SUPPLEMENTARY INFORMATION

Similar documents
CS612 - Algorithms in Bioinformatics

(B D) Three views of the final refined 2Fo-Fc electron density map of the Vpr (red)-ung2 (green) interacting region, contoured at 1.4σ.

Amino Acids. Review I: Protein Structure. Amino Acids: Structures. Amino Acids (contd.) Rajan Munshi

2. Which of the following amino acids is most likely to be found on the outer surface of a properly folded protein?

Arginine side chain interactions and the role of arginine as a mobile charge carrier in voltage sensitive ion channels. Supplementary Information

Phenylketonuria (PKU) Structure of Phenylalanine Hydroxylase. Biol 405 Molecular Medicine

Supplementary Figure-1. SDS PAGE analysis of purified designed carbonic anhydrase enzymes. M1-M4 shown in lanes 1-4, respectively, with molecular

Supplementary Information

Supplementary Figure 1 Preparation, crystallization and structure determination of EpEX. (a), Purified EpEX and EpEX analyzed on homogenous 12.

The Basics: A general review of molecular biology:

Structural analysis of fungus-derived FAD glucose dehydrogenase

Structure of the measles virus hemagglutinin bound to the CD46 receptor. César Santiago, María L. Celma, Thilo Stehle and José M.

SUPPLEMENTARY INFORMATION

Detergent solubilised 5 TMD binds pregnanolone at the Q245 neurosteroid potentiation site.

This exam consists of two parts. Part I is multiple choice. Each of these 25 questions is worth 2 points.

Properties of amino acids in proteins

Introduction to proteins and protein structure

Atypical Natural Killer T-cell receptor recognition of CD1d-lipid antigens supplementary Information.

Introduction to Protein Structure Collection

SUPPORTING INFORMATION FOR. A Computational Approach to Enzyme Design: Using Docking and MM- GBSA Scoring

FCC2 5CY7 FCC1 5CY8. Actinonin 5CVQ

SUPPLEMENTARY INFORMATION

Biomolecules: amino acids

Page 8/6: The cell. Where to start: Proteins (control a cell) (start/end products)

CHAPTER 21: Amino Acids, Proteins, & Enzymes. General, Organic, & Biological Chemistry Janice Gorzynski Smith

Practice Problems 3. a. What is the name of the bond formed between two amino acids? Are these bonds free to rotate?

Supplementary Information Janssen et al.

Chemical Nature of the Amino Acids. Table of a-amino Acids Found in Proteins

Table S1. X-ray data collection and refinement statistics

1. Describe the relationship of dietary protein and the health of major body systems.

Review II: The Molecules of Life

BIOCHEMISTRY REVIEW. Overview of Biomolecules. Chapter 4 Protein Sequence

Objective: You will be able to explain how the subcomponents of

Chemistry 121 Winter 17

PROTEINS. Amino acids are the building blocks of proteins. Acid L-form * * Lecture 6 Macromolecules #2 O = N -C -C-O.

Supplementary Material

Supplementary Materials for

Supplementary Figure 1 (previous page). EM analysis of full-length GCGR. (a) Exemplary tilt pair images of the GCGR mab23 complex acquired for Random

Macromolecules of Life -3 Amino Acids & Proteins

Copyright 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

PAPER No. : 16, Bioorganic and biophysical chemistry MODULE No. : 22, Mechanism of enzyme catalyst reaction (I) Chymotrypsin

Catalysis & specificity: Proteins at work

Biological systems interact, and these systems and their interactions possess complex properties. STOP at enduring understanding 4A

LAB#23: Biochemical Evidence of Evolution Name: Period Date :

The Structure and Function of Macromolecules

3.2 Ligand-Binding at Nicotinic Acid Receptor Subtypes GPR109A/B

The Structure and Function of Large Biological Molecules Part 4: Proteins Chapter 5

Bioinformatics for molecular biology

Short polymer. Dehydration removes a water molecule, forming a new bond. Longer polymer (a) Dehydration reaction in the synthesis of a polymer

9/6/2011. Amino Acids. C α. Nonpolar, aliphatic R groups

paper and beads don t fall off. Then, place the beads in the following order on the pipe cleaner:

Judy Wieber. Department of Computational Biology. May 27, 2008

Four melanocyte-stimulating hormones have the following amino acid sequences:

Chapter 3: Amino Acids and Peptides

Lipids: diverse group of hydrophobic molecules

Supplementary Materials for

Biomolecules Amino Acids & Protein Chemistry

Supplementary Table 1. Data collection and refinement statistics (molecular replacement).

AP Bio. Protiens Chapter 5 1

BIO 311C Spring Lecture 15 Friday 26 Feb. 1

Biology. Lectures winter term st year of Pharmacy study

Methionine (Met or M)

Excerpt from J. Mol. Biol. (2002) 320, :

SUPPLEMENTARY INFORMATION

Chapter 20 and GHW#10 Questions. Proteins

Lecture 33 Membrane Proteins

Reactions and amino acids structure & properties

Molecular Biology. general transfer: occurs normally in cells. special transfer: occurs only in the laboratory in specific conditions.

1-To know what is protein 2-To identify Types of protein 3- To Know amino acids 4- To be differentiate between essential and nonessential amino acids

Supporting Information

PROTEINS. Building blocks, structure and function. Aim: You will have a clear picture of protein construction and their general properties

Towards a New Paradigm in Scientific Notation Patterns of Periodicity among Proteinogenic Amino Acids [Abridged Version]

Amino Acids. Amino Acids. Fundamentals. While their name implies that amino acids are compounds that contain an NH. 3 and CO NH 3

Crystal Structure of the Subtilisin Carlsberg: OMTKY3 Complex

STRUCTURE OF A UBIQUITIN-LOADED HECT LIGASE REVEALS THE MOLECULAR BASIS FOR CATALYTIC PRIMING SUPPLEMENTARY INFORMATION

Introduction. Basic Structural Principles PDB

Moorpark College Chemistry 11 Fall Instructor: Professor Gopal. Examination # 5: Section Five May 7, Name: (print)

Chemical Mechanism of Enzymes

SUPPLEMENTARY INFORMATION

Proteins are sometimes only produced in one cell type or cell compartment (brain has 15,000 expressed proteins, gut has 2,000).

Multiple-Choice Questions Answer ALL 20 multiple-choice questions on the Scantron Card in PENCIL

Cahn - Ingold - Prelog system. Proteins: Evolution, and Analysis Lecture 7 9/15/2009. The Fischer Convention (1) G (2) (3)

Levels of Protein Structure:

Head. Tail. Carboxyl group. group. group. air water. Hydrocarbon chain. lecture 5-sa Seth Copen Goldstein 2.

Protein Structure Monday, March

BIRKBECK COLLEGE (University of London)

Organic molecules are molecules that contain carbon and hydrogen.

Quantitative LC-MS/MS Analysis of Glucagon. Veniamin Lapko, Ph.D June 21, 2011

BCHS 3304/ Exam I. September 26,

Four Classes of Biological Macromolecules. Biological Macromolecules. Lipids

BIOCHEMISTRY I HOMEWORK III DUE 10/15/03 66 points total + 2 bonus points = 68 points possible Swiss-PDB Viewer Exercise Attached

If you like us, please share us on social media. The latest UCD Hyperlibrary newsletter is now complete, check it out.

Previous Class. Today. Detection of enzymatic intermediates: Protein tyrosine phosphatase mechanism. Protein Kinase Catalytic Properties

Nature Methods: doi: /nmeth Supplementary Figure 1

CHM333 LECTURE 6: 1/25/12 SPRING 2012 Professor Christine Hrycyna AMINO ACIDS II: CLASSIFICATION AND CHEMICAL CHARACTERISTICS OF EACH AMINO ACID:

Green Segment Contents

Proteins. Amino acids, structure and function. The Nobel Prize in Chemistry 2012 Robert J. Lefkowitz Brian K. Kobilka

P450 CYCLE. All P450s follow the same catalytic cycle of;

Biochemistry 2 Recita0on Amino Acid Metabolism

Transcription:

Supplementary Discussion The HGGG sequence motif forms an oxyanion hole in HLSs. In the case of GID1, the third Gly residue of the sequence motif is replaced with Ser (Ser123 in OsGID1), i.e., the sequence of the motif is HGGS (Supplementary Fig. 9). This replacement enables the side chain of Ser123 as well as Ser198 to interact with the carboxylate group at the C6 position of GAs (Fig. 1c). The importance of Ser123 was confirmed by little GA binding activity of mutated OsGID1 protein, S123G (Supplementary Fig.5). The substitution of the third Gly in the HGGG motif likely caused another replacement in which the Ala next to the catalytic serine in HSL is replaced with Ser, i.e., Ser199 in OsGID1. By this substitution, the side chain of Ser199 is coordinated to the main-chain NH of Ser123. Indeed, the distance and angle between the NH of Ser123 and OG of Ser199 are not the most favorable but still allowed to make hydrogen bond. This interaction makes it possible for the HGGS loop structure to adopt the hydrogen bonding distance between Ser123 and the carboxyl group in GAs. These two amino acid exchanges are conserved in all GID1 proteins from rice (Oryza sativa) 1, Arabidopsis (Arabidopsis thaliana) 2, cotton (Gossypium hirsutum) 3, and lycophytes (Selaginella moellendorffii) 4, as indicated in Supplementary Fig. 9. www.nature.com/nature 1

Supplementary Table S1 Data collection and refinement statistics Data collection GID1-GA4 Hg SAD GID1-GA3 Space group P 21 P 21 P 21 Cell dimensions a, b, c (Å) 82.8, 133.9, 118.9 82.9, 133.3, 119.3 82.7, 134.1, 118.9,, ( ) 90, 105.0, 90 90, 104.9, 90 90, 105.2, 90 Wavelength (Å) 1.0 1.0050 1.0 Resolution (Å) 50.0 1.90 (1.97 1.90) * 50.0 2.90 (3.00 2.90) 50.0 1.90 (1.97 1.90) No. of reflections 703671 418098 710408 No. of unique 193933 109093 192246 reflections Rmerge 0.054 (0.597) 0.077 (0.298) 0.054 (0.365) I/ I 21.8 (1.7) 21.0 (5.6) 27.6 (3.2) Completeness (%) 98.8 (92.8) 99.8 (99.9) 97.6 (87.5) Redundancy 3.6 (3.4) 3.8 (3.8) 3.7 (3.3) Figure of Merit 0.66 Refinement Resolution (Å) 20.0 1.9 20.0 1.9 No. reflections 183960 181950 Rwork / Rfree 0.201 / 0.244 0.197 / 0.240 No. atoms Protein 14562 14574 Ligand/ion 270 256 Water 1091 1106 B-factors Protein 34.7 31.3 Ligand/ion 36.5 32.7 Water 40.4 37.7 R.m.s deviations Bond lengths (Å) 0.014 0.013 Bond angles (º) 1.511 1.489 *Highest resolution shell is shown in parentheses. R merge = I i -<I i > / I i, where I i = observed intensit y, <I i > = average intensity of multiple www.nature.com/nature 2

Supplementary Figures Supplementary Fig. 1: Topology of rice GID1 structure: the central -sheet is shown in pink ( 1, Val63 Ile69; 2, Leu76 Ala83; 3, Val115 Phe118; 4, Val148 Val152; 5, Val192 Asp197; 6, Asn221 Leu224; 7, Ser288 Ser293; 8, Val316 Cys321) and the central helices ( - and 3 10 -helices ( )) in blue ( 1, Thr132 Ser145; 2, Cys164 Ser178; 1, Pro180 Met182; 3, Ser199 Glu214; 6, Cys299 Asp312; 2, Phe328 Leu330; 7, Val335 Asn351). An additional region containing the N-terminal lid ( b, Leu18 Leu34; c, Arg43 Leu49) and insertion helices between 6 and 7 ( 4, Glu235 Leu240; 5, Leu248 Tyr258) are shown in green and orange, respectively. A segment from Ala85 to Thr105 that is invisible in the electron density map is shown as a broken line. Functional loops are shown as bold lines (L120, link: 3 and 1; L240, link: 4 and 5; L290, link 7 and 6; L320, link: 8 and 2). Supplementary Fig. 2: Electron density map around the GA binding site of rice GID1. a, GA 4 GID1 complex; b, GA 3 GID1 complex; c, their superimposed www.nature.com/nature 3

structural model, shown in orange (GA 4 ) and in green (GA 3 ); d, chemical structure of GA 4 and GA 3. The GA molecules are shown as a ball-and-stick model, with its positive F o -F c electron density calculated and contoured at 3.5 before it was built into the OsGID1 model. Supplementary Fig. 3: Superimposed structure of rice GID1 (green) and AeCXE1 (grey) around the GA binding site, including their corresponding residues for the HGGG motif and catalytic triad of HSL. The residues of GID1 are indicated, with the corresponding residues of AeCXE1 in parentheses. Structural changes are indicated by arrows. Supplementary Fig. 4: Stereo view of Fig. 2a. Supplementary Fig. 5: GA binding activities of mutated rice GID1s proteins with conserved amino acids replaced with Ala or the corresponding amino acid residues of SmGID1s. Ala exchange, mutated GID1 proteins with amino acids related to polar www.nature.com/nature 4

and hydrophobic interactions with GA 4 (described in the text) replaced with Ala. Miscellaneous exchange, mutated GID1 proteins with amino acids related to other functions replaced with Ala or Gly. SmGID1 type, mutated GID1 proteins with amino acids, that are not conserved in S. moellendorffii replaced with the corresponding SmGID1 amino acid residue. mlid, mutated GID1 proteins with 6 amino acids (Leu18, Trp21, Leu29, Ile33, Leu45 and Tyr48) replaced with Ala. Values are means s.d.; n = 3. Supplementary Fig. 6: Schematic rice GID1 dimer interaction in the crystalline state. GID1 molecules are likely packed into a crystalline lattice as dimers; nevertheless, the interface area is narrower than typical protein dimers. The functional relevance of the dimer is unclear, as the gel filtration profile indicates that GID1 functions as a monomer. The N-terminal lid region including b and c in each monomer is colored (blue-green in one monomer and green in the other). The six hydrophobic amino acid residues that appear to participate in the interaction in each monomer are shown by a stick model. These residues are marked by blue in Supplementary Fig. 9. www.nature.com/nature 5

Supplementary Fig. 7: Gel filtration elution profile of rice GID1 complexed with GA 4. Molecular mass calibration is shown at the top of the figure. Supplementary Fig. 8: Hydrophobic amino acids that lie at the upper side of N-terminal lid region are essential for interaction between rice GID1 and SLR1. Interactions established by yeast two-hybrid assay using mutated GID1s as bait and the full-length SLR1 as prey with or without 10-4 M GA 4. mlid, mutated GID1 proteins with 6 amino acids (Leu18, Trp21, Leu29, Ile33, Leu45 and Tyr48), replaced with Ala. Values are means SD, n = 3. Supplementary Fig. 9: Sequence alignment of GID1s and its homologues based on the crystal structure of rice GID1. GID1 from rice, OsGID1; Arabidopsis, AtGID1abc; cotton, GhGID1ab; lycophyte, SmGID1ab; bryophyte (putative; GID1 function not detected), PpGID1L12; plant carboxylesterase AeCXE1 5, 2o7r; thermostable carboxylesterase Este1 (unpublished), 2C7B; Archaeon carboxylesterase www.nature.com/nature 6

AFEST 6, 1jji; thermophilic esterase Est2 7, 1EVQ. The last four HSL members are designated by their PDB codes; their similarity to OsGID1 was found by SSM analysis. The - and 3 10 -helices of GID1 are indicated by cylinders and the -strands with arrows. Unmodeled regions are indicated by a broken line. The HGG motif and catalytic triad (Ser, Asp, His; Ser198, Asp296, Val326 in OsGID1) of HSL are marked in green. The GA recognition residues are marked in yellow, functional residues in the lid closure are light-blue and other protein interactions indicated in Supplementary Fig. 6 are blue. Fully conserved residues are filled in whereas partially conserved ones are open boxes. Supplementary References 1. Ueguchi-Tanaka, M. et al. GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437, 693-8 (2005). 2. Nakajima, M. et al. Identification and characterization of Arabidopsis gibberellin receptors. Plant J 46, 880-9 (2006). www.nature.com/nature 7

3. Aleman, L. et al. Functional analysis of cotton orthologs of GA signal transduction factors GID1 and SLR1. Plant Mol Biol 68, 1-16 (2008). 4. Hirano, K. et al. The GID1-mediated gibberellin perception mechanism is conserved in the Lycophyte Selaginella moellendorffii but not in the Bryophyte Physcomitrella patens. Plant Cell 19, 3058-79 (2007). 5. Ileperuma, N. R. et al. High-resolution crystal structure of plant carboxylesterase AeCXE1, from Actinidia eriantha, and its complex with a high-affinity inhibitor paraoxon. Biochemistry 46, 1851-9 (2007). 6. De Simone, G. et al. The crystal structure of a hyper-thermophilic carboxylesterase from the archaeon Archaeoglobus fulgidus. J Mol Biol 314, 507-18 (2001). 7. De Simone, G. et al. A snapshot of a transition state analogue of a novel thermophilic esterase belonging to the subfamily of mammalian hormone-sensitive lipase. J Mol Biol 303, 761-71 (2000). www.nature.com/nature 8

N 18 34 248 258 49 43 240 235 HGGS Ser198 Asp296 328 330 Val326 69 76 152 132 118 164 197 199 224 293 299 321 335 63 83 115 148 145 178 192 214 221 288 312 316 351 C 84 106 180 182 Supplementary Fig. 1 M.Matsuoka et al. www.nature.com/nature 9

a b Phe27 Ile24 Tyr31 Phe27 Ile24 Tyr31 Ser127 Asp250 Ser127 Asp250 Val264 Val264 Tyr134 GA4 Ser123 Tyr134 GA3 Ser123 Ser198 Ser198 c GA3 Asp250 d HO 2 OC 19 3 4 1 18 O 5 10 9 11 6 8 12 14 7 COOH GA4 15 13 16 17 1 O OH 2 OC 13 HO GA3 COOH Supplementary Fig. 2 M.Matsuoka et al. www.nature.com/nature 10

GA4 Val326 Gly121 (91) Ser198 (169) (His306) Asp296 (276) His120 (90) Gly122 (92) Ser123 (Gly93) Supplementary Fig. 3 M.Matsuoka et al. www.nature.com/nature 11

(carboxyl-end of β6) Asn225 (η2) (L320) Tyr329 Gly327m Asp296 (L290) Arg251 (α5) (carboxyl-end of β6) Asn225 (η2) (L320) Tyr329 Gly327m Asp296 (L290) Arg251 (α5) (α1) Tyr134 GA4 C3 Ser198 (nucleophilic elbow) C6 Ser123 (L120) Gly122m (L120) Asp250 (α5) (α1) Tyr134 GA4 C3 Ser198 (nucleophilic elbow) C6 Ser123 (L120) Gly122m (L120) Asp250 (α5) Ser127 (L120) Tyr31 (αb) Ser127 (L120) Tyr31 (αb) Supplementary Fig. 4 M.Matsuoka et al. www.nature.com/nature 12

3000 2500 GA binding activity (dpm) 2000 1500 1000 500 0 Wild I24A F27A Y31A S123A S127A I133A Y134A S198A N225A F245A V246A D250A R251A Y254A V326A Y329A L330A H126A W253A S123G mlid F27L S127M I133L I133V N225I N225M Y329F L330I Ala exchange I Miscellaneous exchange SmGID1 type Supplementary Fig. 5 M.Matsuoka et al. www.nature.com/nature 13

doi: 10.1038/nature07546 Trp21 Leu29 Leu45 Tyr48 Ile33 Leu29 Leu18 Leu18 Ile33 Leu45 Tyr48 Trp21 Supplementary Fig. 6 M.Matsuoka et al. www.nature.com/nature 14

250 670 kda 158 kda 44 kda 17 kda 200 150 100 50 0-50 0.0 5.0 10.0 15.0 20.0 25.0 elution volume (ml) Supplementary Fig. 7 M.Matsuoka et al. www.nature.com/nature 15

GA bait prey 4 Wild- GID1 SLR1 - + mlid- GID1 SLR1 - + 0 20 40 60 β-galactosidase activity (Miller unit) Supplementary Fig. 8 M.Matsuoka et al. www.nature.com/nature 16

20 40 OsGID1 MA-----GSDEVNRNECKTVVPLHTWVLISNFKLSYNILRRADGTFERDLGEYLDRRVPA 55 AtGID1a MA-----ASDEVNLIESRTVVPLNTWVLISNFKVAYNILRRPDGTFNRHLAEYLDRKVTA 55 AtGID1b MA-----GGNEVNLNECKRIVPLNTWVLISNFKLAYKVLRRPDGSFNRDLAEFLDRKVPA 55 AtGID1c MA-----GSEEVNLIESKTVVPLNTWVLISNFKLAYNLLRRPDGTFNRHLAEFLDRKVPA 55 GhGID1a MA-----GSNEVNLNESKRVVPLNTWVLISNFKLAYNLQRRPDGTFNRDLSEFLDRRVPA 55 GhGID1b MA-----GSNEVNLNESKRVVPLNTWVLISNFKLSYNLQRRPDGTFNRDLSEFLDRRVPA 55 SmGID1a MN-----SCSKAILKPSKDVVPLSTWILISKLKVEYMLTRGADGSFNRNLAEFHDRKASA 55 SmGID1b MEPEEDSSAEELQLKESKEVVPLNTWVLISNLKLAYNLTRNSDGSFNRNLDEFLDRKVPV 60 PpGID1L1 ------------------MASLVQLRILSEFVVRANRVTRRRDGTINRWLADTLEKKVPA 42 PpGID1L2 ------------MLYDLQMASMMQLRLLCKVVVKANDLARRKDGTINRWLADVCERKVPA 48 2O7R -----------------MSNDHLETTGSSDPNTNLLKYLPIVLNPDRTITRPIQIPSTAA 43 2C7B ------------------------MPLDPQIKPILERIRALSIAASPQELRRQVEEQSRL 36 1JJI ------------MLDMPIDPVYYQLAEYFDSLPKFDQF------SSAREYREAINRIYEE 42 1EVQ ---------------------MPLDPVIQQVLDQLNRMPAPDYKHLSAQQFRSQQS---- 35 60 80 100 OsGID1 NARP----LEGVSSFDHIIDQ-SVGLEVRIYRAAAEGDAEEGAAAVTRPILEFLTDAPAA 110 AtGID1a NANP----VDGVFSFDVLIDR-RINLLSRVYRPAYAD------QEQPPSILDLEKPVDG- 103 AtGID1b NSFP----LDGVFSFD-HVDS-TTNLLTRIYQPASLL------HQTRHGTLELTKPLSTT 103 AtGID1c NANP----VNGVFSFDVIIDR-QTNLLSRVYRPADAG--------TSPSITDLQNPVDG- 101 GhGID1a NINP----VDGVFSFD-HVDG-ATGLLNRVYQPSSL-------NEAQWGMVDLEKPLSTT 102 GhGID1b NINP----VDGVFSFD-HVDG-ATGLLNRVYQPSPK-------NEAQWGIVDLEKPLSTT 102 SmGID1a SLAP----HDGVASMDVTIDR-SSGLWSRIFLPAIAY--------------AQEEQANRD 96 SmGID1b SSVERE -DDPVTFMDVTIDR-TSGIWSRIFIPRASH--------------NNNASSTTH 104 PpGID1L1 NPIP----VKGVSSADVTIDA-EAGIWARVFSLTEEI------EETSLPTATDGNQR-LF 90 PpGID1L2 NPKP----IKGVHTVDVTIDP-EAGVWVRLFIPTEET------VETPSKSASNDTQIESN 97 2O7R SPDPTSS -SPVLTKDLALNPL-HNTFVRLFLPRHALYN--------------------S 80 2C7B LTAAVQEP--IAETRDVHIPVSGGSIRARVYFPKKAAG---------------------- 72 1JJI RNRQLSQHERVERVEDRTIKGRNGDIRVRVYQQKPD------------------------ 78 1EVQ LFPPVKKEPVAEVREFDMDLPG-RTLKVRMYRPEGVEP---------------------- 72 120 140 160 OsGID1 EPFPVIIFFHGGSFVHSSASSTIYDSLCRRFVKLSKGVVVSVNYRRAPEHRYPCAYDDGW 170 AtGID1a DIVPVILFFHGGSFAHSSANSAIYDTLCRRLVGLCKCVVVSVNYRRAPENPYPCAYDDGW 163 AtGID1b EIVPVLIFFHGGSFTHSSANSAIYDTFCRRLVTICGVVVVSVDYRRSPEHRYPCAYDDGW 163 AtGID1c EIVPVIVFFHGGSFAHSSANSAIYDTLCRRLVGLCGAVVVSVNYRRAPENRYPCAYDDGW 161 GhGID1a EIVPVIVFFHGGSFTHSSANSAIYDTFCRRLVSLCKAVVVSVNYRRSPEHRYPCAYDDGW 162 GhGID1b EVVPVIVFFHGGSFTHSSANSAIYDTFCRRLVNICKAVVVSVNYRRSPEHRYPCAYDDGW 162 SmGID1a DKVPIIFYFHGGSYAHSSANTALYDMVCRQLCRTCRAVVISVNYRRAPEHRCPAAYRDGL 156 SmGID1b G-TPIFFYFHGGSFVHMSANSAVYHTVCQQLARLCQAVVISVNYRRAPEHKYPAAYNDCY 162 PpGID1L1 KTMPIILYYHGGGFAVLCPNFYLYDIFCRRLARKCNAIVISVHYRRAPEFKFPTAYDDSY 150 PpGID1L2 KTMPIVYYYHGGGFTILCPDFYLYDVFCRRLAKCCKSVVISLHYRRAPEFKFPTAYDDSF 157 2O7R AKLPLVVYFHGGGFILFSAASTIFHDFCCEMAVHAGVVIASVDYRLAPEHRLPAAYDDAM 140 2C7B --LPAVLYYHGGGFVFGSIET--HDHICRRLSRLSDSVVVSVDYRLAPEYKFPTAVEDAY 128 1JJI --SPVLVYYHGGGFVICSIES--HDALCRRIARLSNSTVVSVDYRLAPEHKFPAAVYDCY 134 1EVQ -PYPALVYYHGGGWVVGDLET--HDPVCRVLAKDGRAVVFSVDYRLAPEHKFPAAVEDAY 129 180 200 OsGID1 TALKWVMS-------QPFM-RSGGDAQARVFLSGDSSGGNIAHHVAVRAADEG-----VK 217 AtGID1a IALNWVNS-------RSWL-KSKKDSKVHIFLAGDSSGGNIAHNVALRAGESG-----ID 210 AtGID1b NALNWVKS-------RVWL-QSGKDSNVYVYLAGDSSGGNIAHNVAVRATNEG-----VK 210 AtGID1c AVLKWVNS-------SSWL-RSKKDSKVRIFLAGDSSGGNIVHNVAVRAVESR-----ID 208 GhGID1a AALKWVKS-------RTWL-QSGKDSNVHVYLAGDSSGGNIAHHVAVRAAEAD-----VE 209 GhGID1b AALKWVKS-------RTWL-QSGKDSKVHVYLAGDSSGGNIAHHVAVRAAEAD-----VE 209 SmGID1a AALRWLRLQAARHVAATWL-PPGAD-LSRCFLAGDSSGGNMVHHVGVAAATARHELWPVR 214 SmGID1b AALTWLKVQVLRGVAHAWL-PRTAD-LGRCFLVGDSNGGNIVHHVGVRAAESGAELGPLR 220 PpGID1L1 KAMEWLQSKE----ATVSL-PPNVD-FSRVFLSGDSAGGNIAHHVALRAAGKDLG--RLS 202 PpGID1L2 KGLEWLQSEK----ATASL-PLNVD-FSRVFLCGDSAGANIAYHMALQSARKDLG--RVS 209 2O7R EALQWIKD-------SRDEWLTNFADFSNCFIMGESAGGNIAYHAGLRAAAVADELLPLK 193 2C7B AALKWVAD-------RA---DELGVDPDRIAVAGDSAGGNLAAVVSILDRNSG----EKL 174 1JJI DATKWVAE-------NA---EELRIDPSKIFVGGDSAGGNLAAAVSIMARDSG----EDF 180 1EVQ DALQWIAE-------R---AADFHLDPARIAVGGDSAGGNLAAVTSILAKERG----GPA 175 www.nature.com/nature 17 Supplementary Fig. 9-1 M.Matsuoka et al.

220 240 260 OsGID1 VCGNILLNAMFG--GTERTESERRLDG--KYFVTLQDRDWYWKAYLPEDADRDHPACN-P 272 AtGID1a VLGNILLNPMFG--GNERTESEKSLDG--KYFVTVRDRDWYWKAFLPEGEDREHPACN-P 265 AtGID1b VLGNILLHPMFG--GQERTQSEKTLDG--KYFVTIQDRDWYWRAYLPEGEDRDHPACN-P 265 AtGID1c VLGNILLNPMFG--GTERTESEKRLDG--KYFVTVRDRDWYWRAFLPEGEDREHPACS-P 263 GhGID1a VLGDILLHPMFG--GQKRTESEKRLDG--KYFVTLHDRDWYWRAYLPEGEDRDHPACN-P 264 GhGID1b VLGNILLHPMFG--GQMRTESEKRLDG--KYFVTLHDRDWYWRAYLPEGEDRDHPACN-P 264 SmGID1a VVGHVLLMPMFG--GVERTASERRLDG--QYFVTVKDRDYYWKLFLPEGADRDHPACNV- 269 SmGID1b VAGHILIIPMFG--GNRRTQSELRFDG--QYFVTIKDRDFYWQSFLPAGADRDHPACNI- 275 PpGID1L1 LKGLVLIQPFFG--GEERTSAELRLKN--VPIVSVESLDWHWKAYLPEGANRDHPSCNI- 257 PpGID1L2 LKGVVIIQGFFG--GEERTPAELRLKN--VPLVSVESLDWYWKSYLPKGSNRDHPACNI- 264 2O7R IKGLVLDEPGFG--GSKRTGSELRLAN--DSRLPTFVLDLIWELSLPMGADRDHEYCN P 248 2C7B VKKQVLIYPVVNM-TGVPTASLVEFGVAETTSLPIELMVWFGRQYLKRPEEAYDFKAS-P 232 1JJI IKHQILIYPVVN--FVAPTPSLLEFG-EGLWILDQKIMSWFSEQYFSREEDKFNPLAS-V 236 1EVQ LAFQLLIYPSTGYDPAHPPASIEENAEGY--LLTGGMMLWFRDQYLNSLEELTHPWFSPV 233 280 300 320 OsGID1 FGP--NGRRLGGLP----FAKSLIIVSGLDLTCDRQLAYADALREDGHHVKVVQCENATV 326 AtGID1a FSPRGKSLEGVSFP------KSLVVVAGLDLIRDWQLAYAEGLKKAGQEVKLMHLEKATV 319 AtGID1b FGPRGQSLKGVNFP------KSLVVVAGLDLVQDWQLAYVDGLKKTGLEVNLLYLKQATI 319 AtGID1c FGPRSKSLEGLSFP------KSLVVVAGLDLIQDWQLKYAEGLKKAGQEVKLLYLEQATI 317 GhGID1a FGPRGRSLEGLKFP------KSLVVVAGLDLIQDWQLAYVEGLKKSGQEVNLLFLEKATI 318 GhGID1b FGPRGRTLEGLKFP------KSLVVVAGLDLIQDWQLAYVEGLKKSGQEVKLLFLEKATI 326 SmGID1a FGPGSDAERVLGEIPVP---KSLVVVAGLDLTQDWQLRYARGMERSGKSVEVLVLEDTPV 322 SmGID1b FGPSSRSLEGVVLP------PSLVAVAGLDMIKDWQLQYVEGMRNAGKDVELLFLEEATV 329 PpGID1L1 FGPNSPDLSDVPLP------PILNIVGGLDILQDWEMRYSEGMKKAGKEVQTIFYEEGIH 311 PpGID1L2 FGPNSSDLSDVSLP------PFLNIVGGLDILQDWEMRFAEGLQKAGKQVQTIFYEEGIH 318 2O7R TAE--SEPLYSFDKIRSLGWRVMVVGCHGDPMIDRQMELAERLEKKGVDVVAQFDVGGYH 306 2C7B LLA--DLGG---------LPPALVVTAEYDPLRDEGELYAYKMKASGSRAVAVRFAGMVH 281 1JJI I-----FADLEN------LPPALIITAEYDPLRDEGEVFGQMLRRAGVEASIVRYRGVLH 285 1EVQ LYP--DLSG---------LPPAYIATAQYDPLRDVGKLYAEALNKAGVKVEIENFEDLIH 282 340 OsGID1 GFYLLP-NTVHYHEVMEEISDFLNANLYY-------------- 354 AtGID1a GFYLLP-NNNHFHNVMDEISAFVNAEC---------------- 345 AtGID1b GFYFLP-NNDHFHCLMEELNKFVHSIEDSQSKSSPVLLTP--- 358 AtGID1c GFYLLP-NNNHFHTVMDEIAAFVNAECQ--------------- 344 GhGID1a GFYFLP-NNNHFYCLMEEIKNFVNPNC---------------- 344 GhGID1b GFYFLP-NNDHFYRLMEEMNNFVHSNC---------------- 344 SmGID1a GFFIFP-NTEQYYRVMDKIRGFV-RDEQEPMDSST-------- 359 SmGID1b GFFIFP-NTGHFHRLMDKITAFIDRDGDQHLTRRTGITRRTTT 371 PpGID1L1 TFALLN-QAKLASQMLLDVAAFINSH----------------- 336 PpGID1L2 TFALLN-QAKVGPKMFLDVAAFINSH----------------- 343 2O7R AVKLE-DPEKAKQFFVILKKFVVDSCTTKLKLN---------- 338 2C7B GFVSFYPFVDAGREALDLAAASIRSGLQPS------------- 311 1JJI GFINYYPVLKAARDAINQIAALLVFD----------------- 311 1EVQ GFAQFYSLSPGATKALVRIAEKLRDALA--------------- 310 www.nature.com/nature 18 Supplementary Fig. 9-2 M.Matsuoka et al.