation of Organ and Effective Doses for Neonate and Infant Diagnostic Cardiac Catheterizations

International Journal of Radiation Research, January 2017

Entrance surface dose measurements for routine X-ray examinations in Chaharmahal and Bakhtiari hospitals

Dual-Energy Chest Radiography with a Flat-Panel Digital Detector: Revealing Calcified Chest Abnormalities

Application of dose-area product compared with three other dosimetric quantities used to estimate patient effective dose in diagnostic radiology

The effect of breast shielding during lumbar spine radiography

Quality Assurance and Optimization of Radiation Protection of Patients in X-Ray Radiographic Examinations Using the Rejects Film Analysis

Course Syllabus + Study Guide for Lecture and Laboratory

P T.Ishiguchi 1, S.Iwanami 2, S.Kawatsu 1, T.Ishigaki 1 and S.Koga 3

Research Article. Corresponding author H. Osman

Ask EuroSafe Imaging. Tips & Tricks. Paediatric Imaging Working Group. Shielding in pediatric CT

DETERMINATION OF ENTRANCE SKIN DOSE FROM DIAGNOSTIC X-RAY OF HUMAN CHEST AT FEDERAL MEDICAL CENTRE KEFFI, NIGERIA

Improved image quality of low-dose thoracic CT examinations with a new postprocessing software*

Comparison of dual energy subtraction chest radiography and traditional chest X-rays in the detection of pulmonary nodules

Impact of digitalization of mammographic units on average glandular doses in the Flemish Breast Cancer Screening Program

Measurement of Absorbed Doses in Anatomical Phantoms

Translating Protocols Across Patient Size: Babies to Bariatric

ASJ. Magnification Error in Digital Radiographs of the Cervical Spine Against Magnetic Resonance Imaging Measurements. Asian Spine Journal

Patient effective dose evaluation for chest X-ray examination in three digital radiography centers

ABSTRACT I. INTRODUCTION

PATIENT ENTRANCE SKIN DOSES AT MINNA AND IBADAN FOR COMMON DIAGNOSTIC RADIOLOGICAL EXAMINATIONS

Joint ICTP/IAEA Advanced School on Dosimetry in Diagnostic Radiology and its Clinical Implementation May 2009

CT Quality Control Manual FAQs

Introduction and Background

Efficacy of Increasing Focus to Film Distance (FFD) for Patient s Dose and Image Quality in Pediatric Chest Radiography

Mammography. Background and Perspective. Mammography Evolution. Background and Perspective. T.R. Nelson, Ph.D. x41433

The impact of SID and collimation on backscatter in radiography

Optimization of x-ray units with CDRAD phantom: can it predict the radiologist opinion?

Radiation Protection Dosimetry Advance Access published September 13, 2006

ESTABLISHING DRLs in PEDIATRIC CT. Keith Strauss, MSc, FAAPM, FACR Cincinnati Children s Hospital University of Cincinnati College of Medicine

Doses from CT examinations to children suffering from hydrocephalus

Trends in Patients Exposure Doses during Radiographic Examination in Japan

Diagnostic reference levels in intraoral dental radiography in Korea

PATIENT DOSES FROM SCREEN-FILM AND FULL-FIELD DIGITAL MAMMOGRAPHY IN A POPULATION BASED SCREENING PROGRAMME

Evaluation of the doses delivered to premature babies in the Belgian Neonatal Intensive Care Units

Disclosures. Outline. Learning Objectives. Introduction. Introduction. Stereotactic Breast Biopsy vs Mammography: Image Quality and Dose.

Automatic Patient Centering for MDCT: Effect on Radiation Dose

Accounting for Imaging Dose

Acknowledgments. A Specific Diagnostic Task: Lung Nodule Detection. A Specific Diagnostic Task: Chest CT Protocols. Chest CT Protocols

Establishing a quality assurance baseline for radiological protection of patients undergoing diagnostic radiology

RADIATION DOSES TO PATIENTS UNDERGOING BARIUM MEAL AND BARIUM ENEMA EXAMINATIONS

Impact of quality control on radiation doses received by patients undergoing abdomen X-ray examination in ten hospitals

Medical Diagnostic Imaging

MA 2030 Radiography Skills for Medical Assistants

Introduction. Modalities used in imaging guidance. Flat panel detector. X-ray Imaging Dose to Patients in the Era of Image-Guided Radiation Therapy

CLINICAL AUDIT OF IMAGE QUALITY IN RADIOLOGY USING VISUAL GRADING CHARACTERISTICS ANALYSIS

Prof. Dr. Doğan BOR Ankara University Institute of Nuclear Science

Assessment of effective dose in paediatric CT examinations

Report. Surveying dose levels for computed radiography in the UK. KCARE King s College Hospital Denmark Hill London SE5 9RS

Invivo Dosimetry for Mammography with and without Lead Apron Using the Glass Dosimeters

Managing Radiation Risk in Pediatric CT Imaging

Application of international standards to diagnostic radiology dosimetry

To Shield or Not to Shield? Lincoln L. Berland, M.D.

REGULATION: QUALITY ASSURANCE PROGRAMS FOR MEDICAL DIAGNOSTIC X-RAY INSTALLATIONS N.J.A.C. 7:28-22

Digital chest radiography: collimation and dose reduction

A more accurate method to estimate patient dose during body CT examinations with tube current modulation

Radiation Protection Dosimetry Advance Access published February 17, Radiation Protection Dosimetry (2011), pp. 1 9

Report 85 ISSN March 1997 ISRN ULI-RAD-R--85--SE

Entrance Surface Dose Measurement on the Thyroid Gland in Orthopantomography: The Need for Optimization

MEASUREMENT OF THE EQUIVALENT INDIVIDUAL DOSES FOR PATIENTS IN ANGIOGRAPHY PROCEDURE AND INTERVENTIONAL RADIOLOGY WITH THERMOLUMINESCENT SYSTEMS

Retrospective evaluation of exposure index (EI) values from plain radiographs reveals important considerations for quality improvement

CT Radiation Risks and Dose Reduction

Cone Beam CT Protocol Optimisation for Prostate Imaging with the Varian Radiotherapy OBI imaging system. Dr Craig Moore & Dr Tim Wood

RC-14 Radiation Protection in Paediatric Radiology

X-Ray & CT Physics / Clinical CT

CURRENT CT DOSE METRICS: MAKING CTDI SIZE-SPECIFIC

Local reference dose evaluation in conventional radiography examinations in Iran

OPTIMISATION OF PATIENT PROTECTION AND IMAGE QUALITY IN DIAGNOSTIC RADIOLOGY

Measurement of organ dose in abdomen-pelvis CT exam as a function of ma, KV and scanner type by Monte Carlo method

STANDARD OF PRACTICE. Dental CT Scanners CONTENTS. April 2011

Radiological Technology (Radiography): Emergence of a Profession

Survey of Mammography Practice: Initial Results from Serbia

How to Develop CT Protocols for Children

AAPM Task Group 180 Image Guidance Doses Delivered During Radiotherapy: Quantification, Management, and Reduction

Survey Effect of the Corrective Actions and Quality Control in Image Quality and Patient Dose in Radiography Examinations

Testing of the Implementation of the Code of Practice on Dosimetry in X-ray Diagnostic Radiology Hungarian Contribution

Pediatric chest HRCT using the idose 4 Hybrid Iterative Reconstruction Algorithm: Which idose level to choose?

Receptor dose and Patient Dose in Radiographic exposures - a 15 year review

Transcription:

Original Article http://dx.doi.org/10.48/kjr.01.14.1.16 pissn 19-699 eissn 005-80 Korean J Radiol 01;14(1):16-11 Optimizing Imaging Quality and Radiation Dose by the Age-Dependent Setting of Tube Voltage in Pediatric Chest Digital Radiography Hui Guo, MD, Wen-Ya Liu, MD, PhD, Xiao-Ye He, MD, Xiao-Shan Zhou, MD, Qun-Li Zeng, MD, Bai-Yan Li, MD All authors: Xinjiang Medical University, Affiliated Hospital 1, Medical Imaging Research Center, Urumqi 80054, China Objective: The quality and radiation dose of different tube voltage sets for chest digital radiography (DR) were compared in a series of pediatric age groups. Materials and Methods: Forty-five hundred children aged 14 years (yr) were randomly divided into four groups according to the tube voltage protocols for chest DR: lower kilovoltage potential (kvp) (A), intermediate kvp (B), and higher kvp (C) groups, and the fixed high kvp group (controls). The results were analyzed among five different age groups (1 yr, yr, -7 yr, 11 yr and 114 yr). The dose area product (DAP) and visual grading analysis score (VGAS) were determined and compared by using one-way analysis of variance. Results: The mean DAP of protocol C was significantly lower as compared with protocols A, B and controls (p < 0.05). DAP was higher in protocol A than the controls (p <0.001), but it was not statistically significantly different between B and the controls (p = 0.976). Mean VGAS was lower in the controls than all three protocols (p < 0.001 for all). Mean VGAS did not differ between protocols A and B (p = 0.4), but was lower in protocol C than A (p = 0.008) and B (p = 0.049). Conclusion: Protocol C (higher kvp) may help optimize the trade-off between radiation dose and image quality, and it may be acceptable for use in a pediatric age group from these results. Index terms: Digital radiography; Children; Chest; Dose area product; Visual grading analysis score INTRODUCTION Pediatric radiography is a challenging procedure from the perspective of image quality and radiation dosage. Firstly, pediatric images inherently have relatively low contrast. Secondly, it is well-known that the dose of radiation is an extremely important issue in children, who are significantly more radiosensitive and more likely to manifest radiation- Received February, 01; accepted after revision June 7, 01. Corresponding author: Bai-Yan Li, MD, Xinjiang Medical University, Affiliated Hospital 1, Medical Imaging Research Center, Urumqi 80054, China. Tel: (86) 0994618 Fax: (86) 0994419 E-mail: byl018@16.com This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited. induced changes over their lifetimes. Children are approximately ten times more sensitive to radiation-induced cancer than middle-aged adults and three times more sensitive than the population average (1). Over recent decades, a shift has taken place in digital radiography (DR). The radiation dose given to patients should be as low as is reasonably achievable (ALARA), while still providing an image quality that is adequate to enable an accurate diagnosis (, ). The reduction of the radiation dose according to the ALARA principle requires not only selecting the most appropriate X-ray technology, but also optimizing the whole imaging procedure through the selection of optimal imaging parameters. To date, however, most data has been obtained from phantom studies (4-8), and only a few reports are available that describe a clinical pediatric experience (9-11). DR has been shown to provide good resolution with no significant difference in diagnostic quality at reduced radiation doses 16 Korean J Radiol 14(1), Jan/Feb 01

Age-Dependent Setting of Tube Voltage in Pediatric Chest DR (1, 1). Volk s study suggested that dose reduction of approximately 575% had no significant impact on image quality (14). However, a more efficient detector on its own is not sufficient to ensure a consistent low-dose operation in routine clinical practice. Hence, the purpose of our study was to assess optimized radiation dosages and image quality by altering the tube voltage settings for digital chest radiography in a large cohort of children, subdivided according to age. This prospective study was conducted at the Medical Imaging Research Center of the First Affiliated Hospital of the Xinjiang Medical University. Between January 008 and October 010, 4500 pediatric patients underwent DR chest imaging at our institution. Pediatric patients were arbitrarily categorized into the following five age groups: 1 year (yr), yr, -7 yr, 11 yr and 114 yr. Sixtyseven patients were excluded, thus the study was conducted with pediatric radiographs from 44 cases. MATERIALS AND METHODS A large sample of patients was collected for this triple blinded, randomized controlled trial, which was approved by the local institutional review board (ethics approval No.: 00X-0). In this study, patients or guardians provided written informed consent. The study was successfully registered in the Chinese clinical trials registry (registration number: ChiCTR-DT-0000006). Study Population All subjects gave their informed consent after receiving a full explanation regarding the nature of the study. The inclusion criteria were as follows: 1) patients were aged from birth to 14 years old, ) written informed consent was obtained, and ) anteroposterior (AP) or posteroanterior chest imaging was performed. The exclusion criteria were as follows: 1) the patient withdrew from the study after submitting the written informed consent; ) written informed consent could not be obtained; or ) DR examinations of other types were performed. Study Design Details regarding the study design are shown in Figure 1. Children were randomly divided into four groups: A) lower kilovoltage potential (kvp) group, B) intermediate kvp group, and C) higher kvp group, and the fixed high kvp group (controls). Following the guidance of the European Commission reference for tube voltage in pediatric imaging (15) and the work by Yakoumakis et al. (16), we designed protocol A to be 50 kv, 55 kv, 60 kv, 70 kv and 80 kv in the five age groups (1 yr, yr, -7 yr, 11 yr and 1 14 yr, respectively). Protocol B was 60 kv, 65 kv, 70 kv, 80 kv and 90 kv, respectively and protocol C was 70 kv, 75 kv, 80 kv, 90 kv, and 100 kv, respectively. The controls received 10 kv, which is the routine value for adult radiography. All subjects were completely randomized into groups and their assignation was blinded to the radiologists. SPSS software was used to generate 4500 random numbers in a random sequence; these were marked A, B, C or D and the numbers were placed into individual envelopes. The test designer managed the envelopes. The Medical Imaging Research Center clinicians who collected subjects depending on the Stdy subject (4500) Randomizd groups Protocol A (109) Protocol B (1151) Protocol C (115) Control subject (114) Age-dependent groups (00) (16) - (9) (8) 114 (09) () (1) - (55) (41) 114 (0) (10) (14) - (49) () 114 (09) (05) (4) - (5) (40) 114 (0) Tube voltage value 50 kv 55 kv 60 kv 70 kv 81 kv 60 kv 66 kv 70 kv 81 kv 90 kv 70 kv 7 kv 81 kv 90 kv Exclused 5 4 6 4 5 4 5 Included in analysis 197 11 7 5 05 17 08 5 8 7 05 11 46 1 07 01 9 51 7 17 Fig. 1. Study design flow chart. Number in brackets of boxes for first three layers is number of children who underwent X-ray radiography. Number in boxes of third layer is children s age. Number in last two layers is number of children who have been excluded or included. Korean J Radiol 14(1), Jan/Feb 01 17

Guo et al. inclusion criteria were allocated into four groups according to the randomized sequence. Clinicians were responsible for recording the name and serial number of subjects. Subjects underwent DR for the corresponding tube voltage according to the group marked inside the envelope. Two assistants recorded the data. Prior to the data being statistically analyzed, patients, researchers and statisticians caught completely blinded to patient allocation. Radiography Equipment Two Philips Digital Diagnost TH systems (Philips, Eindhoven, the Netherlands) with direct digital image intensifiers were respectively equipped with a display for computing the dose area product (DAP). The automatic exposure control (AEC) of the flat-panel detector system was adjusted to a speed class of 400. An AEC with a center chamber was used throughout the clinical setting. Automatic exposure was utilized in every patient. The Philips flat-panel detector has a nine pixel matrix size, where each pixel is 14 µm, and the actual region detector testing area is 4 x 4 cm. The plate material of both systems was non-crystalline silicone. The two systems had moving grids, with a ratio of 1 : 8 and 1 : 1, respectively. We performed phantom weekly equipment testing and calibration for both DAP and AEC to ensure the stability of the systems. All images displayed soft reading films, where the display was BarcoMed 5MP (dual), and the resolution was 4096 x 560. The picture archiving and communication system was a new communication (Syngo, erlangen, Germany) image workstation of information management systems (Siemens Medical Systems, erlangen, Germany). Radiation Dose Measurement Dose area product is a product of the surface area for patients exposed to radiation at the entrance to the skin (in square centimeters or square meters) multiplied by the radiation dose at this surface in grays (17). The DAP reading was taken from the DAP meter, which was mounted on the tube collimator. A corresponding dose index that could be correlated with field size was the DAP. Image Evaluation Five readers having -0 yrs of experience in chest radiology independently evaluated all the images. Two of the readers had yrs of radiology experience while the remaining three readers had 8, 10, and 0 yrs of experience, respectively. They were blinded to the observer with which the images were obtained. The time for reading the images was not limited, and each observer was allowed to select window levels and window widths on the monitor screen. Before the tests, the radiologists were trained with five representative cases that did not belong to the observational study. Clinical image quality was assessed by five radiologists using a visual grading analysis score (VGAS) technique based on the revised Commission of European Communities imaging criteria (18). The quality of the exposure criteria included: A) position and symmetry of the scapula and sternoclavicular joint: a. sternoclavicular joint symmetry; b. scapulas spin out; B) lung fields: a. within the zone; b. in the zone; c. take-away; C) Trachea shows: a. pipe; b. carina; c. left main bronchus; d. right main bronchus; e. segmental bronchus; D) mediastinum, a: between one and four thoracic vertebrae; b: most thoracic vertebrae; c: all thoracic vertebrae; d: sections of the aorta; e: right cardiac border; f: left cardiac border; E) ribs: a. bone cortex; b. trabecular bone; and F) chest wall: a. soft tissue; b. fat line; c. breast tissue. For parameters A-F, one point was given if each point was shown, and 0 points were given if they were not displayed. Parameter G represented noise, and noise was usually defined as the visibility of an image by CCD/CMOS or digital signal system made of the errors information. Noise was rated as follows: a: free of noise ( points); b. scarce noise ( points); c. significant noise, but did not affect diagnosis (1 point); d: obvious noise, no diagnosis possible (0 point). 0 point signifies significant noise and no display of indicators from A to F, and 4 points means no noise and display of all indicators from A to F. Image evaluation was therefore rated as excellent with a composite score of 18-4 points, good with a score of 14-17 points, moderate with 11 points, and poor if the image had less than 10 points. Statistical Analysis The mean values for DAP and VGAS of four groups were compared with one-way analysis of variance (ANOVA). Differences with p < 0.05 were considered statistically significant. When the overall differences were statistically significant, post hoc analysis was performed with the least significant difference (LSD) method. We used the mean DAP and VGAS obtained in control subjects as the control for the LSD method and compared them with protocols A, B and C. The mean DAP and VGAS of all age groups were then 18 Korean J Radiol 14(1), Jan/Feb 01

Age-Dependent Setting of Tube Voltage in Pediatric Chest DR compared with the LSD method. These data were normally distributed. All statistical calculations were performed using Statistical Package for the Social Sciences (SPSS) software (version 17.00) for Windows (SPSS, IL, Chicago, USA). RESULTS Radiation Dose The mean DAP values for each tube voltage group were shown in Table 1. Using one-way ANOVA, the mean DAP in the age subgroups was statistically significant (F = 11.4, p < 0.001). The mean DAP for protocol A was significantly higher than the controls (p < 0.001), and it was not statistically significantly different between protocol B and the controls (p = 0.75). Differences in the pair-wise comparisons indicated that the radiation dose of protocol C was the lowest in four groups; and the reduction of the radiation dose was approximately 18.75% compared with the controls. Thus, the overall difference of the mean DAP across the four groups was statistically significant (F = 44.4, p < 0.001). Also, there were significant differences between the mean DAP in patients aged years and those in the other age groups (p 0.00 for all), indicating that the radiation dose in children aged years was higher than other ages (Table ). Image Quality The mean VGAS for each group is shown in Table 1. Using one-way ANOVA, the overall difference of the mean VGAS between the four groups was statistically significant (F =.7, p < 0.001). The mean VGAS was not significantly different between the five age groups (F = 1.87, p = 0.180). The mean VGAS was significantly lower for the controls than protocols A, B and C (p < 0.001 for all), indicating that the image quality for all three protocols surpassed the standard adult radiation dose. Further, there was no significant difference between the mean VGAS of protocol A and protocol B (p = 0.4). The image quality was lower in protocol C than in protocol A (p = 0.008) and protocol B (p = 0.049) (Table ). DISCUSSION This study demonstrated that the optimization of tube voltages for digital chest radiography in children, in accordance with the ALARA principle, had lower radiation doses and better diagnostic image quality. Protocol C (higher Table 1. DAP and VGAS Mean ± Standard Deviations for All Four Tube Voltage Groups in Each Age Group Protocol A Protocol B Protocol C Control Subjet Age (y) Kvp DAP VGAS Kvp DAP VGAS Kvp DAP VGAS Kvp DAP VGAS 50 0.4 ± 0.08 18.0 ± 6.71 60 0.1 ± 0.1 17.89 ± 6.5 70 0.9 ± 0.09 17.78 ± 6.58 10 0.4 ± 0.1 16.67 ± 7.71 55 0.56 ± 0.7 18.06 ± 6.5 65 (66) 0.9 ± 0.1 17.95 ± 6. 75 (7) 0.4 ± 0.1 17.88 ± 6.1 10 0.40 ± 0.15 16.60 ± 8.5-60 0.4 ± 0.0 18.11 ± 6.1 70 0.1 ± 0.15 17.9 ± 6.71 80 (81) 0. ± 0.07 17.7 ± 6.57 10 0. ± 0.14 16.68 ± 8.1 70 0.47 ± 0.1 17.98 ± 6.4 80 (81) 0.9 ± 0.09 17.8 ± 6.7 90 0.1 ± 0.10 17.69 ± 6.1 10 0.5 ± 0.10 16.69 ± 8.4 114 80 (81) 0.44 ± 0.16 17.96 ± 6. 90 0.5 ± 0.05 17.77 ± 6.15 100 (10) 0.6 ± 0.08 16.61 ± 6.7 10 0.7 ± 0.07 16.57 ± 7.1 Overall 0.46 ± 0.06 18.0 ± 0.06 0.1 ± 0.05 17.87 ± 0.08 0.6 ± 0.05 17.5 ± 0.5 0. ± 0.06 16.64 ± 0.05 Note. Number in parenthesis is actual kvp value. Kvp = peak tube voltage, DAP = dose area product, VGAS = visual grading analysis score Korean J Radiol 14(1), Jan/Feb 01 19

Guo et al. Table. DAP and VGAS Mean Pair-Wise Comparison between Four Tube Voltage Set Groups DAP VGAS Protocol A Protocol B Protocol C Control Subjet DAP VGAS DAP VGAS DAP VGAS DAP VGAS Protocol A 0.46 ± 0.06 18.0 ± 0.06 - - 0.000 0.4 0.000 0.008 0.000 0.000 Protocol B 0.1 ± 0.05 17.87 ± 0.08 NS NS - - 0.08 0.049 0.750 0.000 Protocol C 0.6 ± 0.05 17.5 ± 0.5 NS NS NS NS - - 0.015 0.000 Control subject 0. ± 0.06 16.64 ± 0.05 NS NS NS NS NS NS - - Note. Using one-way ANOVA, post hoc analysis was performed with the LSD method. DAP = dose area product, VGAS = visual grading analysis score, NS = no statistics, ANOVA = analysis of variance, LSD = least significant difference kvp) gave the lowest radiation dose. That being said, clinical research is necessary to fully exploit the potential of DR systems for dose reduction in pediatric examinations. Lower kvp settings are often used in DR in order to achieve the optimal contrast-to-noise ratio and increase tissue contrast. Potential advantages include the increased contrast for not only pathologies, but also for soft tissue compared to bones. Pediatric imaging techniques vary greatly due to the extremely large differences in patient size and weight. Therefore, different parameter settings may be necessary to gain optimal results for the same anatomical regions, according to the child s age. However, pediatric disease states can mimic radiographic noise, so optimal and consistent image acquisition processes are essential in order to distinguish physical disease from poor image quality. Pediatric images inherently have relatively low contrast. Thus, lower kvp settings are often used in DR in order to achieve the optimal contrast-to-noise ratio and increase tissue contrast. The results of previous studies (, 7, 19) have suggested better image contrast or an improved signal-to-noise ratio for images. At identical effective radiation doses for patients, low kvp settings have been found to increase the signal-to-noise ratio and significantly increase image quality. Previous investigators have suggested that tube potential should be increased (0) or decreased (9, ) in order to reduce the radiation dose to the patient. Clinical evaluations (4, 5) using the visibility of anatomical structures revealed that flat-panel detectors can produce images that were of equal or superior quality at 50% of the radiation dose compared to screen-film (SF) systems. Other studies (4-6, 10, 6) indicated the possibility that by decreasing tube voltage, image quality could be improved. In this study, the clinical radiation dose is measured with DAP, which has become increasingly used as it provides a convenient and accurate method for measuring the dose radiation (1, 19). Sæther et al. (10) studied the comparable data regarding age-related DAP from thoracic and pelvic radiological examinations of children where two sets of DR systems was used as an input to estimate diagnostic reference levels. The present study only used a single type of DR system. Billinger et al. (7) reported DAP values for chest, skull and abdominal X-ray procedures in neonates and children aged 1 yr, 5 yr, 10 yr and 15 yr. There were limitations to our study. Firstly, the present study did not evaluate the image quality for different chest pediatric diseases. Secondly, we only performed a subset analysis of our cohort based on patient age, and excluded any possible effects that might be present as a result of sex and body mass index when evaluating radiation dose protocols. Conclusions The use of DAP and VGAS of protocol C (higher kvp) can help to optimize the trade-off between radiation dose and image quality, indicating that protocol C may be acceptable for use in a pediatric age group. Acknowledgments We gratefully acknowledge the patience, statistical consultant, other radiology technicians and carefulness of the additional readers in evaluating the image qualities. In particular, we must acknowledge Xinjiang Medical University which had supported the Department(s) where the work was carried out and had sponsored the study in funds. REFERENCES 1. Brenner D, Elliston C, Hall E, Berdon W. Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 001;176:89-96. Vano E. ICRP recommendations on Managing patient dose in digital radiology. Radiat Prot Dosimetry 005;114:16-10. Busch HP, Faulkner K. Image quality and dose management in digital radiography: a new paradigm for optimisation. Radiat Prot Dosimetry 005;117:14-147 4. Honey ID, Mackenzie A, Evans DS. Investigation of optimum 10 Korean J Radiol 14(1), Jan/Feb 01

Age-Dependent Setting of Tube Voltage in Pediatric Chest DR energies for chest imaging using film-screen and computed radiography. Br J Radiol 005;78:4-47 5. Tingberg A, Sjöström D. Optimisation of image plate radiography with respect to tube voltage. Radiat Prot Dosimetry 005;114:86-9 6. Ullman G, Sandborg M, Dance DR, Hunt RA, Alm Carlsson G. Towards optimization in digital chest radiography using Monte Carlo modelling. Phys Med Biol 006;51:79-74 7. Uffmann M, Neitzel U, Prokop M, Kabalan N, Weber M, Herold CJ, et al. Flat-panel-detector chest radiography: effect of tube voltage on image quality. Radiology 005;5:64-650 8. Rong XJ, Shaw CC, Liu X, Lemacks MR, Thompson SK. Comparison of an amorphous silicon/cesium iodide flatpanel digital chest radiography system with screen/film and computed radiography systems--a contrast-detail phantom study. Med Phys 001;8:8-5 9. Willis CE. Optimizing digital radiography of children. Eur J Radiol 009;7:66-7 10. Sæther HK, Lagesen B, Trægde Martinsen AC, Holsen EP, Øvrebø KM. Dose levels from thoracic and pelvic examinations in two pediatric radiological departments in Norway - a comparison study of dose-area product and radiographic technique. Acta Radiol 010;51:11114 11. Olgar T, Onal E, Bor D, Okumus N, Atalay Y, Turkyilmaz C, et al. Radiation exposure to premature infants in a neonatal intensive care unit in Turkey. Korean J Radiol 008;9:416-419 1. Samei E, Hill JG, Frey GD, Southgate WM, Mah E, Delong D. Evaluation of a flat panel digital radiographic system for lowdose portable imaging of neonates. Med Phys 00;0:60 607 1. Strotzer M, Völk M, Fründ R, Hamer O, Zorger N, Feuerbach S. Routine chest radiography using a flat-panel detector: image quality at standard detector dose and % dose reduction. AJR Am J Roentgenol 00;178:169-171 14. Völk M, Hamer OW, Feuerbach S, Strotzer M. Dose reduction in skeletal and chest radiography using a large-area flatpanel detector based on amorphous silicon and thalliumdoped cesium iodide: technical background, basic image quality parameters, and review of the literature. Eur Radiol 004;14:884 15. European guidelines on quality criteria for diagnostic radiographic images in pediatrics. Luxembourg, EC: EUR 1661 report;1996. Available at: http://www.e-radiography.net/ regsetc/european_guide_children_extract.pdf 16. Yakoumakis EN, Tsalafoutas IA, Aliberti M, Pantos GI, Yakoumakis NE, Karaiskos P, et al. Radiation doses in common X-ray examinations carried out in two dedicated paediatric hospitals. Radiat Prot Dosimetry 007;14:48-5 17. Dougeni ED, Delis HB, Karatza AA, Kalogeropoulou CP, Skiadopoulos SG, Mantagos SP, et al. Dose and image quality optimization in neonatal radiography. Br J Radiol 007;80:80815 18. Båth M, Månsson LG. Visual grading characteristics (VGC) analysis: a non-parametric rank-invariant statistical method for image quality evaluation. Br J Radiol 007;80:169-176 19. Nickoloff EL, Lu ZF, Dutta AK, So JC. Radiation dose descriptors: BERT, COD, DAP, and other strange creatures. Radiographics 008;8:149-1450 0. Doherty P, O Leary D, Brennan PC. Do CEC guidelines underutilise the full potential of increasing kvp as a dose-reducing tool? Eur Radiol 00;1:199-1999 1. Geijer H, Norrman E, Persliden J. Optimizing the tube potential for lumbar spine radiography with a flat-panel digital detector. Br J Radiol 009;8:6-68. Sandborg M, Tingberg A, Ullman G, Dance DR, Alm Carlsson G. Comparison of clinical and physical measures of image quality in chest and pelvis computed radiography at different tube voltages. Med Phys 006;:4169-4175. Geijer H, Persliden J. Varied tube potential with constant effective dose at lumbar spine radiography using a flat-panel digital detector. Radiat Prot Dosimetry 005;114:445 4. Fink C, Hallscheidt PJ, Noeldge G, Kampschulte A, Radeleff B, Hosch WP, et al. Clinical comparative study with a largearea amorphous silicon flat-panel detector: image quality and visibility of anatomic structures on chest radiography. AJR Am J Roentgenol 00;178:48486 5. Bacher K, Smeets P, Bonnarens K, De Hauwere A, Verstraete K, Thierens H. Dose reduction in patients undergoing chest imaging: digital amorphous silicon flat-panel detector radiography versus conventional film-screen radiography and phosphor-based computed radiography. AJR Am J Roentgenol 00;181:9-99 6. Moore CS, Beavis AW, Saunderson JR. Investigation of optimum X-ray beam tube voltage and filtration for chest radiography with a computed radiography system. Br J Radiol 008;81:77777 7. Billinger J, Nowotny R, Homolka P. Diagnostic reference levels in pediatric radiology in Austria. Eur Radiol 010;0:15 1579 Korean J Radiol 14(1), Jan/Feb 01 11