Carbohydrates. Objectives. Background. Experiment 6

Similar documents
BCH302 [Practical] 1

QUALITATIVE TESTS OF CARBOHYDRATE

Biological molecules = Biomolecules = Compounds of life

Figure 2. Figure 1. Name: Bio AP Lab Organic Molecules

Name: Period: Date: Testing for Biological Macromolecules Lab

Tests for Carbohydrates

Carbohydrates Chemical Composition and Identification

Dr. Nafith Abu Tarboush. Rana N. Talj

Learning Target: Describe characteristics and functions of carbohydrates, lipids, and proteins. Compare and contrast the classes of organic

A. Incorrect! No, this is not the description of this type of molecule. B. Incorrect! No, this is not the description of this type of molecule.

For example, monosaccharides such as glucose are polar and soluble in water, whereas lipids are nonpolar and insoluble in water.

Chemical Reactions. Carbohydrate Qualitative Analysis: Foundation Lab. 2012, Sharmaine S. Cady East Stroudsburg University

Experiment 27 CARBOHYDRATES. Text Topics and New Techniques. Discussion. Carbohydrate chemistry, qualitative tests for carbohydrates.

MahaAbuAjamieh. BahaaNajjar. MamoonAhram

Carbohydrates. Monosaccharides

Lab #4: Nutrition & Assays for Detecting Biological Molecules - Introduction

Chemical Tests For Biologically Important Molecules Do not write on this document

Lab 2. The Chemistry of Life

Farah Al-Khaled. Razi Kittaneh. Mohammad Omari

Carbohydrates. Haworth Projections

Organic Molecule Composition of Milk: Lab Investigation

Biomolecule: Carbohydrate

EXPERIMENT 6 Properties of Carbohydrates: Solubility, Reactivity, and Specific Rotation

Testing for the Presence of Macromolecules

BIOCHEMISTRY NOTES PT. 3 FOUR MAIN TYPES OF ORGANIC MOLECULES THAT MAKE UP LIVING THINGS

Name a property of. water why is it necessary for life?

LAB 4 Macromolecules

Carbohydrates. Organic compounds which comprise of only C, H and O. C x (H 2 O) y

Experiment 20 Identification of Some Carbohydrates

A Getting-It-On Review and Self-Test. . Carbohydrates are

Fundamentals of Organic Chemistry. CHAPTER 6: Carbohydrates

Chemistry B11 Chapters 13 Esters, amides and carbohydrates

Carbohydrates Lab Name Period

Ch 2 Molecules of life

For more info visit

SPECIFICATION CONTINUED Glucose has two isomers, α-glucose and β-glucose, with structures:

CLASS 11th. Biomolecules

Guided Inquiry Skills Lab. Additional Lab 1 Making Models of Macromolecules. Problem. Introduction. Skills Focus. Materials.

Number of Carbohydrate Units

I. ROLE OF CARBON IN ORGANISMS: Organic compounds = compounds that contain carbon Ex: Carbohydrates, lipids, proteins

McMush Lab Testing for the Presence of Macromolecules

McMush Lab Testing for the Presence of Biomolecules

Chapter 22 Carbohydrates

Name: Per. Date: / 71 points MACROMOLECULE LAB: Testing for the Presence of Macromolecules

You Are What You Eat

BIOCHEMISTRY UNIT 2 Part 4 ACTIVITY #4 (Chapter 5) CARBOHYDRATES

Carbohydrates. Chapter 12

Introduction: Lab Safety: Student Name: Spring 2012 SC135. Laboratory Exercise #4: Biologically Important Molecules

GENERAL TESTS FOR CARBOHYDRATE. By Sandip Kanazariya

Sheet #10 Dr. Mamoun Ahram Sec 1,2,3 15/07/2014. Carbohydrates 2

The Chemistry of Carbohydrates

QUANTITATIVE TEST (CHEMICAL) FOR SUGARS IN SUGARCANE. Talha Saeed. Faisal Iftikhar. Mam AMMARA AINEE

Ch13. Sugars. What biology does with monosaccharides disaccharides and polysaccharides. version 1.0

Photosynthesis Digestion Respiration. ., proteins. ... Glucose,.., fatty acids and glycerol, respectively.

Biochemistry. Definition-

EXERCISE 3 Carbon Compounds

Biochemistry: Macromolecules

This place covers: Reducing the size of material from which sugars are to be extracted; Presses and knives therefor,

Biology 20 Laboratory Life s Macromolecules OBJECTIVE INTRODUCTION

OCR (A) Biology A-level

of Life Chemical Aspects OBJ ECTIVESshould be able to: ENCOUNTERS WITH LIFE H" ~ ~O N-C-C H R OH After completing this exercise, the student

Hydrolysis and Dehydration Synthesis

Lab 3 MACROMOLECULES INTRODUCTION I. IDENTIFICATION OF MACROMOLECULES. A. Carbohydrates

Organic Chemistry Worksheet

Water: 1. The bond between water molecules is a(n) a. ionic bond b. covalent bond c. polar covalent bond d. hydrogen bond

Lab 6: Cellular Respiration

Carbohydrates are a large group of organic compounds occurring in and including,, and. They contain hydrogen and oxygen in the same ratio as (2:1).

Macromolecules Materials

Topic 4 - #2 Carbohydrates Topic 2

Biology 12 - Biochemistry Practice Exam

Aim: To study the effect of ph on the action of salivary amylase. NCERT

Bridging task for 2016 entry. AS/A Level Biology. Why do I need to complete a bridging task?

Chapter 18. Carbohydrates with an Introduction to Biochemistry. Carbohydrates with an Introduction to Biochemistry page 1

1. Glucose or sucrose are soluble in water but cyclohexane or benzene (simple six membered ring compounds) are insoluble in water. Explain.

6 The chemistry of living organisms

Carbohydrates. 1. Using the terms provided below, complete the concept map showing the characteristics of organic compounds.

Chapter 23 Carbohydrates and Nucleic Acids. Carbohydrates

Name Group Members. Table 1 Observation (include details of what you observe)

Identification of Organic Compounds Lab

HiPer Carbohydrates Estimation Teaching Kit (Quantitative)

EXPERIMENT 8 (Organic Chemistry II) Carboxylic Acids Reactions and Derivatives

Chem 263 Nov 22, Carbohydrates (also known as sugars or saccharides) See Handout

Chapter 7 Carbohydrates

Molecules of Life. Carbohydrates Lipids Proteins Nucleic Acids

Chem 60 Takehome Test 2 Student Section

BIOLOGY 1101 LAB 1: OSMOSIS & DIFFUSION. READING: Please read pages & in your text prior to lab.

2-3 Carbon Compounds 10/22/2013. The Chemistry of Carbon. More Carbon. Chemistry (cont) More Macromolecules. Macromolecules

!"#$%&'()*+(!,-./012-,345(

Questions- Carbohydrates. A. The following structure is D-sorbose. (Questions 1 7) CH 2 OH C = O H C OH HO C H H C OH

Organic/Biochem Test #2 Takehome Name: Spring 2012 Page 1 of 6. Multiple choice: Circle the best answer for each of the following questions.

Carbohydrates 1. Steven E. Massey, Ph.D. Assistant Professor Bioinformatics Department of Biology University of Puerto Rico Río Piedras

Carbohydrates. Green plants turn H 2 O, CO 2, and sunlight into carbohydrates.

Testing for Biologically Important Molecules

4. 10/09/14 Ch. 5: Populations /22/14 Ch. 2: Chemistry of Life 55

Dehydration Synthesis and Hydrolysis Reactions. ne_content/animations/reaction_types.ht ml

Carbon Compounds (2.3) (Part 1 - Carbohydrates)

Biological Molecules

Chapter 24: Carbohydrates

EXPERIMENT 4 DETERMINATION OF REDUCING SUGARS, TOTAL REDUCING SUGARS, SUCROSE AND STARCH

Laboratory 3 Organic Molecules

Transcription:

1 of 6 3/15/2011 7:27 PM Experiment 6 Carbohydrates Objectives During this experiment you will look at some of the physical and chemical properties of carbohydrates. Many of the carbohydrates, especially the mono-saccharides, are classified as reducing sugars. The term reducing refers to redox types of reactions, specifically reduction (the gaining of electrons) and oxidation (the loss of electrons). Since many of the mono-saccharides are aldoses (aldehyde containing sugars), they can be easily oxidized to a carboxylic acid. On the other hand, what about ketoses, such as fructose, which is a ketone sugar. Do ketoses function as reducing sugars like aldoses? You will take advantage of this chemical property to assess which saccharides (carbohydrates) are reducing sugars and which are not. In addition, your instructor will demonstrate a simple way of seeing why these compounds are called "carbohydrates." Background Carbohydrates are probably the single largest type of organic compounds in the biosphere. If you look at the different types of organic compounds around you, you will see plants which contain as their principal structure component the chemical compound called cellulose (a polymer of glucose containing b-1,4 glycoside bonds). Many plants also produce starches (containing principally a-1,4 glycoside bonds) which are also polymers of glucose. As you are probably aware, we cannot metabolize cellulose but can metabolize starch, and this is related to the type of glycosidic bonds in the polymer. We also have many different mono- and di-saccharides (e.g., glucose, galactose, fructose, sucrose and lactose). The other principal classes of biological polymers such as proteins and lipids are far and away much smaller in quantity. Using the space shown below, draw the Fischer projections in the first row for the carbohydrates listed. Then, if the carbohydrate is an aldose (aldehyde-containing sugar), in the next row down, show the Fischer projection for the carboxylic acid derived from the carbohydrate when the aldose gets oxidized. The only functional group that gets oxidized is an aldehyde, not an alcohol or ketone. Glucose Galactose Ribose Fructose Glyceraldehyde

2 of 6 3/15/2011 7:27 PM It is not necessary to memorize the names of the new carboxylic acids derived from the carbohydrates, but the common name for the carboxylic acid derived from glucose is actually called gluconic acid. Procedure Instructor Demo: Is Carbon In Carbohydrates? The term "carbohydrate" is derived from the empirical formula for a mono-saccharide, such as glucose. The molecular formula of glucose is C 6 H 12 O 6, but the empirical formula is CH 2 O. What this means, is the for each carbon atom there will be two hydrogen atoms and one oxygen atom. This is the empirical formula for other carbohydrates as well. Someone might ask it is is possible to remove the water, and be left basically with only carbon. This is possible. Using concentrated sulfuric acid, which is a strongly dehydrating acid, you can effectively remove the water leaving only carbon. This demonstration which is to be performed by your instructor is easy to do. Using a 100-mL or a 150-mL beaker, add enough sucrose to the beaker so that it is about half filled. Then, very carefully pour concentrated sulfuric (18 M H 2 SO 4 ) to just barely come to the top of the sucrose. You may have to wait for a few moments but very soon you will be able to see a reaction taking place. Describe what you observe during this demonstration experiment in your laboratory notebooks. Tollen's Reaction This particular reaction was one of the reactions which you have already performed during the experiment characterizing aldehydes and ketones. It is sometimes called the "Silver Mirror" test because it produces metallic silver as a byproduct when an aldehyde is oxidized into a carboxylic acid. It does not typically work for ketones or for certain disaccharides which are referred to as "non-reducing sugars." Remember that oxidation is defined as the "loss of electrons" and reduction is "the gain of electrons." These are in essence redox (reduction and oxidation) reactions. This test is based on the ability of an aldehyde (which is easily oxidized) to reduce silver ions in solution, forming either a black deposit of free silver or a silver mirror within the test tube. The aldehyde group is oxidized to an acid during this reaction. Tollens reagent is made by reacting silver nitrate solution with dilute ammonium hydroxide. Rinse all glass equipment with distilled water before use. The NH 4 OH used in this experiment must be prepared within one hour of use, it cannot

3 of 6 3/15/2011 7:27 PM be made before the day of the experiment. In a positive test, the diamminesilver(i) complex oxidizes the aldehyde to a carboxylate ion and in the process is reduced to elemental silver and aqueous ammonia. The elemental silver precipitates out of solution, occasionally onto the inner surface of the reaction vessel, giving a characteristic "silver mirror". The carboxylate ion on acidification will give its corresponding carboxylic acid. The carboxylic acid is not directly formed in the first place as the reaction takes place under alkaline conditions. The ionic equations for the overall reaction are shown below; R refers to an alkyl group. [Ag(NH 3 ) 2 ] + (aq) + e - Ag (s) + 2 NH 3 (aq) RCHO (aq) + 3 OH - RCOO - + 2 H 2 O + 2 e - The negative result for the test is no precipitate of silver formed when the carbonyl to be tested is added. A ketone will give a negative result because it cannot be oxidized easily. A ketone has no available hydrogen atom attached to the carbonyl carbon, meaning it can't be so easily oxidized - unlike an aldehyde, which has this hydrogen atom. Using the freshly prepared Tollens Reagent, add about 5 ml to four very clean test tubes. To each of these tubes, containing the Tollens Reagent, add one of the following: Tube 1: 5 drops of 10% lactose Tube 2: 5 drops of 10% fructose Tube 3: 5 drops of 10% glucose Tube 4: 5 drops of 10% sucrose Allow the tubes to stand undisturbed and note the results. The solution containing the glucose may take 10-15 minutes to react. Do not shake or agitate. Based on your observations, which of the carbohydrate shown above would you classify as being a reducing carbohydrate (sugar)? Remember, a reducing sugar is one which gets oxidized (electrons are taken away) and those electrons are given to the oxidizing agent (which in this case is the Ag + ion). When the Ag+ ion acquires a single electron it is converted into the Ag element (metal) which then plates out on the glass. This is an indication of a reaction taking place and the Ag is deposited on the glass. Hence, the Silver Mirror test, since this is the process by which mirrors are actually made but using other aldehydes. Carbohydrate Observations and Explanations lactose fructose glucose

4 of 6 3/15/2011 7:27 PM sucrose Barfoed's Reagent This chemical test of different carbohydrates is designed to be a positive test for monosaccharides. However, what happens if other carbohydrates, such as disaccharides are analyzed? Do they also give a positve test? Using your text book, draw the structures for the four carbohydrates (plus galactose) being used in both the Tollen's and this test. Based on the structures of these carbohydrates, you should be able to determine why some of them react and some do not. Glucose Sucrose Fructose Lactose Galactose To perform this test, add 1 ml of Barfoed's reagent to each of four different test tubes (make certain they are labeled so that the hot water does not remove the tape label. Tube 1: 5 drops of 10% lactose Tube 2: 5 drops of 10% fructose Tube 3: 5 drops of 10% glucose Tube 4: 5 drops of 10% sucrose After you add the carbohydrates solutions to each of the test tubes containing the 1-mL of Barfoed's reagent, place the test tubes in a boiling water bath, a positive test for monosaccharides is the formation of a brick-red precipitate within five minutes. Disaccharides generally don't give any reaction even for ten minutes. The precipitate isn't nearly as voluminous as that seen with Benedict's test and tends to adhere to the walls of the test tube. The main thing you should be looking for is a change in color. Remember that one of the indicators of a chemical reaction is a change in color or formation of a solid (precipiate). Carbohydrate Observations and Explanations lactose fructose

5 of 6 3/15/2011 7:27 PM glucose sucrose Conclusions While there may not be a large number of different experiments performed in this protocol, they are sufficient to give you an understanding of the different chemical and physical properties of carbohydrates. Chemicals, Reagents, and Supplies Compound MW Amount mmol mp bp Density η D msds glucose (10%) 180.16 1.0 grams in 10 ml water --- msds sucrose (10%) 342.32 1.0 grams in 10 ml water --- msds lactose (10%) 342.32 1.0 grams in 10 ml water --- msds starch polymer 1.0 grams in 10 ml water --- msds fructose (10%) 180.16 1.0 grams in 10 ml water --- msds Compound g/mol grams or ml 10-3 M o C o C g/ml η D msds Reagent Synthesis: Tollens Reagent (prepared by each student group, but it is convenient to let the Instructor add the ammonium hydroxide): For each group, add 8 ml of 0.1 M silver nitrate to a beaker or flask (measure in a 10-mL graduated cylinder). Add dilute ammonium hydroxide (the NH 4 OH must be prepared within one hour of being used, it cannot be prepared on a previous day) 1 drop at a time until the brown precipitate of silver oxide that is formed just dissolves (mix by swirling after each drop is added). (The liquid may remain slightly brownish in color, but it cannot still have a precipitate.) Now, add 7 ml of distilled water and mix. Use about 5 ml of Tollens reagent for each of the three tubes used in the experiment. Barfoed's Reagent looks like Benedict's solution but differs somewhat. The reagent is prepared by dissolving 70 g copper acetate monohydrate and 9 ml glacial acetic acid in water to a final volume of one liter. The reagent is stable for years. Go To Experiment: 1 2 3 4 5 6 7 8 9 10 Return to Chem102 Experiments Index

6 of 6 3/15/2011 7:27 PM Copyright Donald L. Robertson (Modified: 03/15/2011)