Case Report Massive Intra-Abdominal Imatinib-Resistant Gastrointestinal Stromal Tumor in a 21-Year-Old Male

Similar documents
Long Term Results in GIST Treatment

Evaluating and Reporting Gastrointestinal Stromal Tumors after Imatinib Mesylate Treatment

The Clinical Approach to Wild Type GIST. Margaret von Mehren, MD Professor and Director of Sarcoma Oncology Fox Chase Cancer Center

Clinical Trials. Phase II Studies. Connective Tissue Oncology Society. Jon Trent, MD, PhD

Case Report Five-Year Survival after Surgery for Invasive Micropapillary Carcinoma of the Stomach

Giant gastrointestinal stromal tumor of the jejunum resected after treatment with imatinib

Case Report Renal Cell Carcinoma Metastatic to Thyroid Gland, Presenting Like Anaplastic Carcinoma of Thyroid

Case Report PET/CT Imaging in Oncology: Exceptions That Prove the Rule

Analysis of Prognostic Factors Impacting Oncologic Outcomes After Neoadjuvant Tyrosine Kinase Inhibitor Therapy for Gastrointestinal Stromal Tumors

Glivec en KIT: immuunhistochemie en mutatie analyse in gastro-intestinale stromacel tumoren. Judith V.M.G. Bovee Patholoog LUMC

A) PUBLIC HEALTH B) PRESENTATION & DIAGNOSIS

Case: The patient is a 24 year- old female who was found to have multiple mural nodules within the antrum. Solid and cystic components were noted on

Pathologic Complete Response in a Large Gastric GIST: Using Molecular Markers to Achieve Maximal Response to Neoadjuvant Imatinib

Correspondence should be addressed to Taha Numan Yıkılmaz;

Bilateral Renal Angiomyolipomas with Invasion of the Renal Vein: A Case Report

Imatinib as preoperative therapy in Chinese patients with recurrent or metastatic GISTs

Disclosures 3/27/2017. Case 5. Clinical History. Disclosure of Relevant Financial Relationships

Case Report Uncommon Mixed Type I and II Choledochal Cyst: An Indonesian Experience

Case Report Two Cases of Small Cell Cancer of the Maxillary Sinus Treated with Cisplatin plus Irinotecan and Radiotherapy

Case Report Denosumab Chemotherapy for Recurrent Giant-Cell Tumor of Bone: A Case Report of Neoadjuvant Use Enabling Complete Surgical Resection

Case Report Esophageal Gastrointestinal Stromal Tumor: Diagnostic Complexity and Management Pitfalls

RADIOFREQUENCY ABLATION

Yasumasa MONOBE 1), Yoshio NAOMOTO 2), Jiro HAYASHI 2), Tomoki YAMATSUJI 2), Yoshito SADAHIRA 3)

Gastrointestinal Stromal Tumor Case Presentations

Gastric Signet-Ring Cell Carcinoma: Unilateral Lower Extremity Lymphoedema as the Presenting Feature

Response to sunitinib of a gastrointestinal stromal tumor with a rare exon 12 PDGFRA mutation

Case Report Cytomegalovirus Colitis with Common Variable Immunodeficiency and Crohn s Disease

Correlation of Imatinib Resistance with the Mutational Status of KIT and PDGFRA Genes in Gastrointestinal Stromal Tumors: a Meta-analysis

Reference No: Author(s) NICaN Drugs and Therapeutics Committee. Approval date: 12/05/16. January Operational Date: Review:

B Breast cancer, managing risk of lobular, in hereditary diffuse gastric cancer, 51

Circulating Tumor DNA in GIST and its Implications on Treatment

Case Presentation: GIST

LONDON CANCER NEW DRUGS GROUP RAPID REVIEW. Update on high dose imatinib for gastrointestinal stromal tumour (GIST) harbouring KIT exon 9 mutations

Gastrointestinal Stromal Tumor Surgery and Adjuvant Therapy

Jon Trent, MD, PhD. Associate Professor Dept. of Sarcoma Medical Oncology The University of Texas, M. D. Anderson Cancer Center

Case Report Intracranial Capillary Hemangioma in the Posterior Fossa of an Adult Male

Therapeutic strategies for wild-type gastrointestinal stromal tumor: is it different from KIT or PDGFRA-mutated GISTs?

Research Article Stromal Expression of CD10 in Invasive Breast Carcinoma and Its Correlation with ER, PR, HER2-neu, and Ki67

Abstracting Upper GI Cancer Incidence and Treatment Data Quiz 1 Multiple Primary and Histologies Case 1 Final Pathology:

Clinical Study Metastasectomy of Pulmonary Metastases from Osteosarcoma: Prognostic Factors and Indication for Repeat Metastasectomy

Endoscopic Ultrasonography Assessment for Ampullary and Bile Duct Malignancy

Downsizing Treatment with Tyrosine Kinase Inhibitors in Patients with Advanced Gastrointestinal Stromal Tumors Improved Resectability

Case Report Overlap of Acute Cholecystitis with Gallstones and Squamous Cell Carcinoma of the Gallbladder in an Elderly Patient

Case Report A Rare Cutaneous Adnexal Tumor: Malignant Proliferating Trichilemmal Tumor

Case Report In Situ Split of the Liver When Portal Venous Embolization Fails to Induce Hypertrophy: A Report of Two Cases

Case Report Multiple Giant Cell Tumors of Tendon Sheath Found within a Single Digit of a 9-Year-Old

Case Report Three-Dimensional Dual-Energy Computed Tomography for Enhancing Stone/Stent Contrasting and Stone Visualization in Urolithiasis

Oncologist. The. Sarcomas. Kinase Mutations and Efficacy of Imatinib in Korean Patients with Advanced Gastrointestinal Stromal Tumors

Renal Pelvis Squamous Cell Carcinoma and Renal Cell Carcinoma in a Tuberculous Kidney

Kyriakos Neofytou, 1 Mafalda Costa Neves, 1 Alexandros Giakoustidis, 1 Charlotte Benson, 2 and Satvinder Mudan Introduction

Mesenchymal neoplasms of the gastrointestinal tract what s new? Newton ACS Wong Department of Histopathology Bristol Royal Infirmary

Research Article Predictions of the Length of Lumbar Puncture Needles

Conference Paper Antithrombotic Therapy in Patients with Acute Coronary Syndromes: Biological Markers and Personalized Medicine

Case Report Long-Term Outcomes of Balloon Dilation for Acquired Subglottic Stenosis in Children

Kunihiko Izuishi, 1 Mitsuyoshi Kobayashi, 2 Takanori Sano, 1 Hirohito Mori, 1 and Kazuo Ebara Introduction

Case Report Internal Jugular Vein Thrombosis in Isolated Tuberculous Cervical Lymphadenopathy

Case Report Spontaneous Pelvic Rupture as a Result of Renal Colic in a Patient with Klinefelter Syndrome

Case Scenario 1. The patient has now completed his neoadjuvant chemoradiation and has been cleared for surgery.

Research Article Abdominal Aortic Aneurysms and Coronary Artery Disease in a Small Country with High Cardiovascular Burden

Case Report Müllerian Remnant Cyst as a Cause of Acute Abdomen in a Female Patient with Müllerian Agenesis: Radiologic and Pathologic Findings

NET and GIST Molecular and Ancillary Studies

National Horizon Scanning Centre. Imatinib (Glivec) for adjuvant therapy in gastrointestinal stromal tumours. August 2008

Case Report Diagnostic Challenges of Tuberculous Lymphadenitis Using Polymerase Chain Reaction Analysis: A Case Study

Case Report Pseudothrombocytopenia due to Platelet Clumping: A Case Report and Brief Review of the Literature

R. J. L. F. Loffeld, 1 P. E. P. Dekkers, 2 and M. Flens Introduction

IMATINIB MESYLATE THERAPY IN ADVANCED GASTROINTESTINAL STROMAL TUMORS: EXPERIENCE FROM A SINGLE INSTITUTE

Case Report Long Term Survival and Continued Complete Response of Vemurafenib in a Metastatic Melanoma Patient with BRAF V600K Mutation

Case Report A Case of Primary Submandibular Gland Oncocytic Carcinoma

Clinical Study Mucosal Melanoma in the Head and Neck Region: Different Clinical Features and Same Outcome to Cutaneous Melanoma

Imaging of Gastrointestinal Stromal Tumors (GIST) Amir Reza Radmard, MD Assistant Professor Shariati hospital Tehran University of Medical Sciences

Preoperative imatinib mesylate (IM) for huge gastrointestinal stromal tumors (GIST)

Clinical Study Changing Trends in Use of Laparoscopy: A Clinical Audit

Mandana Moosavi 1 and Stuart Kreisman Background

C-Kit-Negative Gastrointestinal Stromal Tumor in the Stomach

Supplementary Online Content

Efficacy of imatinib dose escalation in Chinese gastrointestinal stromal tumor patients

Correspondence should be addressed to Alicia McMaster;

Case Report Features of the Atrophic Corpus Mucosa in Three Cases of Autoimmune Gastritis Revealed by Magnifying Endoscopy

Case Report Spontaneous Intramural Duodenal Hematoma: Pancreatitis, Obstructive Jaundice, and Upper Intestinal Obstruction

Conference Paper Programmed Cell Death Induced by Modulated Electrohyperthermia

Case Report Crossed Renal Ectopia without Fusion An Unusual Cause of Acute Abdominal Pain: A Case Report

Case Report Unusual Appearance of a Pendulated Gastric Tumor: Always Think of GIST

Primary gastrointestinal stromal tumor of the liver in an anorectal melanoma survivor: A case report

Case Report Asymptomatic Pulmonary Vein Stenosis: Hemodynamic Adaptation and Successful Ablation

Solitary Contralateral Adrenal Metastases after Nephrectomy for Renal Cell Carcinoma

Research Article Comparison of Colour Duplex Ultrasound with Computed Tomography to Measure the Maximum Abdominal Aortic Aneurysmal Diameter

Clinicopathologic Spectrum of Gastrointestinal Stromal Tumours; Six Years Experience at King Hussein Medical Center

Case Report Metastatic Malignant Melanoma of Parotid Gland with a Regressed Primary Tumor

Gastrointestinal Stromal Tumors: challenges in diagnosis and treatment

Research Article Relationship between Pain and Medial Meniscal Extrusion in Knee Osteoarthritis

Testicular leydig cell tumor with metachronous lesions: Outcomes after metastasis resection and cryoablation

Title: unusual case report of inflammatory. fibrous polyps in the upper gastrointestinal tract. Authors: Baifang Wang, Guoqing Xiang, Jia Zhu

ACCME/Disclosures ALK FUSION-POSITIVE MESENCHYMAL TUMORS. Tumor types with ALK rearrangements. Anaplastic Lymphoma Kinase. Jason L.

Original article. Introduction

International Journal of Scientific & Engineering Research, Volume 7, Issue 5, May ISSN Case Report Rare Case Of Small Bowel GIST

Clinical Study Primary Malignant Tumours of Bone Following Previous Malignancy

INITIAL RESULTS OF PHASE 1 STUDY OF DCC-2618, A BROAD-SPECTRUM KIT AND PDGFR

Case Report A Rare Case of Near Complete Regression of a Large Cervical Disc Herniation without Any Intervention Demonstrated on MRI

R. F. Falkenstern-Ge, 1 S. Bode-Erdmann, 2 G. Ott, 2 M. Wohlleber, 1 and M. Kohlhäufl Introduction. 2. Histology

Transcription:

Case Reports in Medicine Volume 2013, Article ID 373981, 5 pages http://dx.doi.org/10.1155/2013/373981 Case Report Massive Intra-Abdominal Imatinib-Resistant Gastrointestinal Stromal Tumor in a 21-Year-Old Male Ann Falor, 1 Amanda K. Arrington, 2 Carrie Luu, 1 Hans F. Schoellhammer, 2 Michelle Ko, 2 Warren Chow, 3 Massimo D Apuzzo, 4 Jinha Park, 5 and Joseph Kim 2 1 Department of Surgery, Harbor-UCLA Medical Center, 1000 West Carson Street, Torrance, CA 90509, USA 2 Division of Surgical Oncology, City of Hope Comprehensive Cancer Center, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA 3 Department of Medical Oncology & Therapeutics Research, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA 4 Department of Pathology, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA 5 Department of Radiology, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA Correspondence should be addressed to Joseph Kim; jokim@coh.org Received 9 April 2013; Accepted 17 July 2013 Academic Editor: Muhammad Wasif Saif Copyright 2013 Ann Falor et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Gastrointestinal stromal tumors (GISTs) in adolescence are far less common than adult GISTs and have varied GIST genotypes that present diagnostic and therapeutic challenges. Here, we discuss a 21-year-old male with diagnosis of unresectable, imatinibresistant GIST. At initial evaluation, a neoadjuvant treatment approach was recommended. As such, the patient received imatinib over the course of one year. Unfortunately, the GIST increased in size, and a subsequent attempt at surgical resection was aborted fearing infiltration of major vascular structures. The patient was then referred to our institution, at which time imatinib therapy was discontinued. Surgical intervention was again considered and the patient underwent successful resection of massive intra-abdominal GIST with total gastrectomy and Roux-en-Y esophagojejunostomy. Since pediatric GISTs are typically resistant to imatinib, we performed genotype analysis of the operative specimen that revealed KIT mutations associated with imatinib sensitivity and resistance. Given the sequencing data and operative findings, the patient was started postoperatively on sunitinib. This case illustrates the importance of understanding both adult and pediatric GISTs when implementing appropriate treatment regimens. Since the genotype of GISTs dictates phenotypic behavior, mutational analysis is an important component of care especially for adolescents whose disease may mirror the pediatric or adult population. 1. Introduction Gastrointestinal stromal tumors (GISTs) represent the most common mesenchymal tumor of the gastrointestinal tract in the adult population, with a reported incidence rate of 6.8 cases per million [1]. These tumors are commonly diagnosed in the stomach or small intestine, and the median age at diagnosis is 60 years [2]. GISTs are far less common in children, and pediatric GISTs appear to be different in relation to the disease observed in adults. Moreover, variations of GIST genotype in the pediatric population present diagnostic and therapeutic challenges. Here, we discuss the presentation and management of a GIST in an adolescent male to highlight the difficulties in managing this rare disease. 2. Case Report A 21-year-old African-American male was referred to our tertiary care cancer center with the diagnosis of unresectable, imatinib-resistant GIST. Institutional review board approval was obtained to review his clinical course. He was initially evaluated at another institution approximately one year earlier for a several-month history of gastroesophageal reflux

2 Case Reports in Medicine disease, weight loss, and increasing abdominal distension. At the time of this initial presentation, the patient had these nonspecific abdominal complaints but was otherwise healthy. He underwent esophagogastroduodenoscopy (EGD), which demonstrated a large ulcerated tumor near the gastroesophageal junction. Biopsy of the mass revealed a spindle cell lesion and CD117 (i.e., c-kit) immunohistochemistry (IHC) staining confirmed the diagnosis of GIST. Computed tomography (CT) imaging demonstrated an 11 10 8cm lesion arising from the stomach and no other lesions elsewhere. Due to uncertainty about upfront surgical resectability, the patient was started on imatinib (400 mg/day), a tyrosine kinase inhibitor (TKI) that blocks the constitutively active receptor tyrosine kinase c-kit, to induce adequate tumor response for potential surgical resection with negative margins [3 5]. On follow-up CT scan nearly seven months later (Figure 1), there was no evidence of decreased tumor dimensions. Consequently, the dosage of imatinib was doubled to 800 mg daily. Four months after this change in dosage, the patient complained of unrelenting abdominal pain necessitating CT imaging (Figure 2) which revealed that the GIST had increased in size to 15 15 12 cm. This extent of disease raised new concerns for tumor invasion of the celiac axis. With failure of the downstaging approach, the patient underwent attempt at salvage surgical resection approximately one year after initial diagnosis. During diagnostic laparoscopy the tumor was considered to be infiltrative and unresectable, and a feeding jejunostomy catheter was placed for palliation. The patient subsequently sought further care at our tertiary care cancer center. On our initial examination, the patient had a largely protuberant abdomen with a mass palpable from the costal margin to the pelvic brim. He was no longer able to eat and repeat EGD demonstrated a cystic/solid gastric mass arising from the level of the gastric cardia, leading to extensive extrinsic compression of the entire stomach. The celiac axis could not be visualized on endoscopic ultrasound. Pathologic review of the original biopsy specimen revealed a moderately cellular spindle cell lesion with minimal atypia and no mitosis. IHC revealed that the cells stained strongly positive for CD34 and CD117, again confirming the diagnosis of GIST. Based on our experience with GISTs, we theorized that this patient s increased extent of disease was producing mass effect and compression of surrounding organs rather than infiltrating the surrounding tissues; therefore, our surgical team recommended operative exploration. More than one year following his initial diagnosis, the patient underwent resection of a massive intra-abdominal GIST with total gastrectomy and Roux-en-Y esophagojejunostomy. On our preoperative imaging the GIST measured 30 21 13 cm (Figure 3), and the resected abdominal specimen revealed two masses on gross examination measuring 30 19 13 cm and 8.5 6 5.5 cm. The neoplasm showed features of high-grade GIST with mitotically active spindle and epithelioid cells involving the gastric and perigastric adipose tissue (Figure4(a), 60x magnification), and IHC staining demonstrated strong diffuse staining for CD117 (Figure 4(b), 20x magnification). Despite preoperative imaging suggesting compression of the celiac axis, the mass was easily lifted Figure 1: Computed tomography (CT) image demonstrating the appearance of gastric GIST after seven months of treatment with imatinib 400 mg per day; the tumor is unchanged in size compared to initial presentation (initial CT not shown). Figure 2: CT image showing increase in tumor size four months after doubling the dosage of imatinib to 800 mg per day. Figure 3: Preoperative CT image revealing a single massive tumor (30 21 13 cm). off the major vessels. Unfortunately, a small isolated pelvic nodule was discovered and found to be metastatic disease, yielding a final pathologic stage of ypt4n0m1. The patient tolerated the procedure without incident and was discharged home on postoperative day 9. At our institution, genetic testing of the c-kit gene includes selective assays of exons 8, 9, 11, 13, 17, and 18. These exons are amplified by polymerase chain reaction (PCR) and then undergo Sanger sequencing. Any mutations found are then confirmed via a second independent amplification.

Case Reports in Medicine 3 (a) (b) Figure 4: (a) Photomicrograph of the resected specimen stained with H + E showing features of high grade GIST with mitotically active spindle and epithelioid cells involving the gastric and perigastric adipose tissue (60x magnification). (b) IHC staining demonstrating strong diffuse staining for CD117 (20x magnification). Genotype analysis of KIT in the operative specimen revealed an exon 11 deletion in codons 557 559, which is known to confer imatinib sensitivity [6]. An exon 17 mutation in codon 820 of the kinase activating loop, which is associated with imatinib resistance, was also identified [6 8]. Given the sequencing data and presence of metastatic disease, the patient was started on sunitinib 50 mg daily given for cycles of four weeks at a time, with a two-week break between cycles. Sunitinib is a multitarget TKI against vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR), and c-kit that is effective in eliciting tumor response and disease stabilization in imatinibresistant GISTs [9]. However, the patient progressed on sunitinib, and subsequently sorafenib 400 mg twice daily given continuously was initiated. Sorafenib is a multiple kinase inhibitor that targets VEGFR, PDGFR, RET, and c-kit [10]. Sorafenib has been shown to prevent disease progression in patients with imatinib and sunitinib refractory GIST [11]. 3. Discussion GISTs frequently harbor gain-of-function mutations in the KITorPDGFRAprotooncogenes,whicharedetectedin 90% of adult GIST patients [12, 13]. While KIT mutations are more common in exon 11, mutations have also been detected in exons 9,13,and 17[8]. Targeted inhibition of these receptor tyrosine kinases has been developed, but the exact location of the genetic alterations predicts response to the targeted agents. Specifically, KIT mutations located on exon 11 are associated with sensitivity to imatinib therapy, whereas mutations on exons 9, 13, and 17 are more likely to exhibit imatinib resistance [7, 12, 14, 15]. KIT mutations may also have prognostic significance, and patients with exon 11 mutations appear to have improved outcomes compared to patients harboring mutations on exons 9 or 13 [12, 16, 17]. Exon 11 of the KIT gene codes for the juxtamembrane domain of the KIT protein, and exon 17 codes for the activation loop of the protein, which is intracellular. Approximately 70% of primary KIT mutations are in exon 11, while only 1% of primary mutations are in exon 17 [18]. Secondary mutations of exon 17 also may occur, which can lead to resistance to treatment with sunitinib but not sorafenib, as was seen with our patient [18]. Figure 5 demonstrates a schematic representation of the various domains of the KIT protein, the exons that code for these domains, and the sites of codon mutations seen in our patient. GISTsinthepediatricpopulationarerarewithareported incidence of 0.5 2.7% and a median age at presentation of 13 years [13, 19].Similartoadults,thelocationofdisease is most often in the stomach [19]. Pediatric GISTs can occur sporadically or as part of familial syndromes, such as Carney-Stratakis syndrome, which is secondary to mutations in succinate dehydrogenase (SDH) which predisposes affected individuals to GISTs and paragangliomas [13]. The biology of disease differs greatly between pediatric and adult patients since most pediatric GISTs harbor wild-type KIT or PDGFRA, thus lacking the activating mutations that confer sensitivity to imatinib. Therefore, imatinib is often ineffective in pediatric GISTs [20]. Interestingly, mutations in SDH have been detected in nearly 12% of pediatric patients with nonfamilial GIST and wild-type KIT [13]. Though germline testing for SDH mutations have been advocated in pediatric GISTs with wild-type KIT, the treatment of SDH mutated GIST is currently the same as non-sdh mutated GIST, and the clinical significance of SDH mutations remains unclear [13, 19]. Surgical resection with clear microscopic margins is the gold standard treatment for both pediatric and adult GISTs. In our patient, imatinib therapy was used preoperatively in an attempt to decrease disease burden and minimize the extent of surgical intervention [21, 22]. Ultimately, this neoadjuvant approach failed, and the final surgical procedure carried far higher potential for morbidity and mortality than with the original presenting disease. DNA sequencing of this final operative specimen revealed both imatinib-sensitive and imatinib-resistant features, unlike typical wild-type KIT GISTs in pediatric patients. We hypothesize that the KIT exon 11 deletion was present de novo prior to initiation of imatinib therapy, and that resistance may be secondary to the subsequent development of the exon 17 mutation, a

4 Case Reports in Medicine Cell membrane Mutation ATP binding domain Mutation Extracellular domain Juxtamembrane domain Exon 11 Activation loop Exon 17 Figure 5: Schematic diagram of the intra- and extracellular KIT protein domains coded for by various exons as well as the mutations in exons 11 and 17 seen in our patient. phenomenon that has been described in adult patients [6, 7]. However, it is still feasible that both exons 11 and 17 mutations were present de novo, a condition that would have altered the management strategy leading to sunitinib as the initial neoadjuvant agent. Furthermore, knowledge of the mutations beforehand may have provided the rationale to change to sunitinib or plan for surgery earlier in the disease course, when the patient initially failed to demonstrate treatment response to imatinib. Upon recovering from surgery, our patient was started on sunitinib. Unlike imatinib, sunitinib has been discovered to be effective in the pediatric GIST population [6]. The genetic makeup of GISTs dictates biologic behavior, and it is of paramount importance that clinicians have a clear understanding of the differences between adult and pediatric GISTs. Our patient, although 21 years old at the time of his definitive operation, had experienced symptoms beginning in his teenage years. Despite his age, the genotype of his GIST was more akin to adult patients with a gain-of-function KIT mutation. Nevertheless, knowledge of the imatinib resistant genotype may have precluded imatinib therapy altogether. Although it may not be necessary to perform mutational analysis of KIT and PDGFRA prior to initiating therapy in all pediatric GIST patients, upfront DNA sequencing may benefit the adolescent patient whose disease may mirror either the pediatric or adult population. This case highlights the need for knowledge of differences between adult and pediatric GISTs and the need for specialized care of this rare disease. Conflict of Interests There are no financial interests to disclose. References [1] G. Demetri, R. Benjamin, C. Blanke et al., NCCN Task Force report: management of patients with gastrointestinal stromal tumor (GIST) update of the NCCN clinical practice guidelines, the National Comprehensive Cancer Network, vol. 5, article S1, 2007. [2] A.S.PappoandK.A.Janeway, Pediatricgastrointestinalstromal tumors, Hematology/Oncology Clinics of North America, vol.23,no.1,pp.15 34,2009. [3] G.D.Demetri,M.VonMehren,C.D.Blankeetal., Efficacyand safety of imatinib mesylate in advanced gastrointestinal stromal tumors, The New England Medicine,vol.347,no.7,pp. 472 480, 2002. [4]M.Z.Koontz,B.M.Visser,andP.L.Kunz, Neoadjuvant imatinib for borderline resectable GIST, JournaloftheNational Comprehensive Cancer Network,vol.10,pp.1477 1482,2012. [5] J.C.McAuliffe,K.K.Hunt,A.J.F.Lazaretal., Arandomized, phase II study of preoperative plus postoperative Imatinib in GIST: evidence of rapid radiographic response and temporal induction of tumor cell apoptosis, Annals of Surgical Oncology, vol. 16, no. 4, pp. 910 919, 2009. [6] F. Haller, S. Detken, H.-J. Schulten et al., Surgical management after neoadjuvant imatinib therapy in gastrointestinal stromal tumours (GISTs) with respect to imatinib resistance caused by secondary KIT mutations, Annals of Surgical Oncology,vol.14, no. 2, pp. 526 532, 2007. [7] C.R.Antonescu,P.Besmer,T.Guoetal., Acquiredresistance to imatinib in gastrointestinal stromal tumor occurs through secondary gene mutation, Clinical Cancer Research, vol. 11, no. 11,pp.4182 4190,2005. [8] B. Liegl, I. Kepten, C. Le et al., Heterogeneity of kinase inhibitor resistance mechanisms in GIST, Pathology, vol.216, no. 1, pp. 64 74, 2008. [9] G. Demetri, J. Desai, J. Fletcher et al., SU11248, a multitargeted tyrosine kinase inhibitor, can overcome imatinib (IM) resistance caused by diverse genomic mechanisms in patients (pts) with metastatic gastrointestinal stromal tumor (GIST), Clinical Oncology,vol.22,article3001,2004. [10] B. Escudier, T. Eisen, W. M. Stadler et al., Sorafenib in advanced clear-cell renal-cell carcinoma, The New England Medicine,vol.356,no.2,pp.125 134,2007. [11] S. Park, M. Ryu, B. Ryoo et al., Sorafenib in patients with metastatic gastrointestinal stromal tumors who failed two or more prior tyrosine kinase inhibitors: a phase II study of Korean gastrointestinal stromal tumors study group, Investigational New Drugs,vol.30,no.6,pp.2377 2383,2012. [12] M. C. Heinrich, C. L. Corless, G. D. Demetri et al., Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor, Clinical Oncology, vol.21,no.23,pp.4342 4349,2003. [13] A.S.Pappo,K.Janeway,M.Laquaglia,andS.Y.Kim, Special considerations in pediatric gastrointestinal tumors, Surgical Oncology,vol.104,no.8,pp.928 932,2011. [14] C. L. Corless, J. A. Fletcher, and M. C. Heinrich, Biology of gastrointestinal stromal tumors, Clinical Oncology, vol. 22, no. 18, pp. 3813 3825, 2004. [15] S.R.McLean,M.Gana-Weisz,B.Hartzoulakisetal., Imatinib binding and ckit inhibition is abrogated by the ckit kinase domain I missense mutation Val654Ala, Molecular Cancer Therapeutics,vol.4,no.12,pp.2008 2015,2005.

Case Reports in Medicine 5 [16] M. Debiec-Rychter, H. Dumez, I. Judson et al., Use of c-kit/ PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group, European Cancer, vol. 40, no. 5, pp. 689 695, 2004. [17] C. D. Blanke, G. D. Demetri, M. Von Mehren et al., Long-term results from a randomized phase II trial of standard- versus higher-dose imatinib mesylate for patients with unresectable or metastatic gastrointestinal stromal tumors expressing KIT, Clinical Oncology,vol.26,no.4,pp.620 625,2008. [18] M. C. Heinrich, A. Marino-Enriquez, A. Presnell et al., Sorafenib inhibits many kinase mutations associated with drugresistant gastrointestinal stromal tumors, Molecular Cancer Therapeutics, vol. 11, pp. 1770 1780, 2012. [19] M. Benesch, E. Wardelmann, A. Ferrari, B. Brennan, and A. Verschuur, Gastrointestinal stromal tumors (GIST) in children and adolescents: a comprehensive review of the current literature, Pediatric Blood and Cancer, vol. 53, no. 7, pp. 1171 1179, 2009. [20] K. A. Janeway, K. H. Albritton, A. D. Van Den Abbeele et al., Sunitinib treatment in pediatric patients with advanced GIST following failure of imatinib, Pediatric Blood and Cancer, vol. 52, no. 7, pp. 767 771, 2009. [21] C. P. Raut, M. Posner, J. Desai et al., Surgical management of advanced gastrointestinal stromal tumors after treatment with targeted systemic therapy using kinase inhibitors, Clinical Oncology,vol.24,no.15,pp.2325 2331,2006. [22] D.Wang,Q.Zhang,C.D.Blankeetal., PhaseIItrialofneoadjuvant/adjuvant imatinib mesylate for advanced primary and metastatic/recurrent operable gastrointestinal stromal tumors: long-term follow-up results of Radiation Therapy Oncology Group 0132, Annals of Surgical Oncology,vol.19,no.4,pp.1074 1080, 2012.

MEDIATORS of INFLAMMATION The Scientific World Journal Gastroenterology Research and Practice Diabetes Research International Endocrinology Immunology Research Disease Markers Submit your manuscripts at BioMed Research International PPAR Research Obesity Ophthalmology Evidence-Based Complementary and Alternative Medicine Stem Cells International Oncology Parkinson s Disease Computational and Mathematical Methods in Medicine AIDS Behavioural Neurology Research and Treatment Oxidative Medicine and Cellular Longevity