Clinical Study Principal Components Analysis of Atopy-Related Traits in a Random Sample of Children

Similar documents
Skin prick testing: Guidelines for GPs

Allergy Skin Prick Testing

Airway hyperresponsiveness to mannitol and methacholine and exhaled nitric oxide: A random-sample population study

Combined use of exhaled nitric oxide and airway hyperresponsiveness in characterizing asthma in a large population survey

Allergy and Immunology Review Corner: Chapter 75 of Middleton s Allergy Principles and Practice, 7 th Edition, edited by N. Franklin Adkinson, et al.

Evolution of asthma from childhood. Carlos Nunes Center of Allergy and Immunology of Algarve, PT

Clinical Implications of Asthma Phenotypes. Michael Schatz, MD, MS Department of Allergy

Predictors of obstructive lung disease among seafood processing workers along the West Coast of the Western Cape Province

A Longitudinal, Population-Based, Cohort Study of Childhood Asthma Followed to Adulthood

Grass pollen immunotherapy induces Foxp3 expressing CD4 + CD25 + cells. in the nasal mucosa. Suzana Radulovic MD, Mikila R Jacobson PhD,

Research Article Exercise-Induced Asthma Symptoms and Nighttime Asthma: Are They Similar to AHR?

Seasonal Factors Influencing Exercise-Induced Asthma

Clinical Study Urticaria in Monozygotic and Dizygotic Twins

Repeated Aerosol Exposure to Small Doses of Allergen A Model for Chronic Allergic Asthma

Pollen immunotherapy reduces the development of asthma in children with allergic rhinoconjunctivitis (The PAT-Study)

Clinical Study Phadiatop Infant in the Diagnosis of Atopy in Children with Allergy-Like Symptoms

C.S. Ulrik *, V. Backer **

New Horizons Session on Specific Immunotherapy (SIT) Session 4: Practical considerations for SIT. When should SIT be started and why?

Sergio Bonini. Professor of Internal Medicine, Second University of Naples INMM-CNR, Rome, Italy.

A Birth Cohort Study of Subjects at Risk of Atopy Twenty-two year Follow-up of Wheeze and Atopic Status

Science & Technologies

Nonreversible airflow obstruction in life-long nonsmokers with moderate to severe asthma

Introduction. Methods. Results 12/7/2012. Immunotherapy in the Pediatric Population

Bronchial asthma. E. Cserháti 1 st Department of Paediatrics. Lecture for english speaking students 5 February 2013

Associations between asthma and bronchial hyperresponsiveness with allergy and atopy phenotypes in urban black South African teenagers

Pathology of Asthma Epidemiology

Department of Dermatology, Fukuoka National Hospital, National Hospital Organization, Yakatabaru, Minami-ku, Fukuoka , Japan 2

Young Yoo, MD; Jinho Yu, MD; Do Kyun Kim, MD; and Young Yull Koh, MD

Hypersensitivity diseases

FeNO-based asthma management results in faster improvement of airway hyperresponsiveness

Clinical Study Report SLO-AD-1 Final Version DATE: 09 December 2013

IgE mediated sensitisation to aeroallergens in an asthmatic cohort: relationship with inflammatory phenotypes and disease severity

Formulating hypotheses and implementing research in allergic disorders in rural Crete, Greece

Host determinants for the development of allergy in apprentices exposed to laboratory animals

ImmunoCAP. Specific IgE blood test

Clinical and Molecular Allergy

Clinical Study Metastasectomy of Pulmonary Metastases from Osteosarcoma: Prognostic Factors and Indication for Repeat Metastasectomy

Mechanisms of action of bronchial provocation testing

알레르기질환관련 진단적검사의이해 분당서울대병원알레르기내과 김세훈

C linicians have long regarded asthma as a heterogeneous

Asthma and obesity, implications for airway inflammation and Bronchial Hyperresponsiveness

Does rhinitis. lead to asthma? Does sneezing lead to wheezing? What allergic patients should know about the link between allergic rhinitis and asthma

The Asthma Guidelines: Diagnosis and Assessment of Asthma

Increased Releasability of Skin Mast Cells after Exercise in Patients with Exercise-induced Asthma

A sthma is a major cause of morbidity and mortality at all

Atopy pyramid. Dr Tan Keng Leong

Abstract INTRODUCTION. Keywords: atopic asthma, children, fungus sensitization ORIGINAL ARTICLE

Prevalence of allergen sensitization in 1000 adults in Saskatchewan

Bronchial Provocation Results: What Does It Mean?

CHRONIC COUGH AS THE PRESENTING MANIFESTATION OF BRONCHIAL ASTHMA

E pidemiologic studies of adults rely on selfadministered. Questionnaire Items That Predict Asthma and Other Respiratory Conditions in Adults*

Bronchiolitis is the most common lower

Immunology of Asthma. Kenneth J. Goodrum,Ph. Ph.D. Ohio University College of Osteopathic Medicine

Food Diversity in the First Year of Life and the Development of Allergic Disease in High-Risk Children. By Cheryl Hirst. Supervisor: Dr.

Research Article The Efficacy of Allergen Immunotherapy with Cat Dander in Reducing Symptoms in Clinical Practice

Longitudinal predictors of airway responsiveness to distilled water: the role of atopy and maternal smoke exposure

Outline FEF Reduced FEF25-75 in asthma. What does it mean and what are the clinical implications?

An Insight into Allergy and Allergen Immunotherapy Co-morbidities of allergic disease

Occupational asthma is a disease characterised. Workplace-specific challenges as a contribution to the diagnosis of occupational asthma

Research Article Predictive Factors for Medical Consultation for Sore Throat in Adults with Recurrent Pharyngotonsillitis

Predicting persistent disease among children who wheeze during early life

Usefulness of House Dust Mite Nasal Provocation Test in Asthma

Do current treatment protocols adequately prevent airway remodeling in children with mild intermittent asthma?

An analysis of skin prick test reactions in 656 asthmatic patients

Airway responsiveness to histamine and methacholine: relationship to minimum treatment to control

Diagnosis, Treatment and Management of Asthma

SLIT: Review and Update

Asthma: diagnosis and monitoring

The legally binding text is the original French version TRANSPARENCY COMMITTEE OPINION. 29 February 2012

Ear, Nose & Throat (ENT) - Head & Neck Surgery. Allergic Rhinitis (Sinus)

Increased frequency of bronchial hyperresponsiveness in patients with inflammatory bowel disease

INVESTIGATIONS & PROCEDURES IN PULMONOLOGY. Immunotherapy in Asthma Dr. Zia Hashim

Quality Controls in Allergy Diagnosis

Allergic diseases like asthma, hay fever, Allergen Skin Test Reactivity and Serum Total IgE Level in Adult Bronchial Asthmatic Patients.

Cystic fibrosis, atopy, and airways lability

Asthma COPD Overlap (ACO)

Coverage Criteria: Express Scripts, Inc. monograph dated 03/03/2010

Correspondence should be addressed to Alicia McMaster;

Exhaled Nitric Oxide: An Adjunctive Tool in the Diagnosis and Management of Asthma

Format. Allergic Rhinitis Optimising Mananagement. Degree of Quality of life Restriction in the Allergic Patient. The allergy epidemic:

Life-long asthma and its relationship to COPD. Stephen T Holgate School of Medicine University of Southampton

ALK-Abelló Research & Development. Henrik Jacobi MD, EVP Research & Development

Prevalence of atopy, asthma symptoms and diagnosis, and the management of asthma: comparison of an azuent and a non-azuent country

Variability of peak expiratory flow rate in

Research Article Clinical Outcome of a Novel Anti-CD6 Biologic Itolizumab in Patients of Psoriasis with Comorbid Conditions

COPD and Asthma: Similarities and differences Prof. Peter Barnes

Health professionals. 8Asthma. and Wheezing in the First Years of Life. A guide for health professionals

Allergy in young children

Airway calibre as a confounder in interpreting

Sensitivity to Sorghum Vulgare (Jowar) Pollens in Allergic Bronchial Asthma and Effect of Allergen Specific Immunotherapy

New Test ANNOUNCEMENT

Maternal food consumption during pregnancy and the longitudinal development of childhood asthma

Clinical profile and skin prick test analysis in children with allergic rhinitis of North Kerala, India

Case Report Complete Obstruction of Endotracheal Tube in an Infant with a Retropharyngeal and Anterior Mediastinal Abscess

ARTICLE. Eija Piippo-Savolainen, MD; Sami Remes, MD, MPH; Senja Kannisto, MD; Kaj Korhonen, MD; Matti Korppi, MD

OCCUPATIONAL ASTHMA INDUCED BY INHALED CARMINE AMONG BUTCHERS

Changing prevalence of allergic rhinitis and asthma R Michael Sly, MD

Correspondence should be addressed to Vitharon Boon-yasidhi;

Transcription:

International Scholarly Research Network ISRN Allergy Volume 2011, Article ID 170989, 4 pages doi:10.5402/2011/170989 Clinical Study Principal Components Analysis of Atopy-Related Traits in a Random Sample of Children Simon Francis Thomsen and Vibeke Backer Department of Respiratory Medicine, Bispebjerg Hospital, 2400 Copenhagen, Denmark Correspondence should be addressed to Simon Francis Thomsen, sft@city.dk Received 4 April 2011; Accepted 27 May 2011 Academic Editors: C. Penido and A. Petraroli Copyright 2011 S. F. Thomsen and V. Backer. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Aim. To study the relationship between atopy-related traits in a random sample of children. Methods. A total of 1007 randomly selected children, 7 17 years of age, from Copenhagen, Denmark were studied. The children were interviewed about symptoms of atopic diseases, and skin test reactivity, serum total IgE, lung function, and airway responsiveness were measured. Principal components analysis was performed in order to examine the relationship between the different traits. Results. Most of the studied traits were significantly correlated. A three-component solution explained about 55% of the variation in the observed traits. The first component loaded most strongly on hay fever, serum total IgE, skin test reactivity and sensitisation to grass, cat and house dust mite allergen; the second factor was most associated with asthma, airway obstruction, and airway hyperresponsiveness, whereas the third factor corresponded most strongly to atopic dermatitis. There was some indication of cross-relations between the three components with respect to serum total IgE. Conclusion. Asthma, hay fever, and atopic dermatitis are characterised by different sets of biomarkers suggestive of a high degree of heterogeneity within the atopic syndrome. 1. Introduction Asthma, hay fever, and atopic dermatitis often cooccur, and this can be attributed both to shared genetic and environmental risk factors [1]. Furthermore, different biomarkers for atopic disease, such as serum IgE, lung function, airway responsiveness, airway inflammation, atopic sensitisation, and serum eosinophilia, have been shown to correlate, also in part because of a shared aetiological basis [2]. However, the correlations between both the atopic diseases and their intermediate phenotypes are incomplete. Notably, asthma and airway hyperresponsiveness (AHR) are closely linked, but far from all asthmatics exhibit AHR [3]. Furthermore, airway obstruction and low lung function are inconstant features of asthma. Atopic sensitisation is closely associated both with hay fever, asthma, and atopic dermatitis, but this association seems to be stronger in children than in adults [4]. Sensitisation to specific allergens is seen both in asthma and hay fever but with sensitisation to indoor allergens like house dust mite being more closely linked to asthma, whereas hay fever more often is characterised by sensitisation to outdoor allergens like, for example, grass pollen [4]. Studying the relationship between atopic diseases and their intermediate phenotypes can help in elucidating novel pathways towards which different treatments can be targeted. We performed a principal components analysis of a series of clinical and intermediate indicators of atopic disease in a general population of children. 2. Methods 2.1. Population. Two different random samples of children from Copenhagen, Denmark were studied. The first sample was examined in 1986 [5] and the second in 2001 [6]. All subjects were randomly ascertained through The Civil Registration System and had a mean age of 12 years, agerange 7 17 years. In 1986 and 2001, a total of 1000 and 1500 subjects, respectively, were identified. However, due to immigration only 983 and 1440 subjects, respectively, were eligible for the studies in 1986 and 2001. A total of 527 (53.6%) participated in 1986 whereas 480 (33.3%) participated in 2001. Due to the low participation rates, telephone

2 ISRN Allergy interviews were conducted among 100 and 116 randomly selected families from the group of nonrespondents in 1986 and 2001, respectively. For every household, the interview was first performed with the child, and subsequently a parent was consulted to reach consensus. The subjects interviewed by telephone did not differ significantly from the subjects who were clinically examined with respect to sex, age, and predisposition to atopic disease, but on both occasions there were significantly fewer children with symptoms of allergy among the group of nonrespondents. Only data for subjects who participated in the clinical examination were included in the present analysis. The local Scientific Ethics Committee approved the study, and informed consent was obtained from all participating subjects and their parents. 2.2. Clinical Interview. All participants were interviewed about atopic diseases. Subjects were considered to have asthma, hay fever, and atopic dermatitis if they responded affirmatively to a series of questions adopted from the American Thoracic Society [7]. For details, see [6, 8, 9]. 2.3. Skin Prick Test and Measurement of Serum Total IgE. Skin prick tests (SPTs) were performed using standard dilutions of nine common aeroallergens. The allergens used were birch, grass, mugwort, horse, dog, cat, house dust mite (HDM) (Dermatophagoides pteronyssinus), and mould (Alternaria iridis and Cladosporium herbarium). The concentrations of allergen were 100.000 BU/mL (Phazet system; Pharmacia, Denmark) in 1986 and 10 HEP (Soluprick SQ system; ALK Albelló, Denmark) in 2001. Reactions were read after 15 minutes. A positive result was defined as a positive reaction to at least one of the allergens, and a reaction was considered positive if the mean wheal diameter was at least 3 mm. The participants were requested to discontinue medications that contained antihistamines at least 3 days before skin testing. Levels of serum total IgE were measured with a paper radio immunosorbent test (PRIST, Pharmacia, Copenhagen, Denmark) in 1986 and with an enzyme-linked immunosorbent assay (ELISA) on Immulite 2500 (DPC, New York, USA) in 2001. Results were expressed as KIU/L. 2.4. Lung Function and Bronchial Responsiveness Test. The preprovocation values of forced expiratory volume in 1 second (FEV 1 ) and forced vital capacity (FVC) were measured and the ratio FEV 1 /FVC was calculated. The methods by Cockcroft et al. and Yan et al. were used for measuring airway responsiveness to inhaled histamine in 1986 and 2001, respectively [10, 11]. According to the Cockcroft method, a Wright nebulizer delivered the histamine and the subjects inhaled by normal tidal volume breathing. Nine concentrations of histamine were used, from 0 (saline) to 8 mg/ml, and the test was terminated when the maximum concentration was reached or when a drop in FEV 1 of more than 20% was observed the provocative concentration (PC 20 ). AHR was defined as a PC 20 of 8 mg/ml. According to the method by Yan, each aerosol was inhaled starting with saline and followed by increasing doses of histamine until a cumulative dose of 7.8 µmol had been reached. The test was terminated when the maximum concentration had been Eigenvalue 4 3 2 1 0 1 2 3 4 5 6 7 Component number Figure 1: Scree plot showing the results of a principal components analysis of atopy-related traits studied in a random sample of 1007 children, 7 17 years of age. reached or when a 20% decline in FEV 1 had occurred before the end of the dosing regimen. For all subjects experiencing at least a 20% decline in FEV 1, the concentration causing a 20% fall in FEV 1 (PD 20 ) was calculated. AHR was defined as apd 20 below 3.9 µmol. 2.5. Statistical Analysis. The following variables were included in the analysis: asthma, hay fever, atopic dermatitis, FEV 1 /FVC, AHR, serum total IgE, positive skin prick test and sensitisation to grass, cat, and HDM allergen. Principal components analysis was used to examine the correlational structure of the data. For the optimal solution we used varimax rotation with Kaiser normalisation. Only components with eigenvalues above 1.0 were retained in the solution. The data were analysed with the statistical package SPSS 17.0 (SPSS Inc Chicago, IL, USA). 3. Results The prevalence of asthma, hay fever, and atopic dermatitis was 7.1, 17.3, and 22.1%, respectively. The overall rate of atopic sensitisation was 21.8%, whereas the prevalence of AHR was 11.6% (Table 1). Significant correlations were observed among most of the traits (test of sphericity, P <.001). Particularly, positive skin prick test and serum total IgE correlated well with all other traits (except FEV 1 /FVC). Asthma was most strongly correlated with AHR (r = 0.38), whereas hay fever correlated most with positive skin prick test (r = 0.46) and grass allergen (r = 0.43). Cat allergen was significantly correlated with all three atopic diseases (asthma (r = 0.25), hay fever (r = 0.34), and atopic dermatitis (r = 0.18)). FEV 1 /FVC was most strongly associated with AHR (r = 0.18). A three-component solution explained about 55% of the variation in the observed traits (Figure 1). The first componentloadedmoststronglyonhayfever(r = 0.66), serum total IgE (r = 0.50), skin test reactivity (r = 0.89) and sensitisation to grass (r = 0.69), cat (r = 0.65), and house dust mite (r = 0.71) allergen; the second factor was most associated with asthma (r = 0.67), airway obstruction 8 9 10

ISRN Allergy 3 Trait Asthma Table 1: Correlations between atopy-related traits in a population of 1007 children, 7 17 years of age. Hay fever Traits (1) Principal components (2) Summary statistics (3) Eczema IgE FEV 1 /FVC AHR SPT Grass Cat HDM Comp Comp Comp 1 2 3 Asthma 1 024 0.67 0.12 7.1 (5.7 8.9) Hay fever 0.25 1 0.66 0.10 0.17 17.3 (15.1 19.7) Eczema 0.10 0.14 1 0.09 0.05 0.90 22.1 (19.6 24.7) IgE 0.20 0.32 0.17 1 0.50 0.22 0.30 35.2 (31.8 39.1) FEV 1 /FVC 0.16 0.05 0.01 0.06 1 0.04 0.62 0.20 89.4 (89.0 89.8) AHR 0.38 0.16 0.13 0.24 0.18 1 0.11 0.74 0.22 11.6 (9.7 13.7) SPT 0.23 0.46 0.12 0.39 0.05 0.20 1 0.89 0.11 0.05 21.8 (19.4 24.5) Grass 0.13 0.43 0.11 0.30 0.03 0.05 0.55 1 0.69 0.13 0.11 7.7 (6.2 9.5) Cat 0.25 0.34 0.18 0.25 0.03 0.25 0.50 0.32 1 0.65 0.11 0.13 6.5 (5.1 8.2) HDM 0.24 0.32 0.20 0.30 0.07 0.20 0.69 0.20 0.41 1 0.71 0.24 0.18 11.8 (10.0 14.0) (1) Significant correlations are shown in bold print. Significance level is 0.0005 when adjusting for multiple testing. (2) Varimax-rotated factor solution. (3) IgE is geometric mean (95% CI); all other values are percentages (95% CI). IgE is serum total IgE; AHR is airway hyperresponsiveness to histamine; SPT is positive skin prick test; HDM is house dust mite (D. Pteronyssinus). (r = 0.62), and airway hyperresponsiveness (r = 0.74), whereas the third factor corresponded most strongly to atopic dermatitis (r = 0.90). There was some indication of cross-relations between the three components in relation to serum total IgE (Table 1). 4. Discussion We examined the relationship between different atopic indicators in a random sample of 1000 children, aged 7 17 years, and identified three major classes of the studied traits relating to (1) hay fever and atopy, (2) asthma, airway responsiveness and airway obstruction, and (3) atopic dermatitis. Furthermore, we found that serum total IgE seemed to explain some cross-relation between these three groupings indicating that IgE production is an underlying trait common to the different atopic manifestations. Our analysis only retained about 55% of the variability in the studied traits consistent with a high degree of heterogeneity within the atopic syndrome. So although some categorisation could be made in regard to separating upper airway symptoms from lower airway symptoms and skin symptoms there is still a high degree of unexplained variation that cannot be sufficiently accounted for by only three latent factors. Our definition of atopic diseases was based on a semistructured interview, which can be biased by parental recall and subjective interpretation. A more detailed symptom registration and longitudinal data with information on change in quality and severity of symptoms over time within the same individual could have made disease definitions more robust. Furthermore, differences in prevalence rates of atopic diseases between the two cohorts could have influenced the results. Also, inclusion of additional biomarkers, such as sputum and blood eosinophils, exhaled nitric oxide, and inflammatory proteins would have been favourable but could have induced more missing data. We tested for AHR with histamine, which lack specificity for detecting airway inflammation. Furthermore, different tests for AHR, skin test reactivity, and IgE were used in the two cohorts. Genotype data and measurements of other confounding variables such as lifestyle factors could have contributed to a more comprehensive understanding of the interrelationships between the atopic diseases. The low participation rate in the study could have led to a skewed selection of subjects; particularly there was some indication of over recruitment of symptomatic individuals, which could have had an influence on the distribution of the studied traits. Our results may only be representative for children and adolescents, whereas adults may exhibit a different pattern of correlations between traits, as would populations from other geographical areas. We conclude that asthma, hay fever, and atopic dermatitis, to some extent, are characterised by different sets of biomarkers. However, a large proportion of the variation in the studied traits was not explained by our proposed decomposition indicating significant heterogeneity within the atopic syndrome. References [1]S.F.Thomsen,C.S.Ulrik,K.O.Kyvik,L.R.Skadhauge,I. Steffensen, and V. Backer, Findings on the atopic triad from a Danish twin registry, International Tuberculosis and Lung Disease, vol. 10, no. 11, pp. 1268 1272, 2006. [2] S. F. Thomsen, M. A. R. Ferreira, K. O. Kyvik, M. Fenger, and V. Backer, A quantitative genetic analysis of intermediate asthma phenotypes, Allergy, vol. 64, no. 3, pp. 427 430, 2009. [3]T.B.Knudsen,S.F.Thomsen,H.Nolte,andV.Backer, A population-based clinical study of allergic and non-allergic asthma, Asthma, vol. 46, no. 1, pp. 91 94, 2009. [4] J.Bousquet,P.vanCauwenberg,N.Khaltaev,N.Aït-Khaled, I. Annesi-Maesano, and C. Bachert, Allergic rhinitis and its impact on asthma. Aria workshop report, Allergy and Clinical Immunology, vol. 108, supplement 5, pp. S147 S334, 2001.

4 ISRN Allergy [5] V. Backer, S. Groth, A. Dirksen et al., Sensitivity and specificity of the histamine challenge test for the diagnosis of asthma in an unselected sample of children and adolescents, The European Respiratory Journal, vol. 4, no. 9, pp. 1093 1100, 1991. [6] S.F.Thomsen,C.S.Ulrik,K.Larsen,andV.Backer, Change in prevalence of asthma in Danish children and adolescents, Annals of Allergy, Asthma and Immunology, vol. 92, no. 5, pp. 506 511, 2004. [7] B. G. Ferris, Epidemiology standardization project. American Thoracic Society Executive Committee, The American Review of Respiratory Disease, vol. 118, pp. 1 120, 1978. [8] K. Håkansson, S. F. Thomsen, C. S. Ulrik, C. Porsbjerg, and V. Backer, Increase in the prevalence of rhinitis among Danish children from 1986 to 2001, Pediatric Allergy and Immunology, vol. 18, no. 2, pp. 154 159, 2007. [9] L. Stensen, S. F. Thomsen, and V. Backer, Change in prevalence of atopic dermatitis between 1986 and 2001 among children, Allergy and Asthma Proceedings, vol. 29, no. 4, pp. 392 396, 2008. [10] D. W. Cockcroft, D. N. Killian, J. J. A. Mellon, and F. E. Hargreave, Bronchial reactivity to inhaled histamine: a method and clinical survey, Clinical Allergy, vol.7,no.3,pp. 235 243, 1977. [11] K. Yan, C. Salome, and A. J. Woolcock, Rapid method for measurement of bronchial responsiveness, Thorax, vol. 38, no. 10, pp. 760 765, 1983.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity