COLE-PARMER LABORATORY SURFACTANT ION ELECTRODE INSTRUCTION MANUAL

Similar documents
COLE-PARMER REPLACEABLE MEMBRANE SCIENTIFIC SURFACTANT ION ELECTRODES INSTRUCTION MANUAL

3 To gain experience monitoring a titration with a ph electrode and determining the equivalence point.

Determination of Total Hardness in Water by Automatic Titration

Experiment 3. Potentiometric Titration Using a ph Electrode. information necessary for both purposes by monitoring the ph of the solution as the

Determining the Molecular Mass of an Unknown Acid by Titration

Thiols (mercaptans) in Fuels (ASTM D )

Total Acid Number in petroleum products by automatic titration

Take an initial volume reading and record it in your. 11/17/2014 ChemLab - Techniques - Titration

EXPERIMENT. Titration of the Weak Acid Potassium Hydrogen Phthalate (KHP)

Method (6 to 1000 µg/l Chlorine as Cl 2 ) Digital Titrator

PtPt-electrode with temperature sensor, Intellical MTC695

EXPERIMENT 2: ACID/BASE TITRATION. Each person will do this laboratory individually. Individual written reports are required.

Free and Total Sulfur Dioxide (SO 2. ) in wine (Ripper method) by automatic titration

TRATION: ANALYSIS OF SODIUM HYDROXIDE

Determination of Langelier Index in Water

HI Total Acidity Mini Titrator for Water Analysis

Strength of Vinegar by Acid-Base Titration

TRATION: ANALYSIS OF SODIUM HYDROXIDE

Application Note #67 Total Acid Number (TAN)

MODULE TOPIC: Percent Composition of Elements using EDTA titration. LESSON PLAN 1: EDTA titration of Calcium in a Citracal Tablet

HI Total Alkalinity Mini Titrator for Water Analysis

EXPERIMENT 4 TITRATION OF AN UNKNOWN ACID

HI Titratable Acidity Mini Titrator for Fruit Juice Analysis

Worksheet. Worksheet. Worksheet. Worksheet. Student Performance Guide. Student Performance Guide

Chemistry 201 Laboratory Fall 2006 page 1 of 4

Titrimetric Determination of Hypo Index, Thiosulfate, and Sulfite in EASTMAN Color Films, Process ECN-2 Fixer

Instruction Manual Updated 8/27/2013 Ver. 1.1

IODINE AFFINITY. 3. Extraction Shells: Paper, 80 x 22 mm (Note 1)

Experiment 6: STANDARDIZATION OF A BASE; MASS PERCENT OF AN ACID

HI Total Alkalinity Mini Titrator for Water Analysis

Free Chlorine. Based on 4500-Cl D. in Standard Methods for the Examination of Water and Wastewater DOC

Lab 05 Introduction Reactions Pre Lab Problems (answer on separate paper)

HI Titratable Acidity Mini Titrator for Fruit Juice Analysis

ebook Best practices using automated titrators Achieving speed and accuracy in your lab

Standardization of a Base, Mass Percent of an Acid

Determination of acid number in diesel engine oil

Lab #3 Potentiometric Titration of Soda Ash (after Christian, p , p ) (phenolphthalein)

Chemistry 212. Experiment 3 ANALYSIS OF A SOLID MIXTURE LEARNING OBJECTIVES. - learn to analyze a solid unknown with volumetric techniques.

Procine sphingomyelin ELISA Kit

Hardness by EDTA Titration

Application Note. Determination of the Acid Number (TAN) Tips and Tricks

HI FREE & TOTAL SULFUR DIOXIDE MINITITRATOR for wine analysis

2. is a set of principles intended to help sustain a habitable planet.

Experiment: Iodometric Titration Analysis of Ascorbic Acid Chem251 modified 09/2018

Hardness, Total, Sequential

Standard Test Method for Carbon Black Iodine Adsorption Number 1

Mouse C-Peptide ELISA Kit

Water Determination in Ethanol by Karl Fischer Titration

Determination of the total acid number in petroleum products

Pt-electrode with temperature sensor, Intellical MTC695

Standard Operating Procedure for Total and Dissolved Phosphorous (Lachat Method)

Determination of Chlorine Dioxide, Chlorite and Chlorine

Sulfite. Iodate-Iodide Method 1 Method mg/l as SO 3. (or 0 to more than 500 mg/l) Buret Titration. Test preparation.

Rat cholesterol ELISA Kit

HyProBlack Hexavalent chrome free RoHS and ELV compliant. HyPro System

Change to read: BRIEFING

EXPERIMENT 3 ENZYMATIC QUANTITATION OF GLUCOSE

Hardness (Total & Calcium) Test Kit TK4040-Z 1 drop = 2 or 10 ppm as CaCO 3

Hydroponics TEST KIT MODEL AM-41 CODE 5406

HI Titratable Acidity Mini Titrator for Fruit Juice Analysis

Titration of Synthesized Aspirin A continuation of the aspirin synthesis lab

Human HIV (1+2) antigen&antibody ELISA Kit

Reagent Set DAS ELISA, Alkaline phosphatase label SRA 22001, SRA 23203, SRA 27703, SRA & SRA ToRSV, ArMV, GFLV, AnFBV and PDV

FIGURE 1. The structure of glucose and ascorbic acid (vitamin C). FIGURE 2. Reduced and oxidized forms of ascorbic acid.

Cotinine (Mouse/Rat) ELISA Kit

Potentiometric determination. Application Bulletin 125/3 e. Branch General analytical laboratories; water analysis; beverages

RayBio Human Granzyme B ELISA Kit

Titration Lab 3/10/15. By Maya Parks. Partner: Colin Welch. Abstract:

Mouse Leptin ELISA Kit Instructions

Rhino Clear Sprint Atomizer

Solutions for Calibration and Maintenance

Elcometer 138/2. Surface Contamination Kit. Operating Instructions

HbA1c (Human) ELISA Kit

EXPERIMENT 4 DETERMINATION OF REDUCING SUGARS, TOTAL REDUCING SUGARS, SUCROSE AND STARCH

Determination of the acid value (AV) Application Bulletin 200/3 e. Electrodes Solvotrode easyclean

Bovine Insulin ELISA

ab Human Citrate Synthase (CS) Activity Assay Kit

ab Thyroglobulin Human ELISA Kit

Autotitrator. Technical Information and Specifications. mpt-2. detailed specification sheets from

Rat Insulin ELISA. For the quantitative determination of insulin in rat serum and plasma. For Research Use Only. Not For Use In Diagnostic Procedures.

Protn-Latex. For Determination of Protein in Latex. (Cat. # Latex, Latex) think proteins! think G-Biosciences

Porcine/Canine Insulin ELISA

02006B 1 vial 02006B 1 vial Store at -20 C. Lyophilized recombinant IL-2

Fibrlok II 2529 Universal Optical Fiber Splice

Complexometric Titration of Calcium in Antacids SUSB-017 Prepared by M. J. Akhtar and R. C. Kerber, SUNY at Stony Brook (Rev 1/13, RFS)

TECHNICAL BULLETIN METHOD 1: DETERMINATION OF TOTAL DIETARY FIBRE

Mouse Ultrasensitive Insulin ELISA

Morinaga Mouse C-peptide ELISA Kit

EXERCISE 6 - Lab Procedures

Mouse C-peptide ELISA

E55A GELATIN, GELLING GRADE Gelatina

RayBio Human ENA-78 ELISA Kit

Mouse C-peptide ELISA

Canine Thyroid Stimulating Hormone, TSH ELISA Kit

Experiment 10 Acid-base Titrations: Part A Analysis of vinegar and Part B Analysis of a Carbonate/Bicarbonate mixture

Application Note No. 107/2013 Nitrogen & protein determination in beer and malt KjelDigester K-449, KjelMaster K-375 with KjelSampler K-376:

Nitrogen and Protein Determination in Meat Products by Accelerated Digestion with Hydrogen Peroxide and Sulfuric Acid

A step-by-step preparation guide

DRG International, Inc., USA Fax: (908)

Measures 100 ppm to 100% water content. Precision titrant delivery system. Anti-diffusion burette tip. Built-in stirrer

Transcription:

COLE-PARMER LABORATORY SURFACTANT ION ELECTRODE INSTRUCTION MANUAL Cole-Parmer Instrument Company (800)323-4340 Fax:(847)247-2929 625 East Bunker Court, Vernon Hills, Illinois 60061 http://www.coleparmer.com Email: techinfo@coleparmer.com 1

TABLE OF CONTENTS General Instructions...3 introduction...3 required equipment...3 required solutions...3 General Preparation...4 electrode preparation...4 titrant preparation...4 units of measurement...5 measuring hints...5 sample requirements...6 Analytical Procedures...6 sample analysis...6 Electrode Characteristics...7 electrode response...7 temperature...7 reproducibility...7 limit of detection...7 ph effects...8 interferences...8 cleaning, reconditioning, and storage...8 electrode life...8 Electrode Theory...8 electrode operation...8 Troubleshooting Guide...9 instrumentation...9 electrodes...9 reagents...10 sample...10 technique...10 Troubleshooting Hints...11 Electrode Specifications...13 Ordering Information...13 2

COLE-PARMER SURFACTANT ELECTRODE INSTRUCTION MANUAL GENERAL INSTRUCTIONS Introduction The Surfactant Electrode indicates the potentiometric endpoint when titrating anionic or cationic surfactants in solution. Titration procedures for manual titrations are discussed in this manual, though adaptation to automatic titration techniques is quite simple. The electrode comes packaged with one 50 ml bottle of 0.05M Hyamine 1622 (benzethonium chloride) titrant, one 50 ml bottle of 0.01M sodium lauryl sulfate (sodium dodecyl sulfate) titrant, and one 50 ml bottle of sample additive, diluted Triton X-100. Required Equipment 1. A ph/mv meter, either line operated or portable. 2. A hand controlled delivery system, such as a 10 ml pipet or burette. 3. Surfactant Combination Electrode. Required Solutions 1. Distilled or deionized water to prepare all solutions and standards. 2. Titrant for the titration of anionic surfactants is Hyamine 1622, 0.05M. To prepare this titrant from your own laboratory stock, add 22.405 grams of Hyamine 1622 and 5 ml of 1 M NaOH to a 1 liter volumetric flask about half full of deionized water. Swirl the flask to dissolve the solid and fill to the mark with distilled water. Cap the flask and invert several times to mix the solution. 3. Titrant for the titration of cationic surfactants is 0.01M Sodium Lauryl Sulfate (SLS). To prepare this titrant from your own laboratory stock, add 2.883 grams sodium lauryl sulfate (SLS) to a one liter volumetric flask about half full of distilled water. Swirl the flask to dissolve the solid and fill to the mark with distilled water. Cap the flask and invert several times to mix the solution. 4. Sample Additive, diluted Triton X-100 keeps electrodes clean when added to all samples. To prepare, add 10 ml of reagent-grade Triton X-100 to a one liter volumetric flask about half full of distilled water. Cap the flask and invert several times to mix the solution. 5. Electrode Filling Solution, 4M KCl, for filling the reference chamber of the electrode. 3

6. ph Adjuster Solutions for adjusting the ph of both anionic and cationic surfactants (0.01M HCl) and polyacrylates (0.1M NaOH). 7. Electrode Rinse Solutions consisting of about 50 ml 0.1M HCl diluted to 1000 ml for acidic rinse (anionic or cationic surfactant analysis) and 50 ml 0.1M NaOH diluted to 1000 ml for alkaline rinse (polyacrylate analysis). GENERAL PREPARATION Electrode Preparation Remove the rubber cap(s) covering the electrode tip(s) and the rubber insert covering the filling hole of the reference electrode. Fill the combination electrode or the reference electrode with the filling solution shipped with the electrode to a level just below the fill hole. No preparation is required with a sealed reference electrode. Gently shake the electrode downward in the same manner as a clinical thermometer to remove any air bubbles which might be trapped behind the surfactant membrane. Prepare 0.0001M SLS by diluting 1 ml of the 0.01M SLS to 100 ml with distilled water. Prior to first usage, or after long-term storage, soak the tip of the surfactant electrode in 0.0001M SLS for 10 minutes before using the electrode each day. Use fresh solution daily. The electrode is now ready for use. Connect the electrode(s) to the proper terminal(s) as recommended by the meter manufacturer. If the stock solution becomes cloudy or contaminated in any way, discard it. Titrant Preparation Based on the recommendations found in Required Solutions, select an appropriate titrant. Determine the concentration of titrant needed for the analysis from Table 1. TABLE 1: Recommended Titrant Concentrations Recommended Titrant Concentration (M) Expected Sample Concentration (M) 0.05 0.050 to 0.001 0.005 0.001 to 0.0001 0.001 0.0001 to 0.00001 4

The titrant concentration may need to be adjusted depending on the concentration of the sample and the method of titration in use. Use the formula: C t = C s x V s V t where: C t C s V s V t = concentration of titrant = concentration of sample = volume of sample = volume of titrant For example, for the titration of anionic surfactants, dilute the 0.05M Hyamine 1622 solution provided to the appropriate concentration as calculated above. Titrate against a known concentration of SLS to standardize the titrant. Calculate the exact concentration of the titrant using the same formula given above. Units of Measurement Any convenient unit of measurement may be used for the result. Units may be chosen for samples measured in volume or weight. If doing the titrations with an automatic titrator, note whether specific units must be entered for the titrant and/or specific units are required for the result. Measuring Hints The sensing membrane is normally subject to water uptake and might appear milky. This has no effect on performance. All samples and standard should be at ambient temperature for precise measurement. Constant, but not violent, stirring is necessary for accurate measurement. Slow stirring is recommended to avoid foaming. Always rinse the electrode tip(s) with the slightly acidic (or alkaline) rinse solution described in Required Solutions and blot dry with a fresh tissue between titrations to prevent solution carryover. Check the electrode for air bubbles adhering to the membrane surface after immersion in solution. Agitate the electrode gently to remove any air bubbles. A slow or sluggish electrode response may indicate surface contamination of the electrode membrane. Soak the electrode tip in distilled water for about 5 minutes to clean the membrane. Rinse the membrane and soak in 0.0001M SLS for about 5 minutes to restore performance. 5

The electrode should be reconditioned daily before storage as described in Cleaning, Reconditioning, and Storage. Sample Requirements To help keep the electrode clean and working properly, add sample additive, diluted Triton X- 100, to all samples. For every 50 ml of sample, use 1 ml of sample additive. Samples should be diluted to approximately 10-5 to 10-4 M to help preserve electrode life, help avoid foaming during the titration, and help improve long term results. Adjust the ph of the sample depending on the method being used. Anionic surfactants, as well as sulfated and sulfonated surfactants, may be titrated with Hyamine 1622. Adjustment to ph 2.5-4.5 should be done by addition of 0.01M HCl. Polyacrylates should be adjusted to ph 10-11 with 0.1M NaOH before analysis. Cationic surfactants should be titrated with an anionic reagent, such as sodium lauryl sulfate, after acidification to ph 3 with 0.01M HCl. ANALYTICAL PROCEDURES Sample Analysis For potentiometric endpoint determination, the surfactant electrode is used as an endpoint indicator. An example of the titration procedure is illustrated using the analysis of an anionic surfactant as an example. 1. Using the acid rinse solution, rinse the surfactant electrode and blot dry with a soft, lint-free tissue before the titration. Fill the single junction reference electrode, or the reference chamber of the combination electrode with fresh filling solution to a level just below the fill hole. 2. Assure that the electrodes are plugged into the ph/mv meter and that the meter is in the mv mode. To prevent air entrapment, mount the electrode at a 20 angle from the vertical. Using a pipet, add 50 ml of the unknown sample to a 150 ml beaker. Add 3 ml of 0.01M HCl and 1 ml of the sample additive, diluted Triton X- 100. Place the beaker on a magnetic stirrer, and start stirring at a constant, but moderate, rate. Lower the electrodes into the solution so that the tips are completely covered and wait until the mv reading is stable, drift is ± 1 to 2 mv/ minute, before adding any titrant. Remove any bubbles by re-dipping electrode. 6

3. Add 0.05M Hyamine 1622 titrant to a 10 ml buret until filled. Once mv stability has been reached, add the titrant in 0.5-1.0 ml increments at the beginning of the titration, and in increments of 0.1-0.25 ml in the region of the endpoint. The endpoint is at that volume of titrant where the potential changes dramatically with the slightest addition of titrant. The electrode potential should be recorded after each addition of titrant. Continue titrating until 1 or 2 ml past the endpoint. On standard coordinate graph paper, plot milliliters of titrant added versus mv reading. The endpoint is the point of greatest inflection. Calculate the unknown surfactant concentration: C unknown = C titrant x V titrant V unknown where: C unknown C titrant V titrant V unknown = concentration of the unknown = concentration of the titrant = volume of the titrant in milliliters = volume of the unknown in milliliters Depending on the sample concentration and on the method used, this basic procedure may need to be modified. ELECTRODE CHARACTERISTICS Electrode Response The time for the analysis may vary, depending on the sample, the titrant, the method, and the equipment used. The average time for manual titration of anionic surfactants is 2-5 minutes. Temperature The surfactant electrode should be used in the operating range of 0-40 o C. The membrane may be permanently destroyed at other temperatures. Reproducibility The reproducibility of the surfactant electrode will depend heavily on the good laboratory practices of the technician, but will usually be less than 1% with manual techniques and less than 0.5% with automatic techniques. Limit of Detection For anionic surfactants, the lower limit of detection is ~10-5 M. Good laboratory practice and selection of titrant may allow lower levels of detection for some sample types. 7

ph Effects The surfactant electrode has an operating ph range of 2-12. Use at other ph values can adversely affect the membrane. For anionic, sulfated and sulfonated surfactants, the analysis should take place at a ph between 2.5 and 4.5. For other samples, the ph range may need to be adjusted. Polyacrylates require adjustment to ph 10, for example. Interferences Interferences may be caused by any organic anion or cation which chemically resembles the species of interest. Cleaning, Reconditioning, and Storage Acidic (or alkaline) rinse solution should be used to rinse the electrode between measurements. To recondition an electrode when the response had become noisy, sluggish, or irreproducible, soak in slightly acidic (or alkaline) distilled water for one hour, followed by 10-4 M SLS solution for 10 minutes. The Surfactant Electrode may be stored in 0.0001M SLS for short periods of time. For storage over 3 weeks, rinse and dry the membrane element and cover the tip with any protective cap shipped with the electrode(s). The reference portion of the combination electrode (or the reference chamber of the reference electrode) should be drained of filling solution, if refillable, and the rubber sleeve placed over the filling hole. Electrode Life The surfactant electrode will last six months in normal laboratory use. Continuous titrations on an automatic sample changer might shorten operational lifetime to several months. In time, the response time will increase and the titration endpoint breaks will not be as sharp. At this point, titration is impossible and electrode replacement is required. ELECTRODE THEORY Electrode Operation The surfactant electrode is an endpoint indicator for the potentiometric determination of anionic surfactants in solution. Cationic surfactants may also be determined with this electrode. 8

The reaction that occurs when a sulfated or sulfonated anionic surfactant is titrated with Hyamine 1622 is as follows: R - SO 3- Na + + R 4 N + Cl - > RSO 3 NR 4 + NaCl where: R = surfactant carbon chain R 4 N + = Hyamine ion TROUBLESHOOTING GUIDE The goal of troubleshooting is the isolation of the problem through checking each of the system components in turn: the instrumentation, the electrodes, the reagents, the sample, and the technique. Instrumentation For manual titration, assure that the mv meter is operating correctly and that the glassware is clean. Most meters are provided with an instrument check-out procedure in the instruction manual and a shorting strap for ease of troubleshooting. Consult the manual for complete instructions and verify the instrument operates as indicated. Clean glassware will drain clean... when rinsed with distilled or deionized water, the water does not bead on the inside walls of the glassware. If using automatic titration instrumentation, check the instrument instruction manuals/operators handbook for the correct check-out procedure or call the instrument manufacturer for the checkout procedure. Electrodes 1. Using distilled or deionized water, rinse the electrodes thoroughly. 2. Titrate a known standard to check the electrode s operation. 3. If the electrode fails to respond as expected, see the section Measuring Hints. Repeat Step 2. 4. If the electrode still fails to respond as expected, substitute another surfactant electrode that is known to be in good working order for the questionable electrode. If the problem persists, try the same routine with a working reference electrode. 5. If the problem persists the reagent may be of poor quality, interferences in the sample may be present or the technique may be faulty. See Reagents, Sample, and Technique sections below. 9

Reagents 6. If another electrode is not available for test purposes, or if the electrode in use is suspect, review the instruction manual and be sure to: - Clean and rinse the electrode(s) thoroughly. - Prepare the electrode(s) properly. - Use the proper filling solution, titrant, and sample additives. - Adjust the ph of the solution according to the method being used for the analysis. - Measure correctly and accurately. - Review TROUBLESHOOTING HINTS. Whenever problems arise with the measuring procedure that has been used successfully in the past, be sure to check the reagent solutions. If in doubt about the credibility of any of the reagents, prepare them again. Errors may result from contamination of the titrant, incorrect dilution, poor quality distilled/ deionized water or additive, or a simple mathematical miscalculation. Sample Look for possible interferences, complexing agents, or substances which could affect the response or physically damage the sensing electrode or the reference electrode if the electrodes work perfectly in the standard, but not in the sample. Try to determine the composition of the samples prior to testing to eliminate a problem before it starts. See Sample Requirements, ph Effects, and Interferences. Technique Be sure that the electrodes limit of detection has not be exceeded. Be sure that the analysis method is clearly understood and is compatible with the sample. Refer to the instruction manual again. Reread GENERAL PREPARATION, ANALYTICAL PROCEDURES, and ELECTRODE CHARACTERISTICS. If trouble still persists, call Cole-Parmer at 1-800-323-4340 and ask for the Technical Services Department. 10

TROUBLESHOOTING HINTS Symptom Possible Causes Next Step Out of Range Reading Noisy or Unstable Readings (readings continuously or rapidly changing) No Endpoint Found defective meter defective electrode electrode not plugged in properly reference electrode not filled air bubble on membrane electrode not in solution defective meter air bubble on membrane meter or stirrer not grounded defective electrode electrode exposed to interferences outer filling solution level too low sample too dilute or titrant solution too concentrated sample too concentrated or titrant too dilute check meter with shorting strap (see meter instruction manual) check electrode operation unplug electrode and reseat be sure reference electrode is filled remove air bubble by redipping electrode put electrode in solution check meter with shorting strap remove air bubble by redipping electrode ground meter or stirrer replace electrode soak electrode in 0.0001M SLS fill electrode to level just below the fill hole make sure the sample concentration is greater than 10-5 M; dilute titrant solution dilute sample or select a different titrant concentration 11

Symptom Possible Causes Next Step Poor Reproducibility Incorrect Answer sample not completely added, diluted, or poor pipetting sample carryover incorrect standards sample carryover when adding sample or diluent to beaker, avoid splashing on the inside walls of the beaker; use an automated pipet for best results when measuring volumes rinse electrodes, stirrer, and delivery tip thoroughly between measurements; blot excess rinse water prepare fresh standards rinse electrodes thoroughly between titrations 12

ELECTRODE SPECIFICATIONS Minimum level of pure SLS which can be titrated Maximum level of pure SLS titrable with 0.05M Hyamine 10-5 M 5 x 10-2 M ph Range 2-12 Temperature Range 0-40 C Resistance Size 100 Mohms 110 mm length 12 mm diameter 1 m cable length Reproducibility ± 1% Storage store in 0.0001 M SLS or store dry ORDERING INFORMATION P/N DESCRIPTION 27502-45 Surfactant Ion Electrode, combination, glass body 27504-32 Surfactant Ion Electrode, combination, epoxy body 27503-35 0.05M Hyamine Solution 27503-36 0.01M Sodium Lauryl Sulfate (SLS) 27503-59 0.1% Triton X-100 Solution 27503-74 Electrode Filling Solution, 4M KCL, for the 27502-45 and 27504-32 electrode(s) 27502-95 ISE Solution Kit. Contains (1) bottle of 0.05M Hyamine solution, (1) bottle of 0.01M SLS, (1) bottle of Triton X-100, (1) bottle of Reference Filling Solution, and (1) Syringe 13