Appropriate anthropometric indices to identify cardiometabolic risk in South Asians

Similar documents
Waist Circumference and Waist-to-Height Ratio as Predictors of Cardiovascular Disease Risk in Korean Adults

Joung-Won Lee, Nam-Kyoo Lim, Tae-Hwa Baek, Sung-Hee Park and Hyun-Young Park *

JMSCR Vol 05 Issue 04 Page April 2017

A study of waist hip ratio in identifying cardiovascular risk factors at Government Dharmapuri College Hospital

An Evaluation of Candidate Definitions of the Metabolic Syndrome in Adult Asian Indians

Plasma fibrinogen level, BMI and lipid profile in type 2 diabetes mellitus with hypertension

An evaluation of body mass index, waist-hip ratio and waist circumference as a predictor of hypertension across urban population of Bangladesh.

Differential obesity indices identify the metabolic syndrome in Black men and women in Cape Town: the CRIBSA study

Metabolic Syndrome among Type-2 Diabetic Patients in Benghazi- Libya: A pilot study. Arab Medical University. Benghazi, Libya

Prediction of Cardiovascular Disease in suburban population of 3 municipalities in Nepal

Relationship between Abdominal Fat Area Measured by Screening Abdominal Fat CT and Metabolic Syndrome

Obesity and the Metabolic Syndrome in Developing Countries: Focus on South Asians

Prevalence and risk factors of hypertension, among adults residing in an urban area of North India

PAPER Optimal cut-off values for obesity: using simple anthropometric indices to predict cardiovascular risk factors in Taiwan

Metabolic syndrome in adult population of rural Wardha, central India

Journal of the American College of Cardiology Vol. 48, No. 2, by the American College of Cardiology Foundation ISSN /06/$32.

Distribution and Cutoff Points of Fasting Insulin in Asian Indian Adolescents and their Association with Metabolic Syndrome

A CROSS SECTIONAL STUDY OF RELATIONSHIP OF OBESITY INDICES WITH BLOOD PRESSURE AND BLOOD GLUCOSE LEVEL IN YOUNG ADULT MEDICAL STUDENTS

NJPPP RESEARCH ARTICLE WAIST-RELATED ANTHROPOMETRIC MEASURES: SIMPLE AND USEFUL PREDICTORS OF CORONARY HEART DISEASE IN WOMEN

METABOLIC SYNDROME IN OBESE CHILDREN AND ADOLESCENTS

Association between Raised Blood Pressure and Dysglycemia in Hong Kong Chinese

CHAPTER 3 DIABETES MELLITUS, OBESITY, HYPERTENSION AND DYSLIPIDEMIA IN ADULT CENTRAL KERALA POPULATION

A comparative study on the fasting and post prandial lipid levels as a cardiovascular risk factor in patients with type 2 diabetes mellitus

Appropriate waist circumference cut off level for hypertension screening among admission students at Chiang Mai University

Metabolic Syndrome in Hypertensive Nigerians: Risk Factor Analysis

Know Your Number Aggregate Report Single Analysis Compared to National Averages

Causes of Different Estimates of the Prevalence of Metabolic Syndrome in Korea

Cut-Off Values of Visceral Fat Area and Waist-to-Height Ratio: Diagnostic Criteria for Obesity-Related Disorders in Korean Children and Adolescents

Physical activity levels during work, leisure time and transport and its association with obesity in urban slum of Mumbai, India

A Simplified Indian Diabetes Risk Score for Screening for Undiagnosed Diabetic Subjects

Obesity Causes Complications and Dietary Weight Loss Strategy

Changes and clinical significance of serum vaspin levels in patients with type 2 diabetes

Andrejs Kalvelis 1, MD, PhD, Inga Stukena 2, MD, Guntis Bahs 3 MD, PhD & Aivars Lejnieks 4, MD, PhD ABSTRACT INTRODUCTION. Riga Stradins University

Metabolic syndrome and insulin resistance in an urban and rural adult population in Sri Lanka

Abdominal volume index and conicity index in predicting metabolic abnormalities in young women of different socioeconomic class

Prevalence of Diabetes Mellitus among Non-Bahraini Workers Registered in Primary Health Care in Bahrain

Metabolic Syndrome: What s in a name?

WAIST-HEIGHT RATIO : A NEW OBESITY INDEX FOR FILIPINOS?

Correlation between fasting insulin and blood pressure in obese and non-obese middle aged Indian diabetic adults

Abdominal obesity, an independent cardiovascular risk factor in Indian subcontinent: A clinico epidemiological evidence summary

PREVALENCE OF METABOLİC SYNDROME İN CHİLDREN AND ADOLESCENTS

Cardiovascular risk assessment in the metabolic syndrome: results from the Prospective Cardiovascular Munster (PROCAM) Study

Association of hypothyroidism with metabolic syndrome - A case- control study

Dyslipidemia and Its Relation with Body Mass Index Versus Waist Hip Ratio

Ko G T C, Tang J S F. Conclusion: MES is not uncommon among Hong Kong Chinese. Further studies on the management and prevention of MES are indicated.

It is currently estimated that diabetes prevalence by

Frequency of Dyslipidemia and IHD in IGT Patients

The investigation of serum lipids and prevalence of dyslipidemia in urban adult population of Warangal district, Andhra Pradesh, India

Hypertension with Comorbidities Treatment of Metabolic Risk Factors in Children and Adolescents

Rehabilitation and Research Training Center on Secondary Conditions in Individuals with SCI. James S. Krause, PhD

Among the most common chronic non-communicable

Burden of Cardiometabolic Disorders among Subjects Undergoing Preventive Health Check-up: A Follow-up Study 1 2 3

THE EFFECT OF VITAMIN-C THERAPY ON HYPERGLYCEMIA, HYPERLIPIDEMIA AND NON HIGH DENSITY LIPOPROTEIN LEVEL IN TYPE 2 DIABETES

Socioeconomic status risk factors for cardiovascular diseases by sex in Korean adults

Why Do We Treat Obesity? Epidemiology

Impact of Physical Activity on Metabolic Change in Type 2 Diabetes Mellitus Patients

Unraveling the concealed and calculated cardiovascular risks in diabetes

Prevalence, awareness of hypertension in rural areas of Kurnool

Table S1. Characteristics associated with frequency of nut consumption (full entire sample; Nn=4,416).

Effect of rimonabant on the components of metabolic syndrome: A randomized, controlled study done on Punjabi population

ABSTRACT INTRODUCTION:

Frequency of Metabolic Syndrome on Diabetes Mellitus Patients in Surabaya

Metabolic Syndrome: Why Should We Look For It?

Prevalence, Awareness and Control of Hypertension in Chennai - The Chennai Urban Rural Epidemiology Study (CURES 52)

Relationship of Waist Circumference and Lipid Profile in Children

Global Coronary Heart Disease Risk Assessment of U.S. Persons With the Metabolic. Syndrome. and Nathan D. Wong, PhD, MPH

Optimal Cutoff Points of Anthropometric Parameters to Identify High Coronary Heart Disease Risk in Korean Adults

Study on occurrence of metabolic syndrome among patients with stroke: a descriptive study

Prevalence and associations of overweight among adult women in Sri Lanka: a national survey

Use of Waist to Height Ratio in assessing metabolic derangements among normal and overweight/obese 5-15 year old individuals

Relationship between cholesterol, blood pressure and body mass index of young adults volunteers residing in Minna, Niger State, Nigeria

Metabolic syndrome in females with polycystic ovary syndrome and International Diabetes Federation criteria

Diabetes Care Publish Ahead of Print, published online February 17, 2011

Development of the Automated Diagnosis CT Screening System for Visceral Obesity

Body mass index, waist circumference and waist:hip ratio as predictors of cardiovascular risk a review of the literature

Figure S1. Comparison of fasting plasma lipoprotein levels between males (n=108) and females (n=130). Box plots represent the quartiles distribution

Appropriate body mass index and waist circumference cutoffs for categorization of overweight and central adiposity among Chinese adults 1 3

Prevalence of cardiovascular disease risk factors in people of Asian Indian origin: Age and sex variation

Relationship between Low Muscle Mass and Metabolic Syndrome in Elderly People with Normal Body Mass Index

Relationships Between Indices of Obesity and Its Cardiovascular Comorbidities in a Chinese Population

BRITISH BIOMEDICAL BULLETIN

Waist hip ratio in early pregnancy as a clinical indicator of serum lipid levels and predictor of pregnancy complications

Guidelines on cardiovascular risk assessment and management

Relations of body weight status in early adulthood and weight changes until middle age with metabolic syndrome in the Chinese population

Trends In CVD, Related Risk Factors, Prevention and Control In China

Diabetes Care 31: , 2008

METABOLIC SYNDROME IN A JORDANIAN COHORT: DEMOGRAPHY, COMPLICATIONS AND PREDICTORS OF CARDIOVASCULAR DISEASES

Know Your Number Aggregate Report Comparison Analysis Between Baseline & Follow-up

The Metabolic Syndrome: Is It A Valid Concept? YES

CARDIOVASCULAR RISK FACTORS & TARGET ORGAN DAMAGE IN GREEK HYPERTENSIVES

Prevalence and Distribution of Cardiovascular Risk Factors in An Urban Industrial Population in South India: A Cross- Sectional Study

Prevalence of overweight among urban and rural areas of Punjab

Cardiovascular Complications of Diabetes

Clinical surrogate markers for predicting metabolic syndrome in middle-aged and elderly Chinese

Risk factor analysis and trends of dyslipidemia in Type 2 diabetes mellitus subjects of an industrial population.

Correlation between Waist Circumference (WC), Body Mass Index (BMI) and Cardiometabolic Risk Factors in Egyptians

The Metabolic Syndrome Update The Metabolic Syndrome Update. Global Cardiometabolic Risk

Metabolic Syndrome.

Screening of cardiovascular risk factors among, urban, semiurban, and rural residents in Jammu district of Jammu and Kashmir

The Prevalence of the Metabolic Syndrome in Korean Adults: Comparison of WHO and NCEP Criteria

Transcription:

Original research Appropriate anthropometric indices to identify cardiometabolic risk in South Asians Access this article online Website: www.searo.who.int/ publications/journals/seajph DOI: 10.4103/2224-3151.115828 Quick Response Code: DS Prasad, 1 Zubair Kabir, 2 JP Suganthy, 3 AK Dash, 4 BC Das 5 Abstract Background: South Asians show an elevated cardiometabolic risk compared to Caucasians. They are clinically metabolically obese but are considered normal weight based on current international cut-off levels of several anthropometric indices. This study has two main objectives: (i) to predict the most sensitive anthropometric measures for commonly studied cardiometabolic risk factors, and (ii) to determine optimal cut-off levels of each of the anthropometric indices in relation to these cardiometabolic risk factors in South Asians. Methods: The study was conducted on a random sample of 1178 adults of 20 80 years of age from an urban population of eastern India. Obesity, as evaluated by standard anthropometric indices of BMI (body mass index), WC (waist circumference), WHpR (waist-to-hip ratio) and WHtR (waist-to-height ratio), was individually correlated with cardiometabolic risk factors. Receiver operating characteristic (ROC) curve analyses were performed which includes: (i) the area under the receiver operating characteristic curve (AUROC) analysis to assess the predictive validity of each cardiometabolic risk factor; and (ii) Youden index to determine optimal cut-off levels of each of the anthropometric indices. Results: Overall, AUROC values for WHtR were the highest, but showed variations within the sexes for each of the cardiometabolic risk factors studied. Further, WHpR cut-offs were higher for men (0.93 0.95) than women (0.85 0.88). WC cut-offs were 84.5 89.5 cm in men and 77.5 82.0 cm in women. For both sexes the optimal WHtR cut-off value was 0.51 0.55. The optimal BMI cut-offs were 23.4 24.2 kg/m 2 in men and 23.6 25.3 kg/m 2 in women. Conclusion: WHtR may be a better anthropometric marker of cardiometabolic risks in South Asian adults than BMI, WC or WHpR. Key words: obesity, abdominal obesity, BMI, waist circumference, waist-to-height ratio, South Asians, Asian Indians. 1 Sudhir Heart Centre, Berhampur, Odisha, India; 2 Department of Epidemiology and Public Health, University College Cork, Cork, Ireland; 3 Australian Medical Research Foundation Ltd; Fresh Start Recovery Programme, Perth, WA, Australia; 4 MKCG Medical College, Berhampur, Odisha, India; 5 Kalinga Institute of Medical Sciences, Bhubaneshwar, Odisha, India Address for correspondence: Dr DS Prasad, Consultant Cardiologist, Sudhir Heart Centre, Main Road, Dharmanagar, Berhampur-760002, Odisha, India Email: sudhir_heartcare@ hotmail.com Introduction The prevalence of overweight and obesity has been rapidly increasing in countries of the South Asian region, with adverse consequences on health. 1-3 But there is a dearth of accurate nationwide data from these countries. 4 Various anthropometric indices such as body mass index (BMI), waist circumference (WC), waist-to-hip ratio (WHpR), and waist-to-height ratio (WHtR) are often used to evaluate adiposity levels. 5 Both general and abdominal obesity have been associated with several cardiometabolic abnormalities. However, studies show potential ethnic differences in such associations. 6,7 Most studies examining obesity with cardiovascular risk have been based on data from high-income countries. For example, several epidemiological studies of South Asian populations have shown that they have higher levels of body fat content for a given BMI and WC than western populations, thus resulting in an increased cardiometabolic risk at a lower BMI level. 8,9 However, the prevalence of overweight and obesity is based on World Health Organization (WHO) criteria for Caucasian populations, based on high sensitivity and specificity profiles against cut-off values of BMI (25 kg/m² for overweight and 30 kg/m² for obesity) and WHpR (0.95 for men and 0.80 for women) for both categories in adult European populations. Moreover, these BMI limits, against which the waist 142

circumference sensitivity and specificity information were calculated, have been shown to underestimate the true burden of obesity in South Asian populations for whom lower cut-offs are proposed (BMI 23 kg/m² for overweight and 25 kg/m² for obesity). 8,9 It is well known that obesity is associated with diabetes mellitus, hypertension, dyslipidemia, and cardiovascular disease (CVD). 10 Epidemiological surveys use BMI as an indicator of generalized obesity and WC, WHpR or WHtR as a measure of central, or abdominal obesity. Abdominal obesity, which suggests unwarranted deposition of intra-abdominal fat, is a significant predictor of cardiometabolic risk. WC has been proposed as an easy measure for both intra-abdominal fat mass and total fat. However, a limitation is that WC measurement does not take into account differences in body height, and hence the WHtR value is preferred as a predictor of cardiometabolic risk factors. 11-13 Controversy remains regarding the best anthropometric indices for CVD risk. There is ongoing debate regarding which adiposity measure best represents health risks associated with excess body weight both at individual and community level. 14 Even though BMI is the most commonly used index, it does not correspond to fatness uniformly in all populations, and inter-ethnic extrapolations are not possible. 15 This study had two main objectives: (i) to predict the most sensitive anthropometric measure for commonly studied cardiometabolic risk factors; and (ii) to determine the optimal cut-off levels of each anthropometric index in relation to these cardiometabolic risk factors in South Asians. METHODS Study design and sampling method This epidemiological, population-based study was conducted in Berhampur city of Odisha state in eastern India. Based on an estimated prevalence (p) of hypertension of 25% with an allowable error (L) of 10%, the sample size was calculated as 1200 by use of the formula n=4pq/l 2, where q = 100 p. Details of the survey methodology are published elsewhere. 16 The sample was obtained by means of a multi-stage random sampling technique among residents of Berhampur Municipal Corporation spread across 37 electoral wards, of which 30 were chosen at random to spot the sampling unit: a household. Each ward of the city comprises 12 14 streets and each street contains two rows of households. Two rows of households were randomly selected and the sampling unit household was selected by simple random sampling to enrol approximately 40 subjects who were 20 years of age from each ward. Of the 1200 subjects invited to participate in the study, 1178 subjects 20 years of age were enrolled. The study proposal was in line with the Indian Council of Medical Research guidelines on bioethics, 17 and was approved by the institutional review board of the Kalinga Institute of Medical Sciences, Bhubaneswar, Odisha. Written informed consent was obtained from all subjects. Definitions of cardiovascular risk factors used Diabetes mellitus and intermediate hyperglycaemia: based on WHO/IDF Consultation. Geneva: World Health Organization; 2006. 18,19 Diabetes: based on physician diagnosis and antidiabetic treatment or those who had fasting plasma glucose level of 126 mg/dl ( 7.0 mmol/l) or 2-h plasma glucose 200 mg/ dl (11.1 mmol/l). 18,19 Obesity and overweight: based on the revised criteria specific for Asian/Pacific populations. 8 Value of BMI 23 kg/m² used to define overweight and 25 kg/m² to define obese. 20 Hypertension: based on physician diagnosis and antihypertensive treatment or systolic blood pressure 140 or diastolic blood pressure 90 mmhg. 21,22 Dyslipidemia: based on the Third Report of the National Cholesterol Education Program (NCEP). 23 Hypercholesterolemia: serum cholesterol > 200 mg/dl; hypertriglyceridemia: serum triglycerides > 150 mg/dl; low high-density lipoprotein cholesterol (HDLC): males 40 mg/ dl, females 50 mg/dl. Metabolic syndrome: We followed a recent unified definition of various international medical bodies. 24,25 The presence of any three of the following five conditions was essential: waist circumference 90 cm for males and 80 cm for females; hypertriglyceridemia 150 mg/dl; low HDL (males < 40 mg/dl, females < 50 mg/dl); elevated blood pressure (systolic blood pressure 130 mmhg and/or diastolic blood pressure 85 mmhg or drug treatment for hypertension) and elevated blood sugar (fasting blood sugar 100 mg/dl or drug treatment for diabetes mellitus). Clinical profile and anthropometric measurements: All relevant individual-level data pertaining to blood pressure and anthropometric parameters (height, weight, and waist and hip circumferences) available to the study were abstracted. 16 Details of these clinical and anthropometric measurements were published earlier. 16 Biochemical measurements: Fasting blood glucose levels and lipid profiles, total cholesterol (TC), triglycerides (TG), and HDLC were estimated or measured according to previously described methods. 16 Low-density lipoprotein cholesterol (LDLC) levels were calculated using the Friedewald formula. 26 Statistical analysis: Data were analysed using SPSS for Windows (SPSS, Inc, Chicago IL, USA). Continuous variables were expressed as mean, and categorical variables were expressed as frequencies and proportions. Comparisons between groups were performed using the Student s t-test for continuous variables and the chi-square test for categorical data. P < 0.05 was considered to be statistically significant. Pearson s correlation coefficient estimations were computed to quantify correlations between anthropometric indices and cardiometabolic risk factors. 143

Further receiver operating characteristic (ROC) curve analyses were performed to compare predictive validity and to determine optimal cut-off levels for each of the anthropometric indices against the cardiometabolic risk factors. The predictive validity was assessed using the area under the ROC curve (AUROC), while the optimal cut-off levels were determined using the Youden Index. 27 AUROC were plotted using measures of sensitivity (true-positive rate) on the y-axis against 1-specificity (true-negative rate) on the x-axis. In general the discriminatory power of a diagnostic test is established by AUROC over the whole range of testing values. AUROC is a measure of the diagnostic power of a test. A perfect test will have an AUROC of 1.0, and an AUROC equal to 0.5 means the test is a poor discriminator. The Youden index intuitively corresponds to the point on the curve farthest from chance. 27 RESULTS Basic characteristics of the study subjects The characteristics of the study population and the prevalence of CVD risk factors, stratified by gender, are shown in Table 1. The mean age of the study population was 47.6 years in men and 44.2 years in women. The mean BMI was 24.1 kg/m² in men and 25.0 kg/m² in women. The mean WC, WHpR and WHtR in men were 86.4, 0.93 and 0.53 cm respectively. For women, the values were 81.2, 0.87 and 0.54 cm, respectively. Correlations between anthropometric indices and cardiovascular risk factors Pearson s correlation coefficients, as measured among the anthropometric indices and CVD risk factors, are shown in Table 2. In general, WHtR has relatively higher correlation coefficients with cardiovascular risk factors analysed for both men and women, except for LDLC compared with other anthropometric indices. Overall AUROC curve results The AUROC curves of various anthropometric indices and CVD risk factors are shown in Table 3. Overall, WHtR had highest AUROC for all the cardiovascular risk factors studied, although there were variations between men and women. Cut-off points to predict CVD risk factors Table 4 summarizes the cut-off points for the various anthropometric indices to predict CVD risk factors using AUROC analysis. The ROC curves in Figures 1 6 show the AUROC from which the values in Table 4 were derived. The optimal BMI cut-off values for men were 23.4 24.2 kg/m 2, while the range for women was wider at 23.6 25.3 kg/m 2. WC cut-off values were higher for men (84.5 89.5 cm) than women (77.5 82.0 cm). WHpR cut-offs were also higher for men (0.93 0.95) than women (0.85 0.88). For both sexes the optimal WHtR cut-off value was 0.51 0.55, i.e. WHtR > 0.5 correlated well with cardiometabolic risk parameters. Table 1: Demographic and anthropometric/biochemical profile Variables Males Females P-value (mean ± SD or % (n)) n=590 n=588 Age group (years) 47.6 ± 14.4 44.2 ± 13.2 < 0.001** Height (metres) 1.6 ± 0.1 1.5 ± 0.06 < 0.001** Weight (kg) 64.0 ± 11.2 56.2 ± 11.3 < 0.001** BMI (kg/m 2 ) 24.1 ± 3.8 25.0 ± 4.79 < 0.001** WC (cm) 86.4 ± 11.6 81.2 ± 12.4 < 0.001** HC (cm) 92.2 ± 9.2 93.1 ± 11.3 0.148 WHpR 0.93 ± 0.08 0.87 ± 0.08 < 0.001** WHtR 0.53 ± 0.07 0.54 ± 0.08 0.015* SBP (mmhg) 133.4 ± 14.2 130.3 ± 14.5 < 0.001** DBP (mmhg) 84.6 ± 8.2 83.5 ± 8.7 0.018* FBS (mg/dl) 98.8 ± 36.8 95.3 ± 34.4 0.103 PGBS (mg/dl) 140.7 ± 59.9 133.8 ± 53.7 0.037* TC (mg/dl) 182.3 ± 33.8 181.3 ± 36.3 0.633 TG (mg/dl) 162.5 ± 67.4 152.9 ± 51.8 0.006* LDLC (mg/dl) 103.7 ± 30.1 104.4 ± 31.8 0.717 HDLC (mg/dl) 46.0 ± 4.5 46.2 ± 4.3 0.412 Diabetes mellitus (% (n)) 17.8 (105) 13.6 (80) 0.048* Hypertension (% (n)) 38.5 (227) 34.7 (204) 0.178 High TC (% (n)) 21.7 (128) 24.7 (145) 0.228 High TG (% (n)) 39.3 (232) 36.1 (212) 0.247 Low HDLC (% (n)) 9.5 (56) 84.5 (497) < 0.001** Overweight (% (n)) 21.4 (126) 15.5 (91) 0.009* Obesity (% (n)) 39.7 (234) 48.0 (282) 0.004* Metabolic syndrome 34.2 (202) 52.2 (307) < 0.001* **P < 0.001; *P < 0.05: values are expressed as mean standard deviation (SD) or % (n). BMI: body mass index; DBP: diastolic blood pressure; FBS: fasting blood sugar; HC: hip circumference; HDLC: high-density lipoprotein cholesterol; LDLC: low-density lipoprotein cholesterol; PGBS: postglucose blood sugar; SBP: systolic blood pressure; TC: total cholesterol; TG: triglycerides; WC: waist circumference; WHpR: waist-to-hip ratio; WHtR: waist-to-height ratio. Main findings DISCUSSION Based on the two primary study objectives, the following are the main study findings. First, WHtR may be considered the most sensitive anthropometric index for the several cardiometabolic risk factors under investigation in an urban population in eastern India. However, variations within sexes e.g. WC for triglycerides in men and for hypertension in women were observed. Such analyses were based on the AUROC outputs (Table 3). Second, this study identified optimal cut-off levels for each anthropometric index against individual cardiometabolic risk factors. In general in both sexes, lower cut-off levels were determined to be optimal for BMI and WC, while relatively higher cut-off levels were found to be optimal for WHtR and 144

Table 2: Pearson s correlation coefficients of anthropometric indices and cardiovascular risk factors Men (n=590) Women (n=588) BMI WC WHpR WHtR BMI WC WHpR WHtR SBP (mmhg) 0.324 0.348 0.260 0.362 0.364 0.366 0.163 0.395 DBP (mmhg) 0.282 0.321 0.248 0.330 0.327 0.348 0.143 0.369 FBS (mg/dl) 0.111 0.162 0.120 0.182 0.247 0.320 0.215 0.348 PGBS (mdl) 0.116 0.175 0.139 0.193 0.252 0.317 0.218 0.347 TC (mg/dl) 0.126 0.173 0.109 0.160 0.210 0.169 0.053 0.179 LDLC (mg/dl) 0.093 0.093 0.033 0.085 0.149 0.098 0.017 0.104 TG (mg/dl) 0.163 0.269 0.218 0.258 0.279 0.297 0.157 0.323 HDLC (mg/dl) 0.108 0.126 0.058 0.146 0.071 0.094 0.076 0.116 BMI: body mass index; DBP: diastolic blood pressure; FBS: fasting blood sugar; HDLC: high-density lipoprotein cholesterol; LDLC: low-density lipoprotein cholesterol; PGBS: postglucose blood sugar; SBP: systolic blood pressure; TC: total cholesterol; TG: triglycerides; WC: waist circumference; WHpR: waist-to-hip ratio; WHtR: waist-to-height ratio. Table 3: AUROC curves for various anthropometric indices and cardiometabolic risk factors in men, women and overall a Men (n=590) BMI WC WHpR WHtR Diabetes mellitus 0.603 (0.544 0.661) 0.640 (0.587 0.693) 0.632 (0.580 0.683) 0.660 (0.607 0.714) Hypertension 0.626 (0.580 0.672) 0.660 (0.615 0.705) 0.627 (0.582 0.672) 0.725 (0.682 0.767) High TC 0.575 (0.520 0.629) 0.605 (0.552 0.658) 0.571 (0.518 0.625) 0.602 (0.547 0.656) High TG 0.620 (0.575 0.665) 0.660 (0.616 0.704) 0.627 (0.582 0.672) 0.652 (0.608 0.697) Low HDLC 0.486 (0.408 0.565) 0.526 (0.448 0.605) 0.546 (0.468 0.624) 0.552 (0.471 0.632) OCVRF 0.642 (0.594 0.690) 0.677 (0.630 0.724) 0.648 (0.598 0.697) 0.684 (0.638 0.731) Women (n=588) Diabetes mellitus 0.700 (0.645 0.756) 0.741 (0.689 0.794) 0.687 (0.628 0.746) 0.765 (0.715 0.814) Hypertension 0.686 (0.641 0.730) 0.694 (0.650 0.738) 0.611 (0.565 0.658) 0.666 (0.621 0.710) High TC 0.604 (0.551 0.657) 0.583 (0.531 0.635) 0.530 (0.476 0.583) 0.585 (0.533 0.637) High TG 0.652 (0.606 0.698) 0.671 (0.626 0.716) 0.594 (0.546 0.641) 0.682(0.638 0.727) Low HDLC 0.540 (0.473 0.607) 0.556 (0.491 0.621) 0.524 (0.455 0.593) 0.566(0.501 0.632) OCVRF 0.607 (0.514 0.700) 0.632 (0.542 0.722) 0.547 (0.460 0.635) 0.645(0.555 0.736) Overall (n=1178) Diabetes mellitus 0.644 (0.603 0.683) 0.692 (0.654 0.729) 0.665 (0.627 0.703) 0.703 (0.666 0.741) Hypertension 0.654 (0.621 0.686) 0.676 (0.645 0.708) 0.618 (0.586 0.651) 0.693 (0.662 0.723) High TC 0.594 (0.556 0.632) 0.586 (0.548 0.624) 0.538 (0.500 0.576) 0.592 (0.554 0.629) High TG 0.633 (0.601 0.665) 0.666 (0.635 0.697) 0.611 (0.578 0.643) 0.666 (0.634 0.697) Low HDLC 0.546 (0.513 0.580) 0.424 (0.392 0.457) 0.352 (0.321 0.384) 0.549 (0.516 0.582) OCVRF 0.633 (0.594 0.672) 0.591 (0.552 0.631) 0.527 (0.486 0.568) 0.662 (0.623 0.700) a area under curve (95% confidence interval). BMI: body mass index; HDLC: high-density lipoprotein cholesterol; LDLC: low-density lipoprotein cholesterol; OCVRF: any one of the cardiovascular risk factors; TC: total cholesterol; TG: triglycerides; WC: waist circumference; WHpR: waist-to-hip ratio; WHtR: waist-to-height ratio. 145

Table 4. Cut-off points for anthropometric indices predictive of cvd risk factors BMI WC WHpR WHtR Cut-off (kg/m 2 ) Sens Cut-off (cm) Sens Cut-off Sens Cut-off Sens Men (n=590) Diabetes mellitus 24.2 61.9 55.2 89.5 63.8 62.8 0.945 62.8 57.5 0.540 66.6 58.9 Hypertension 24.0 63.4 55.6 86.9 66.9 58.9 0.940 63.4 56.7 0.530 67.4 59.7 High TC 24.2 57.8 54.9 88.0 62.5 56.3 0.943 57.8 53.8 0.534 60.1 54.9 High TG 23.9 42.8 34.4 87.0 68.1 60.0 0.940 63.3 56.9 0.531 65.5 59.7 Low HDLC 23.8 50.0 45.1 86.0 53.5 47.9 0.946 55.3 55.2 0.538 55.3 54.6 OCVRF 23.4 65.3 59.0 84.5 68.1 62.1 0.926 65.0 58.5 0.520 68.8 65.1 Women (n=588) Diabetes mellitus 25.3 70.0 60.0 82.0 78.7 58.4 0.882 70.0 62.7 0.552 76.2 62.5 Hypertension 24.8 68.1 59.6 80.0 74.5 53.9 0.859 60.7 55.2 0.532 72.5 57.2 High TC 25.2 60.6 59.3 80.0 62.7 46.2 0.863 53.1 52.1 0.533 60.0 49.4 High TG 24.7 65.0 59.6 79.8 71.6 52.9 0.860 60.8 55.8 0.535 68.8 59.3 Low HDLC 24.4 54.4 45.5 79.9 57.7 53.8 0.857 53.3 52.7 0.526 57.7 56.0 OCVRF 23.6 60.9 60.4 77.5 63.1 60.4 0.853 55.4 53.4 0.506 67.9 55.8 Overall (n=1178) Diabetes mellitus 24.7 65.4 56.4 85.0 72.9 56.8 0.910 66.4 57.1 0.545 70.8 60.4 Hypertension 24.4 65.4 58.3 83.0 68.4 54.7 0.899 61.7 56.0 0.531 69.3 58.5 High TC 24.5 59.7 55.0 83.5 43.2 43.5 0.900 55.6 51.1 0.534 58.9 53.2 High TG 24.1 64.4 54.3 83.5 66.8 59.8 0.898 61.2 55.5 0.533 67.5 59.1 Low HDLC 24.2 54.6 51.3 84.0 43.2 43.5 0.903 35.0 39.6 0.532 54.9 52.1 OCVRF 23.4 63.6 58.5 81.5 59.7 53.1 0.895 52.5 51.4 0.514 66.2 59.7 BMI: body mass index; HDLC: high-density lipoprotein cholesterol; OCVRF: any one of the cardiovascular risk factors; Sens: sensitivity; : specificity; TC: total cholesterol; TG: triglycerides; WC: waist circumference; WHpR: waist-to-hip ratio; WHtR: waist-to-height ratio. WHR (Table 4). Such computations were based on Youden Index derivations of ROC analyses. In addition, several ROC graphs clearly illustrate the representations of each index against individual cardiometabolic risk factors. The study findings suggest that the proposed cut-offs of various organizations to define overweight and obesity are not appropriate for Indians, who are at risk of developing obesityrelated cardiometabolic morbidities at lower levels of BMI and WC. Table 5 compares the optimal cut-off points derived from this study with current international recommendations. 23,24,28-30 Our findings also suggest that, unlike standard BMI cut-off levels for identifying obesity, AUROC values indicated that WHtR was consistently a better indicator for the majority of cardiometabolic risk factors except for high TC where BMI is a better predictor overall and in women, and WC is a better predictor in men. These observations are consistent with recent studies 11-13 as well as studies from the mid 1990s. 31,32 Strengths of the study Strengths of this study include a broad baseline of available adiposity parameters and metabolic disease data from a large population-based cohort. Other strengths are representative sampling methodology, the use of standardized data collection protocols, in-depth assessment of multiple cardiometabolic risk factors, and a high response rate to the survey (98.1%). Furthermore, this is the first study from eastern India comparing all four adiposity measures BMI, WC, WHpR and WHtR with cardiometabolic risk factors. Limitations of the study One limitation of our study is that it relates cardiovascular risk to BMI, WC, WHpR and WHtR in a cross-sectional setting using established cardiometabolic risk factors as a proxy estimate rather than clinical end-points or mortality data. Thus, the cross-sectional design does not allow cause effect relationships to be made. Given that individuals were approached at home, it is possible that the sample was biased towards home-based or more sedentary individuals rather than a more active professional workforce. Finally, we had no data on body fat mass, and further studies may be needed to assess body fat mass and its relationship with surrogate anthropometric indices. Prospective 146

Table 5: Obesity cut-off points: comparison between published guideline and results of this study Obesity index and source of guideline Defined cut-off points Cut-off points for South Asians derived from this study Body mass index WHO, 1999 28 30 kg/m 2 for both sexes 23.4 kg/m 2 in men API, 2009 30 25 kg/m 2 for both sexes 23.6 kg/m 2 in women Waist circumference WHO, 2008 29 NCEP: ATPIII, 2001 23 IDF/NHLBI/AHA/WHF/IAS/IASO, 2009 24 * API, 2009 30 94 cm in men 80 cm in women 102 cm in men 88 cm in women 90 cm in men 80 cm in women 90 cm in men 80 cm in women 84.5 cm in men 77.5 cm in women Waist hip ratio WHO, 1999, 28 2008 28,29 0.90 in men 0.85 in women 0.93 in men 0.85 in women Waist height ratio Ashwell and Hsieh, 2005 11 Note: Superscript numbers are references cited in the main text. 0.50 for both sexes 0.52 in men 0.51 in women * Joint Interim Statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. AHA: American Heart Association; API: Association of Physicians of India; IAS: International Atherosclerosis Society; IASO: International Association for the Study of Obesity; IDF: International Diabetes Federation; NCEP: National Cholesterol Education Program; NHLBI: National Heart, Lung, and Blood Institute; WHF: World Heart Federation; WHO: World Health Organization. studies are also required that relate anthropometric indices to clinical CVD mortality and all-cause mortality in South Asians. CONCLUSIONS It is evident from the present study findings that, despite overlap in 95% confidence intervals, WHtR is a relatively superior indicator of obesity-related cardiometabolic risk in adult Indians in terms of AUROC values compared with other relevant anthropometric indices studied. Our study indicates that the cut-off values for BMI, WC, or WHpR to define obesity could be much lower in South Asia than in western countries. Based on these conclusions and those of similar findings elsewhere, 13 we suggest that WHtR is a better screening tool to identify obesity-associated cardiometabolic risks among adult Indians, and probably across other ethnic communities. Nevertheless, further studies are required for such a population-based screening tool prior to its universal adoption in both clinical and community health settings. Acknowledgements Dr K Revathi Devi, Medical Officer, Sudhir Heart Centre, Berhampur, Odisha, India; Professor BK Sahu, Berhampur University, Berhampur, Odisha, India; Mrs Mohini Sahu, Child Development Project Officer, Berhampur, Odisha, India; Dr US Panigrahi, former Professor of Psychiatry, Dr Ram Manohar Lohiya Hospital, New Delhi, India. REFERENCES 1. Ghaffar A, Reddy KS, Singh M. Burden of non-communicable diseases in South Asia. BMJ. 2004;328:807-10. 2. Balarajan Y, Villamor E. Nationally Representative Surveys Show Recent Increases in the Prevalence of Overweight and Obesity among Women of Reproductive Age in Bangladesh, Nepal, and India. J Nutr. 2009;139:2139-44. 3. Katulanda P, Jayawardena MAR, Sheriff MHR, Constantine GR, Matthews DR. Prevalence of overweight and obesity in Sri Lankan adults. Obes Rev. 2010;11:751-6. 4. Shah B, Mathur P. Surveillance of cardiovascular disease risk factors in India: the need & scope. Indian J Med Res. 2010;132:634-42. 5. Gupta R, Rastogi P, Sarna M, Gupta VP, Sharma SK, Kothari K. Bodymass index, waist-size, waist-hip ratio and cardiovascular risk factors in urban subjects. JAPI. 2007;55:621-7. 6. Prasad DS, Kabir Z, Dash AK, Das BC. Abdominal obesity, an independent cardiovascular risk factor in Indian subcontinent: a clinico epidemiological evidence summary. J Cardiovasc Dis Res. 2011;2:199-205. 7. Misra A, Khurana L. Obesity-related non-communicable diseases: South Asians vs White Caucasians. Int J Obes. 2011;35:167-87. 147

8. World Health Organization, Western Pacific Regional Office, International Association for the Study of Obesity, International Obesity Task Force. The Asia-Pacific perspective: Redefining obesity and its treatment. Melbourne: Health Communications Australia, 2000. 9. WHO Expert Consultation. Appropriate body-mass index for Asian populations and its implications for policy and intervention strategies. Lancet. 2004;363:157-63. 10. Gupta R, Gupta VP, Bhagat N, Rastogi P, Sarna M, Prakash H, et al. Obesity is major determinant of coronary risk factors in India: Jaipur Heart Watch studies. Indian Heart J. 2008;60:26-33. 11. Ashwell M, Hsieh SD. Six reasons why the waist-to-height ratio is a rapid and effective global indicator for health risks of obesity and how its use could simplify the international public health message on obesity. Int J Food Sci Nutr. 2005;56:303-7. 12. Park SH, Choi SJ, Lee KS, Park HY. Waist circumference and waist-toheight ratio as predictors of cardiovascular disease risk in Korean adults. Circ J. 2009;73:1643-50. 13. Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev. 2012;13:275-86. 14. Wong E, Stevenson C, Backholer K, Mannan H, Pasupathi K, Hodge A et al. Adiposity measures as predictors of long-term physical disability. Ann Epidemiol. 2012;22:710-6. 15. Deurenberg P, Yap N, Van Staveren WA. Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes Relat Metab Disord. 1998;22:1164-71. 16. Prasad DS, Zubair K, Dash AK, Das BC. Coronary risk factors in South Asians: A prevalence study in an urban populace of Eastern India. CVD Prev Control. 2010;5:125-32. 17. Indian Council of Medical Research. Ethical guidelines for biomedical research on human subjects. 3rd edn. New Delhi: ICMR, 2006. 18. World Health Organization, International Diabetes Federation. Definition and diagnosis of diabetes mellitus and intermediate hyperglycaemia: report of a WHO/IDF Consultation. Geneva: World Health Organization, 2006. 19. Prasad DS, Kabir Z, Dash AK, Das BC. Prevalence and risk factors for diabetes and impaired glucose tolerance in Asian Indians: a community survey from urban eastern India. Diabetes Metab Syndr. 2012;6:96-101. 20. Prasad DS, Kabir Z, Dash AK, Das BC. Effect of obesity on cardiometabolic risk factors in Asian Indians. J Cardiovasc Dis Res. 2013;4:116-22. 21. Chobanian AV, Bakris GL, Black HR, Cushman WC, Green LA, Izzo JL Jr., et al. Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. Hypertension. 2003;42:1206-52. 22. Prasad DS, Kabir Z, Dash AK, Das BC. Prevalence and predictors of adult hypertension in an urban eastern Indian population. Heart Asia. 2012;4:49-52. 23. National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III). Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143-421. 24. Alberti KGMM, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA et al. Harmonizing the metabolic syndrome. Circulation. 2009;120:1640-5. 25. Prasad DS, Kabir Z, Dash AK, Das BC. Prevalence and risk factors for metabolic syndrome in Asian Indians: a community study from urban eastern India. J Cardiovasc Dis Res. 2012;3:204-11. 26. Freidewald WT, Levy RJ, Fredrickson. Estimation of the concentration of LDL Cholesterol in plasma without use of the preparative ultracentrifuge. Clin Chem. 1972;18:499. 27. Akobeng AK. Understanding diagnostic tests 3: receiver operating characteristic curves. Acta Paediatr. 2007;96:644-7. 28. World Health Organization. Definition, diagnosis and classification of diabetes mellitus and its complications: report of a WHO Consultation. Geneva: WHO, 1999. 29. World Health Organization. Waist circumference and waist-hip ratio: report of a WHO Expert Consultation, Geneva, 8-11 December 2008. Geneva: WHO, 2011. 30. Misra A, Chowbey P, Makkar BM, Vikram NK, Wasir JS, Chadha D et al. Consensus Statement for Diagnosis of Obesity, Abdominal Obesity and the Metabolic Syndrome for Asian Indians and Recommendations for Physical Activity, Medical and Surgical Management. JAPI. 2009;57:163-70. 31. Hsieh SD, Yoshinaga H. Abdominal fat distribution and coronary heart disease risk factors in men waist/height ratio as a simple and useful predictor. Int J Obes Relat Metab Disord. 1995;19:585-9. 32. Ashwell M, LeJeune SRE, McPherson K. Ratio of waist circumference to height may be better indicator of need for weight management. BMJ. 1996;312:377. How to cite this article: Prasad DS, Kabir Z, Suganthy JP, Dash AK, Das BC. Appropriate anthropometric indices to identify cardiometabolic risk in South Asians. WHO South-East Asia J Public Health 2013; 2(3-4): 142 148 Source of Support: Nil Conflict of Interest: None declared. Contributorship: DSP, ZK, AKD, BCD conceived the idea and planned the study. DSP, ZK, JPS did the review of literature. JPS, DSP, ZK and BCD, performed data extraction, statistical analysis and tabulation. DSP and ZK prepared the manuscript. DSP, ZK, AKD and BCD provided technical suggestions; DSP and AKD supervised the study. All the authors read and approved the final draft manuscript. 148