How I deploy arterial grafts

Similar documents
Importance of the third arterial graft in multiple arterial grafting strategies

CORONARY ARTERY BYPASS GRAFTING (CABG) (Part 1) Mark Shikhman, MD, Ph.D., CSA Andrea Scott, CST

Radial Artery Grafting: Why Do It? (Evidence Basis)

Accepted Manuscript. Radial artery and bilateral mammary arteries in CABG: how much is too much? Derrick Y. Tam, MD, Stephen E.

Incremental Value of Multiple Arterial conduits in CABG

SURGICAL MYOCARDIAL REVASCULARIZATION: ARTERIAL VS VENOUS GRAFTS, SINGLE VS MULTIPLE GRAFTS?

CONTEMPORARY USE OF ARTERIAL GRAFTS DURING CORONARY ARTERY BYPASS SURGERY: PARADIGM SHIFT? OR A LITTLE (MORE) TALK THAT NEEDS A LOT MORE ACTION

The most important advantage of CABG over PTCA is its

Mandatory knowledge about natural history of coronary grafts. P.Sergeant P. Maureira K.U.Leuven, Belgium

Improved long-term survival has been demonstrated by

Optimal Conduit Strategy in 2017

Randomized comparison of single versus double mammary coronary artery bypass grafting: 5 year outcomes of the Arterial Revascularization Trial

Early Angiographic Results of Multivessel Off-Pump Coronary Artery Bypass Grafting

Heart may be rotated but not compressed

Myocardial revascularization without cardiopulmonary

F mary artery (IMA) graft carries a greater long-term

OPCABG for Full Myocardial Revascularisation How we do it

Declaration of conflict of interest NONE

Long-term graft patency after CABG: effects of distal anastomosis angle

Off-pump coronary artery bypass (OPCAB) grafting has

The arterial switch operation has been the accepted procedure

Coronary Artery Bypass Grafting Using the Gastroepiploic Artery in 1,000 Patients

Angiographic 5-Year Follow-up Study of Right Gastroepiploic Artery Grafts

Transit-time flow characteristics of in situ right gastroepiploic arterial grafts in coronary artery bypass grafting

Patencies of 2,127 Arterial to Coronary Conduits Over 15 Years

Tehnique for Using Soft, Flexible Catheter Stents in Aortocoronary Vein Bypass Operations

Lecture 2: Clinical anatomy of thoracic cage and cavity II

Implications of the New ESC/EACTS Guidelines for Myocardial Revascularization in 2011

Minimally invasive direct coronary artery bypass for left anterior descending artery revascularization analysis of 300 cases

CPT Code Details

Since its reintroduction into coronary artery surgery in the

Blood supply of the Heart & Conduction System. Dr. Nabil Khouri

FFR and CABG Emanuele Barbato, MD, PhD, FESC Cardiovascular Center Aalst, Belgium

CORONARY ARTERY BYPASS GRAFT (CABG) MEASURES GROUP OVERVIEW

The clinical and prognostic benefits of coronary artery bypass grafting (CABG)

On-Pump vs. Off-Pump CABG: The Controversy Continues. Miguel Sousa Uva Immediate Past President European Association for Cardiothoracic Surgery

Transit time flow measurement in composite arterial revascularisation

Off-Pump Coronary Artery Bypass Grafting With Skeletonized Bilateral Internal Thoracic Arteries in Insulin-Dependent Diabetics

The Second Best Arterial Graft:

Left Subclavian Artery Stenosis in Coronary Artery Bypass: Prevalence and Revascularization Strategies

Safe Approach for Redo Coronary Artery Bypass Grafting Preventing Injury to the Patent Graft to the Left Anterior Descending Artery

Off-pump coronary artery bypass surgery with bilateral internal thoracic arteries: the Leipzig experience

Received 20 January 2008; received in revised form 30 June 2008; accepted 11 July 2008; Available online 23 August 2008

Coronary artery bypass grafting has been a historically. Multislice CT Evaluation of Coronary Artery Bypass Graft Patients SYMPOSIA

2 Aortic Arch Debranching UCSF Vascular Symposium /14/16. J Endovasc Ther 2002;9:suppl 2; II98 105

Reduced Strokes in the Elderly: The Benefits of Untouched Aorta Off-Pump Coronary Surgery

Skeletonized and Pedicled Internal Thoracic Artery Grafts: Effect on Free Flow During Bypass

Surgical vs. Percutaneous Revascularization in Patients with Diabetes and Acute Coronary Syndrome

Dual inflow, total-arterial, anaortic, off-pump coronary artery bypass grafting: how to do it

Chapter 45. Utility of Computed Tomographic Coronary Angiography Post Coronary Revascularization BACKGROUND CORONARY ARTERY BYPASS GRAFTING

THE VESSELS OF THE HEART

Analysis by Early Angiography of Right Internal Thoracic Artery Grafting Via the Transverse Sinus. Predictors of Graft Failure

J. Schwitter, MD, FESC Section of Cardiology

About OMICS International Conferences

Bilateral internal mammary arteries: evidence and technical considerations

Distal Coronary Artery Dissection Following Percutaneous Transluminal Coronary Angioplasty

The radial artery is protective in women and men following coronary artery bypass grafting a substudy of the radial artery patency study

Kinsing Ko, Thom de Kroon, Najim Kaoui, Bart van Putte, Nabil Saouti. St. Antonius Hospital, Nieuwegein, The Netherlands

Potential Use of the Intercostal Artery as an In Situ Graft: A Cadaveric Study

The incidence of failure of saphenous vein grafts in the

The advantages in using the internal mammary artery

Off-Pump Bilateral Internal Thoracic Artery Grafting in Right Internal Thoracic Artery to Right Coronary System

2017 Cardiology Survival Guide

Anatomic variants of the normal coronary artery circulation

Pallav J. Shah a, Manoj Durairaj a, Ian Gordon b, John Fuller c, Alex Rosalion a, Siven Seevanayagam a, James Tatoulis c, Brian F.

Hybrid coronary revascularization for the treatment of multivessel coronary artery disease

Thank you, chairpersons. Ladies and gentlemen, it is a great honor to have this opportunity to report and discuss the current status of off-pump CABG

CABG Surgery following STEMI

Predictors and prevention of flow insufficiency due to limited flow demand

Intraoperative Fluorescence Imaging System for On-Site Assessment of Off-Pump Coronary Artery Bypass Graft

Over the last years, off-pump coronary artery bypass (OPCAB) and. Early bypass occlusion after deployment of Nitinol connector devices.

Intraoperative Surgical Guidance and Quality Assessment

OPCAB IS NOT BETTER THAN CONVENTIONAL CABG

MIDCAB Approach for Single Vessel Coronary Artery Bypass Graft

Chronic Total Occlusion: a case for coronary artery bypass grafting

Disease of the aortic valve is frequently associated with

The use of both the left and right internal thoracic arteries (ITAs) for revascularization

Conduits for Coronary Bypass: Internal Thoracic Artery

Anomalous Left Main Coronary Artery: Not Always a Simple Surgical Reimplantation

Transit-Time Blood Flow Measurements in Sequential Saphenous Coronary Artery Bypass Grafts

Saphenous Vein Autograft Replacement

Mario Gaudino*, Francesco Alessandrini, Claudio Pragliola, Carlo Cellini, Franco Glieca, Nicola Luciani, Fabiana Girola, Gianfederico Possati

How to manage the left subclavian and left vertebral artery during TEVAR

TSDA ACGME Milestones

Cardiac, Vascular and Transplant Surgery Quality Assessment. Intraoperative Ultrasound Imaging and TTFM

Most Patients with Elective Left Main Disease. Farrel Hellig

AP2 Lab 3 Coronary Vessels, Valves, Sounds, and Dissection

Tyler Bedford, MD; J. Kyle Phillips, MD; Giovanni Gagliardo, MD*; Michael Cicchillo, MD; Pyongsoo Yoon, MD

The Rastelli procedure has been traditionally used for repair

Port-Access Multivessel Coronary Artery Bypass Grafting

The Influence of Previous Percutaneous Coronary Intervention in Patients Undergoing Off-Pump Coronary Artery Bypass Grafting

Mediastinum and pericardium

Anatomical studies concerning technical feasibility of minimally invasive axillocoronary bypass grafting 1

Multiple Neurovascular... Pit Baran Chakraborty, Santanu Bhattacharya, Sumita Dutta.

Minimal access aortic valve surgery has become one of

A Pictorial Review of Coronary Artery Bypass Grafts at Multidetector Row CT*

I thoracic artery (LITA) anastomosed to the anterior

Distribution Of Grafts In Aortocoronary Bypass Surgery: Cardiovascular Surgery Fellowship Experience.

Beating-heart surgery (off-pump coronary artery bypass

Disclosures The PREVENT IV Trial was supported by Corgentech and Bristol-Myers Squibb

Transcription:

Art of Operative Techniques How I deploy arterial grafts David P. Taggart John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK Correspondence to: David P. Taggart, MD(Hons), PhD, FRCS, FESC. Professor of Cardiovascular Surgery, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK. Email: David.taggart@ouh.nhs.uk. There are currently around one million coronary bypass graft (CABG) procedures performed worldwide annually and despite two decades of evidence to support the use of a second arterial graft, if not total arterial grafting, the stark reality is that in contemporary practice 80% of all grafts used for CABG are saphenous vein grafts (SVG). The following description of how I deploy arterial grafts has been developed over more than two decades of clinical practice and largely self-taught by a process of trial and error and most importantly dictated by ease of use rather than personal robust angiographic data of long-term patency (although there is other such existing data in the literature for some of these techniques). The fact that there are numerous potential variants of deploying multiple arterial grafts underpins the fact that there is no single operation that is ideal in every patient it is not a case of one size fits all as would be the situation for the use of a single internal thoracic (ITA) and supplemental vein grafts. Keywords: Internal thoracic (ITA); radial (RA); off-pump; coronary bypass graft (CABG) Submitted Sep 18, 2018. Accepted for publication Sep 20, 2018. doi: 10.21037/acs.2018.09.06 View this article at: http://dx.doi.org/10.21037/acs.2018.09.06 Introduction In terms of grafts used in addition to the left internal thoracic (), the majority of evidence focuses on use of the right ITA () or radial (RA). In the West the RA is largely used as a second or third arterial graft while the use of the gastroepiploic (GEA) remains common by some surgeons in the Far East. While there is a very substantial observational literature supporting the use of bilateral ITA (BITA) grafts (1-4), there has only been one large randomized controlled trial (RCT) (5) that has attempted to answer this. The longawaited 10 years results of the Arterial Revascularisation Trial (ART) were presented on behalf of the ART Investigators at the ESC in Munich 2018 (6). At the time of the conception of ART in 2002 the prevailing wisdom was that it was only the use of bilateral ITA (BITA) grafts that might potentially offer an additional survival benefit to a single graft. At 10 years, in the randomized intention-to-treat analysis in ART there was no difference in mortality between BITA and groups, nor in the composite endpoints of mortality, myocardial infarction (MI) or stroke. In contrast, in the as-treated analysis (non-randomized), performed because 40% of patients effectively received a different treatment strategy from that originally intended [14% of BITA received a single, 4% of single ITA (SITA) received BITA and 22% of SITA received an RA], there was a significant survival benefit (and a significant reduction in the composite endpoint) in favour of more than one arterial graft. In the ESC presentation, data was provided to show that surgeon experience was critical to successfully perform BITA grafting and that high performers had superior surgical outcomes at 10 years. Recently, the long-debated question of whether the use of a RA is superior to saphenous vein grafts (SVG) has been answered conclusively by the RADIAL Investigators in a meta-analysis of six randomized trials with 5-year followup (7). Briefly, a lower angiographic failure rate of the RA vs. SVG (8% vs. 20%) accompanied by a significant reduction in the composite end-point of death, MI and repeat revascularization definitively settles the question. Furthermore, with continuing attrition of vein grafts over

Annals of cardiothoracic surgery, Vol 7, No 5 September 2018 10 years it could be speculated that the differences in patency and clinical outcome may continue to diverge even further in favour of the RA. General considerations in deploying arterial grafts In deploying arterial grafts to give the best long-term chance of success in combination with their ease of use there are six major considerations: (I) The putative risk of competitive flow in the native coronary. This usually has to be estimated visually, as fractional flow reserve (FFR) measurements (that give a far more accurate estimate of the real functional significance of any particular coronary stenoses) are not routinely available. Generally arterial grafts should not be used unless the native coronary stenoses is greater than 70%. The ITA graft may be more resistant to competitive flow than the RA; (II) There is increasing acceptance that as a consequence of their well documented superior long-term angiographic patency, more arterial grafts should, in general, be used in younger patients (probably now defined as less than 70 years old), especially with good ventricular function and absence of life-limiting co-morbidity. It is my opinion that more arterial grafts should also be more widely used in the elderly to allow a true no touch aortic technique where there is robust evidence for a reduction in the risk of most major complications and, in particular, stroke (8); (III) In deciding whether to use a second ITA graft or the RA the risk of mediastinitis needs to be considered (9). The highest risk groups are those with insulin dependent diabetes mellitis, obesity, female gender, poor respiratory function and the need for immunosuppressants/steroids. Any combination of these factors increases the risk of sternal wound complications even when harvesting ITA grafts in a skeletonized fashion; (IV) For arterial grafts to the left side, using composite arterial grafts based on the (i.e., with, RA or SVG) both allows more distal anastomoses than an in situ and eliminates the potential major hazard of damage to the during redo sternotomy. Furthermore, if using the as a composite graft from the medial side of the 691 only the proximal two/thirds of the needs to be harvested to provide adequate length even for sequential grafting; (V) When constructing composite grafts a T anastomoses is less likely to kink than a Y anastomoses especially on the lateral wall of the heart; (VI) Use of multiple arterial grafts, especially when performed off-pump, may have significant clinical benefits in specific situations but is a much more technically challenging procedure than the use of a single graft and supplemental vein grafts performed on pump. Consequently, this author believes that it is mandatory to confirm that all grafts are patent before the patient leaves the operating room as a technically failed graft will frequently not immediately result in haemodynamic, ECG or echocardiographic changes but may do so subsequently (10). The author considers it essential to prove that you did a great job rather than to think it. Additionally if a proximal anastomosis is required to the ascending aorta then ultrasound imaging should be used to identify a truly disease-free area of aorta. Even the most perceptive finger cannot identify soft atheromatous plaque on the luminal side of the aorta. General preparation for graft deployment This is dictated by two considerations. First it depends whether the operation is performed on or off-pump. In the former situation the sequence of distal graft anastomoses is less relevant and usually to left anterior descending () is the last distal anastomoses. For off-pump CABG, however, the over-riding principle is that any occluded coronary must be revascularized first. Second it depends whether a composite arterial graft is to be performed. If so, it is our usual practice to construct a to the medial side of as a T anastomoses on a swab placed over the ascending aorta at the level of the second intercostal space where there is relatively little movement. For off-pump procedures it is our usual practice to first perform grafting to the lateral wall, followed by grafting of the inferior wall and finally grafting to the. Grafting the first can cause uncomfortable stretching

692 Taggart. Arterial graft strategy Figure 1 Skeletonized harvest of the ITA. ITA, internal thoracic. 2 cm and tension on a graft while displacing the heart into the right chest cavity to expose the lateral wall. When performing the procedure off-pump our practice is to: (I) Open both pleurae widely; (II) Divide the pericardium on the right side to the inferior vena cava so that the heart can easily be placed in the right chest to expose the lateral wall; (III) Divide the pericardium on the left side towards the phrenic nerve at the second intercostal space to avoid tension on left sided arterial grafts to the lateral wall; (IV) Perform a cruciate incision in the posterior pericardium below the phrenic nerve which can be palpated with the left hand (when the pericardium is tensed) to effectively eliminate the incidence of pericardial tamponade [and possibly post-operative atrial fibrillation (11)]. General strategy for graft deployment The following attempts to describe potential advantages and disadvantages of various techniques for deploying arterial grafts in differing anatomical situations and useful tips and tricks. Figure 1: Skeletonized harvest of the ITA Skeletonization of the ITA results in a conduit that is both longer and wider that makes composite and sequential grafting easier and also significantly reduces the incidence of sternal wound complications when BITA grafts are used (12). To harvest the by the skeletonisation technique, the intra-thoracic fascia medial to the is incised as a tram line with diathermy or scissors. The ITA vein lies medial to the ITA and is used as an anatomic guide to safe harvest of the ITA. We use small clips on each ITA branch proximally and distally and then divide each branch with fine scissors. Some surgeons favour the use of a harmonic scalpel to harvest the ITA and avoid the need for multiple clips (13). The ITA harvest stops 2 centimetres proximal to the bifurcation, both to avoid the risk of devascularisation of the xiphisternum and because this portion of the is known to be more vasospastic than the more proximal (14). During harvest there is no need to heparinize even after dividing the ITA from the chest wall and occluding it distally with a clip. To encourage ITA vasodilatation, systolic blood pressure is increased to 150 mmhg for 5 minutes without the need for topical vasodilators. In a small number of patients where the ITA diameter appears very small (usually small elderly females) it may be necessary to carefully inject a small amount of papaverine diluted in blood intraluminally. This must be done with a very fine catheter to avoid iatrogenic injury to the. Figure 2: In situ to and to circumflex system The advantage of this technique is its technical simplicity for both on and off-pump CABG. It is particularly useful in the setting of distal left main coronary disease, with or without additional proximal left sided disease, and facilitates a no touch aortic technique to minimize the risk of stroke, particularly in elderly patients. Figure 3: to an obtuse with a composite as a free graft to the The major advantage is its technical simplicity especially when performed off-pump. It is technically less challenging than bringing the from the lateral wall of the to the obtuse system. Furthermore, it only requires harvest of the proximal two thirds of the. Figure 4: Composite sequential from Composite sequential arterial grafts on the left side with

Annals of cardiothoracic surgery, Vol 7, No 5 September 2018 693 Sequential to diagonal or intermediate Diagonal Figure 2 In situ to and to circumflex system., right internal thoracic ;, left internal thoracic ;, left anterior descending. Figure 4 Composite sequential from., right internal thoracic ;, left internal thoracic ;, left anterior descending. the anastomosed as a T graft from the medial side of the and then used sequentially to pick up an intermediate and/or a diagonal coronary as a side-to-side anastomosis before end-to-side anastomosis to the. The author feels that this is less technically demanding than using the as a composite graft from the lateral wall of the to perform sequential composite grafts on the lateral wall of the heart. In off-pump surgery, if a graft to the obtuse coronary (OM) is performed first then the heart can be then placed back in the pericardial cavity and the lie of the coming from the medial side of the back towards the midline, picking up an intermediate and/or diagonal coronary as a side-to-side anastomosis, is technically more straightforward and results in an excellent lie of the grafts. Figure 3 to an obtuse with a composite as a free graft to the., right internal thoracic ;, left internal thoracic ;, left anterior descending. Figure 5: Composite from lateral wall of with additional T graft A conduit (to the ) with a composite conduit from its lateral wall. The conduit has an additional conduit (recycled ITA/RA/SVG) performed as a T graft for further grafting on the lateral/posterolateral wall.

694 Taggart. Arterial graft strategy Radial / Radial 2 1 Radial PDA Figure 5 Composite from lateral wall of with additional T graft., right internal thoracic ;, left internal thoracic ;, left anterior descending. Figure 7 Radial from aorta to PDA. PDA, posterior descending. Figure 6: to, through the transverse sinus to the obtuse Figure 6 to, through the transverse sinus to the obtuse., right internal thoracic ;, left internal thoracic ;, left anterior descending; RA, radial ; SVG, saphenous vein graft. (may require extension by recycled /RA/SVG) The advantage of this technique is to avoid any arterial graft crossing the mid line in case of eventual need for redo sternotomy. There are two disadvantages of this technique. First is the unusual scenario of bleeding from a side branch of the behind the aorta. Second and more commonly the can only reach early intermediate or obtuse and may appear stretched when performed off pump. In such a scenario the may require extension by recycled /RA/SVG. Figure 7: RA from aorta to posterior descending (PDA) This is an excellent strategy where there is at least 80% stenosis in the right coronary (RCA) or preferably if the RCA is occluded when competitive flow is minimized. An alternative strategy, especially if a no touch aortic technique is indicated, is to anastomose the RA to the proximal in situ with the main body of the being used for a composite left sided graft.

Annals of cardiothoracic surgery, Vol 7, No 5 September 2018 695 Figure 8: In situ with extension by RA The will commonly not reach the PDA even after full skeletonization and can be extended with recycled /RA/SVG. The should not be placed to the main RCA because of the potential for competitive flow due to size discrepancy and eventual development of progressive disease at the crux. As described for Figure 7, an alternative strategy is to anastomose the RA or SVG to the proximal in situ, especially if a no touch aortic technique is indicated, with the main body of the being used for a composite left sided graft. Figure 9: Sequential SVG on the inferior wall of the heart Radial PDA Figure 8 In situ with extension by radial., right internal thoracic ; PDA, posterior descending. This technique uses a SVG with sequential side-toside anastomosis to the PDA of the right coronary and then end-to-side to a significant left ventricular (LV) coronary on the inferior wall either from the right or from the left coronary system. This is a technically straightforward sequential graft with an excellent lie. It is usually easier to perform the side-to-side anastomosis to the PDA before either a side-to-side or end-to-side anastomosis to the LV branch. Figure 10: Use of a GEA for the inferior wall Posterolateral circumflex or LV branch of RCA The use of a GEA to the PDA with an in situ to the and to the obtuse. GEA to the PDA is particularly useful in the unusual situation of an occluded dominant ungrafted/failed graft to the right coronary but with patent grafts to the left side. This can be performed off pump through a relatively limited incision through the lower sternum. SVG PDA Figure 9 Sequential saphenous vein graft on the inferior wall of the heart. LV, left ventricular; RCA, right coronary ; SVG, saphenous vein graft; PDA, posterior descending. Figure 11: RA jump graft from distal to proximally occluded PDA to with a jump graft from the distal to the PDA. This is technically easy to do off pumppreserving the no touch aortic technique principal and proving useful in the situation when there is limited conduit.

696 Taggart. Arterial graft strategy Acknowledgements None. Footnote Conflicts of Interest: Prof. DP Taggart has received research funding, speaking and travelling honoraria from Medistim (Oslo) and is the Principle Investigator for the REQUEST Registry (funded by Medistim). Gastroepiploic PDA Figure 10 Use of a gastroepiploic (GEA) for the inferior wall., right internal thoracic ;, left internal thoracic ; PDA, posterior descending ; OM, obtuse coronary ;, left anterior descending. Radial jump graft to PDA Figure 11 Radial jump graft from distal to proximally occluded PDA., right internal thoracic ;, left internal thoracic ;, left anterior descending; PDA, posterior descending. OM References 1. Taggart DP, D'Amico R, Altman DG. Effect of arterial revascularisation on survival: a systematic review of studies comparing bilateral and single internal mammary arteries. Lancet 2001;358:870-5. 2. Weiss AJ, Zhao S, Tian DH, et al. A meta-analysis comparing bilateral internal mammary with left internal mammary for coronary bypass grafting. Ann Cardiothorac Surg 2013;2:390-400. 3. Yi G, Shine B, Rehman SM, et al. Effect of bilateral internal mammary grafts on long-term survival: a meta-analysis approach. Circulation 2014;130:539-45. 4. Buttar SN, Yan TD, Taggart DP, et al. Long-term and short-term outcomes of using bilateral internal mammary grafting versus left internal mammary grafting: a meta-analysis. Heart 2017;103:1419-26. 5. Taggart DP, Altman DG, Gray AM, et al. Randomized Trial of Bilateral versus Single Internal-Thoracic-Artery Grafts. N Engl J Med 2016;375:2540-9. 6. Taggart DP. 10 year outcomes of the ART trial. ESC Hotline Session Munich 2018. [In press]. 7. Gaudino M, Benedetto U, Fremes S, et al. Radial-Artery or Saphenous-Vein Grafts in Coronary-Artery Bypass Surgery. N Engl J Med 2018;378:2069-77. 8. Zhao DF, Edelman JJ, Seco M, et al. Coronary Artery Bypass Grafting With and Without Manipulation of the Ascending Aorta: A Network Meta-Analysis. J Am Coll Cardiol 2017;69:924-36. 9. Gaudino M, Taggart D, Suma H, et al. The Choice of Conduits in Coronary Artery Bypass Surgery. J Am Coll Cardiol 2015;66:1729-37. 10. Amin S, Pinho-Gomes AC, Taggart DP. Relationship of Intraoperative Transit Time Flowmetry Findings to Angiographic Graft Patency at Follow-Up. Ann Thorac Surg 2016;101:1996-2006. 11. Asimakopoulos G, Della Santa R, Taggart DP. Effects

Annals of cardiothoracic surgery, Vol 7, No 5 September 2018 697 of posterior pericardiotomy on the incidence of atrial fibrillation and chest drainage after coronary revascularization: a prospective randomized trial. J Thorac Cardiovasc Surg 1997;113:797-9. 12. Benedetto U, Altman DG, Gerry S, et al. Pedicled and skeletonized single and bilateral internal thoracic grafts and the incidence of sternal wound complications: Insights from the Arterial Revascularization Trial. J Thorac Cardiovasc Surg 2016;152:270-6. 13. Kieser TM, Rose MS, Aluthman U, et al. Quicker yet safe: skeletonization of 1640 internal mammary arteries with harmonic technology in 965 patients. Eur J Cardiothorac Surg 2014;45:e142-50. 14. He GW, Taggart DP. Spasm in Arterial Grafts in Coronary Artery Bypass Grafting Surgery. Ann Thorac Surg 2016;101:1222-9. Cite this article as: Taggart DP. How I deploy arterial grafts.. doi: 10.21037/ acs.2018.09.06