RECONSTITUTION OF METACHRONAL WAVES IN CILIATED CORTICAL SHEETS OF PARAMECIUM

Similar documents
EFFECT OF BEAT FREQUENCY ON THE VELOCITY OF MICROTUBULE SLIDING IN REACTIVATED SEA URCHIN SPERM FLAGELLA UNDER IMPOSED HEAD VIBRATION

MAINTENANCE OF CONSTANT WAVE PARAMETERS BY SPERM FLAGELLA AT REDUCED FREQUENCIES OF BEAT

CONTROL OF THE ORIENTATION OF CILIA BY ATP AND DIVALENT CATIONS IN TRITON-GLYCEROL-EXTRACTED PARAMECIUM CAUDATUM

FORM OF DEVELOPING BENDS IN REACTIVATED SPERM FLAGELLA

Rotating the plane of imposed vibration can rotate the plane of flagellar beating in sea-urchin sperm without twisting the axoneme

THE FORM OF BEAT IN CILIA OF STENTOR AND OPALINA

Clockwise Translocation of Microtubules by Flagellar Inner-Arm Dyneins In Vitro

MICROMANIPULATION OF THE FLAGELLUM OF CRITHIDIA ONCOPELTI

Identification of dynein as the outer arms of sea urchin

Adenosine Triphosphate-Induced Sliding of Tubules in Trypsin-Treated Flagella of Sea-Urchin Sperm

THE EFFECT OF PARTIAL EXTRACTION OF DYNEIN ARMS ON THE MOVEMENT OF REACTIVATED SEA-URCHIN SPERM

Functional recombination of outer dynein arms with outer arm-missing flagellar axonemes of a Chlamydomonas mutant

Cyclical bending movements induced locally by successive iontophoretic application of ATP to an elastase-treated flagellar axoneme

FUTURE DIRECTIONS FOR STUDIES OF MECHANISMS FOR GENERATING FLAGELLAR BENDING WAVES

Effects of Antibodies against Dynein and Tubulin on the Stiffness of Flagellar Axonemes

Ciliary Movement of Sea-urchin Embryos

A MUTANT OF CHLAMYDOMONAS REINHARDTII THAT LACKS THE FLAGELLAR OUTER DYNEIN ARM BUT CAN SWIM

LOCALIZED ACTIVATION OF BENDING IN PROXIMAL, MEDIAL AND DISTAL REGIONS OF SEA-URCHIN SPERM FLAGELLA

Asymmetry of the central apparatus defines the location of active microtubule sliding in Chlamydomonas flagella

Properties of Microtubule Sliding Disintegration

C/A dynein isolated from sea urchin sperm flagellar axonemes

Spermatozoa motility in reverse gear? An observation of backward-moving human spermatozoa.

Ciliary Reversal without Rotation of Axonemal Structures in Ctenophore Comb Plates

Analysis of Ni 2+ -induced arrest of Paramecium axonemes

Fifty years of microtubule sliding in cilia

ASSET Student Laboratory

Ciliobrevin is a specific and membrane-permeable inhibitor

Flagella and cilia: Motility at low Reynolds numbers

Morphological Aspects of Ciliary Motility

3-2 Mechanisms of Dynein Functions as Information Processing Devices

Phosphoproteins associated with cyclic nucleotide stimulation of ciliary motility in Paramecium

ATTACHMENT OF THE CAP TO THE CENTRAL MICROTUBULES OF TETRAHYMENA CILIA

CONTROL OF CILIARY ACTIVITIES BY ADENOSINETRIPHOSPHATE AND DIVALENT CATIONS IN TRITON-EXTRACTED MODELS OF PARAMECIUM CAUDATUM

Nanometer Scale Vibration in Mutant Axonemes of Chlamydomonas

M ICROTUBULES are involved in a variety of motile

Translocation of microtubules caused by the αβ, β and γ outer arm dynein subparticles of Chlamydomonas

Activation of Mammalian Sperm Motility by Regulation of Microtubule Sliding Via Cyclic Adenosine 5'-Monophosphate-Dependent Phosphorylation'

Glycolysis plays an important role in energy transfer from the base to the distal end of the flagellum in mouse sperm

Department of Anatomy and the Laboratory for Human Reproduction and Reproductive Biology, Harvard Medical School, Boston, Massachusetts, U.S.A.

Microtubule Teardrop Patterns

KINETIC PROPERTIES OF MICROTUBULE- ACTIVATED 13 S AND 21 S DYNEIN ATPases

A Study of Ciliary Beating in Chlamydomonas

Activation of Ciona sperm motility: phosphorylation of dynein polypeptides and effects of a tyrosine kinase inhibitor

ENERGETICS OF CILIARY MOVEMENT IN SABELLARIA AND MYTILUS

Correlation between Membrane Potential Responses and Tentacle Movement in the Dinoflagellate Noctiluca miliaris

The Geometric Clutch as a Working Hypothesis for Future Research on Cilia and Flagella

NON-SINUSOIDAL BENDING WAVES OF SPERM FLAGELLA*

Basal Sliding and the Mechanics of Oscillation in a Mammalian Sperm Flagellum

Fluid Dynamic Models of Flagellar and Ciliary Beating

MODIFICATION OF CILIARY BEATING IN SEA URCHIN LARVAE INDUCED BY NEUROTRANSMITTERS: BEAT-PLANE ROTATION AND CONTROL OF FREQUENCY FLUCTUATION

EFFECTS OF INCREASED VISCOSITY ON THE MOVE- MENTS OF SOME INVERTEBRATE SPERMATOZOA*

Activation of Sea Urchin Sperm Flagellar Dynein ATPase Activity by Salt-Extracted Axonemes

Emergence of flagellar beating from the collective behavior of individual ATP-powered dyneins Namdeo, S.; Onck, P. R.

REBINDING OF TETRAHYMENA 13 S AND 21 S DYNEIN ATPases TO EXTRACTED DOUBLET MICROTUBULES

INFRARED LASER DAMAGE TO CILIARY MOTION IN PHRAGMATOPOMA

A Model of Flagellar and Ciliary Functioning Which Uses the Forces Transverse to the Axoneme as the Regulator of Dynein Activation

From the Whitman Laboratory, University of Chicago, Chicago, Illinois

STRUCTURES LINKING THE TIPS OF CILIARY AND FLAGELLAR MICROTUBULES TO THE MEMBRANE

An Internet Book on Fluid Dynamics. References

NATIVE DYNEIN 1 FROM SEA URCHIN SPERM FLAGELLA

Tanimoto et al., http :// /cgi /content /full /jcb /DC1

61. The Role o f Symbiotic Chlorella in Photoresponses o f Paramecium bursaria

Human Respiratory Cilia

A STUDY OF HELICAL AND PLANAR WAVES ON SEA URCHIN SPERM FLAGELLA, WITH A THEORY OF HOW THEY ARE GENERATED

Regulation of Chlamydomonas Flagellar Dynein by an Axonemal Protein Kinase

Neurobiology Biomed 509 Sensory transduction References: Luo , ( ), , M4.1, M6.2

Instructions for Use. APO-AB Annexin V-Biotin Apoptosis Detection Kit 100 tests

Review from Biology A

Development: is the growth of an individual organism from a simple to a more complex or mature level. A slow process of progressive change

II. E.ffects of viscosity and thiourea

ON FEEDING MECHANISMS AND CLEARANCE RATES OF MOLLUSCAN VELIGERS

Physiology of Parasites (512) Zoo 3(2+1) Ultrastructure of protozoa and its adaption for host cell invasion

Instruction Manual No A. Goniometer PS-2138, PS-2137

Properties of the Full-Length Heavy Chains of Tetrahymena Ciliary Outer Arm Dynein Separated by Urea Treatment

A study of cilia density in sea urchin embryos during gastrulation

MICROTUBULES AND THE PROPAGATION OF BENDING WAVES BY THE ARCHIGREGARINE, SELENIDIUM FALLAX

In vitro phosphorylation of ciliary dyneins by protein kinases from Paramecium

Fertilization: Beginning a New New Organism Or

Functional Diversity of Axonemal Dyneins as Assessed by in Vitro and in Vivo Motility Assays of Chlamydomonas Mutants

Pollen Slide Mounting Protocol

Outer Doublet Heterogeneity Reveals Structural Polarity Related to Beat Direction in Chlamydomonas Flagella

A catalogue record for this book is available from the British Library.

Is the Curvature of the Flagellum Involved in the Apparent Cooperativity of the Dynein Arms along the "9+2" Axoneme?

Polarity of Dynein-Microtubule Interactions in Vitro : Cross-bridging between Parallel and Antiparallel Microtubules

The Relationship Between Matrix Structure and the Microtubule Component of the Axoneme

Isolation and characterization of a novel dynein that contains C and A heavy chains from sea urchin sperm flagellar axonemes

mechanisms and significance of IFT in the ciliate, Tetrahymena thermophila. In the first

CHAPTER 13: THE CONDITIONS OF ROTARY MOTION

Mechanism regulating Ca 2+ -dependent mechanosensory behaviour in sea urchin spermatozoa

Respiratory Physiology & Neurobiology

Muscle-Tendon Mechanics Dr. Ted Milner (KIN 416)

COMPARATIVE ANALYSIS OF MAMMALIAN SPERM MOTILITY

Bioelectric Basis of Behavior in Protozoa. Department of Biology, University of California, Los Angeles, California 90024

Accepted 4 April 1997

SUPPLEMENTARY INFORMATION

Laboratory 10 Factors Controlling Phagocytosis in Tetrahymena,

Structure and Molecular Weight of the Dynein ATPase

Muscle Dr. Ted Milner (KIN 416)

LECTURE 13. Dr. Teresa D. Golden University of North Texas Department of Chemistry

Transcription:

J. exp. Biol. 192, 73 81 (1994) Printed in Great Britain The Company of Biologists Limited 1994 73 RECONSTITUTION OF METACHRONAL WAVES IN CILIATED CORTICAL SHEETS OF PARAMECIUM II. ASYMMETRY OF THE CILIARY MOVEMENTS KEN-ICHI OKAMOTO AND YASUO NAKAOKA* Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 56, Japan Accepted 16 March 1994 Summary In conditions in which ciliated cortical sheets prepared from detergent-extracted Paramecium multimicronucleatum cells adhered to glass coverslips on a microscope stage, perfusion of a reactivation medium containing ATP plus cyclic AMP or cyclic GMP generated metachronal waves. An analysis of the ciliary movements that generate these metachronal waves yielded the following results. During the generation of metachronal waves, there were phase differences in the ciliary orientation of adjacent cilia in the direction of wave propagation. Addition of cyclic AMP or cyclic GMP increased the rotational angular velocities during the effective stroke of ciliary beating, but did not increase the rotational angular velocity of the recovery stroke. When the ATP concentration in the cyclic GMP reactivation medium was increased, the rotational angular velocity during the effective stroke rose steeply and saturated at.8 mmol l 1 ATP, whereas that during the recovery stroke rose gradually. Addition of cyclic nucleotides caused a single cilium isolated from neighbouring cilia on the cortical sheet to incline almost parallel to the cortical surface during the recovery stroke. Addition of cyclic GMP increased the amplitude of bending of cilia detached from the cortical sheet. From these results, it was concluded that increases in the asymmetrical movement of individual cilia, caused by the addition of cyclic nucleotides, create the ciliary interaction that generates the metachronal waves. Introduction In a preceding study (Okamoto and Nakaoka, 1994), it was found that metachronal waves are generated on ciliated cortical sheets prepared from detergent-extracted Paramecium cells when they are perfused with reactivation media containing cyclic AMP or cyclic GMP. In the present study, we describe changes in the ciliary movements accompanying the generation of these metachronal waves. *To whom reprint requests should be addressed. Key words: ciliary movements, asymmetry, Paramecium multimicronucleatum, cyclic GMP, metachronal waves.

74 K.-I. OKAMOTO AND Y. NAKAOKA The study of living Paramecium has revealed that, in the cycle of ciliary beating, there are two phases of movement: the effective stroke, in which the cilia move quickly in a plane nearly vertical to the cell surface; and the recovery stroke, in which the cilia move slowly while inclined close to the cell surface (Parducz, 1967; Machemer, 1972). Such asymmetrical movements are coordinated to give a constant phase difference between adjacent cilia, giving rise to the appearance of propagated waves across the ciliary field. Using ciliated cortical sheets, it is possible to control the generation of metachronal waves. We therefore attempted to detect changes in ciliary movements associated with wave generation. The asymmetrical movements of individual cilia were examined when they were isolated from neighbouring cilia. The asymmetrical movements of individual cilia, caused by the addition of cyclic nucleotides, were found to generate the propagating metachronal waves. Materials and methods The preparation of ciliated cortical sheets from Paramecium multimicronucleatum cells, their reactivation, observation and video recording have been described previously (Okamoto and Nakaoka, 1994). Isolation of cilia and reactivation For deciliation, Triton-extracted cells were suspended in a solution containing (in mmol l 1 ): KCl, 2; CaCl 2, 2; MgCl 2,1; Tris maleate, 1; ph 7. at C for 3 min. After low-speed centrifugation to remove the cell body, the supernatant was further centrifuged at 1 g for 1 min. The ciliary pellet was suspended in a solution containing (in mmol l 1 ): KCl, 2; MgCl 2, 1; Tris maleate, 1 (ph 7.) and this suspension was incubated at C. Reactivations were made by suspending the cilia in the basic reactivation medium, in 1 mol l 1 cyclic ATP reactivation medium or in 1 mol l 1 cyclic GMP reactivation medium (Okamoto and Nakaoka, 1994). Analyses of ciliary movements The frequency of ciliary beating was determined by counting ciliary base rotations. Effective and recovery strokes were distinguished by the difference in the angular velocities during the ciliary cycle. For analysis of the movement of a single cilium, dark-field video images recorded every 1/6 s were successively summed into a single image. In the case of cilia on a cortical sheet, successive video images were digitally stored in a computer (Macintosh IIci, Apple), and the images of the ciliary part were transferred into a single frame using software (Photoshop, Adobe) that adjusted non-motile points that were common to each frame. For a cilium detached from the cortical sheet, the video images displayed on a monitor screen were photographed with a 1 s exposure.

Ciliary movements and metachronal waves 75 Results Orientation of cilia on a ciliary field Video frames of the reactivated cilia on the cortical sheet were displayed on the monitor screen, and instantaneous distributions of ciliary orientation were compared in the basic, cyclic AMP and cyclic GMP reactivation media (Fig. 1). Orientations of cilia in the basic reactivation medium, in which no propagating waves were produced, showed wide variation, with most cilia pointing in a similar direction (Fig. 1A). A few frames later (not shown), the distribution changed in phase so that all the cilia pointed in another direction. In the basic reactivation medium, a 1A B C Fig. 1. Distribution of ciliary orientations on the cortical sheet. A cortical sheet was reactivated successively by the basic reactivation medium (A), 1 mol l 1 cyclic AMP reactivation medium (B) and 1 mol l 1 cyclic GMP reactivation medium (C) and observed on a dark-field microscope. Photographs were taken from video frames recorded 1 2 s after perfusion of the respective reactivation medium. The anterior end of the cell is at the top. The open arrows in the photographs show the direction of wave propagation. Arrows in the figure on the right indicate the orientations of the ciliary tips in the photographs on the left. Scale bar, 1 m.

76 K.-I. OKAMOTO AND Y. NAKAOKA large proportion of the cilia stood up on the sheet and their orientation could not be determined. In the cyclic AMP or cyclic GMP reactivation media, in which propagating waves were produced, cilia on the wave crest were oriented along the wave crest line (Fig. 1B,C). This orientation represented the end of the effective stroke of the ciliary cycle. Phase differences in the ciliary cycle were apparent between adjacent cilia in the direction of wave propagation, which agrees with the previous observations of living Paramecium (Parducz, 1967; Machemer, 1972). Rotational angular velocity of the ciliary base When ciliary movement was observed from above the ciliated surface, the ciliary base was seen to rotate counterclockwise. It moved quickly during the effective stroke and slowly during the recovery stroke. We measured the effects of cyclic AMP and cyclic GMP on this ciliary rotation. In the basic reactivation medium, in which metachronal waves were absent, the 3 A 2 1 Ciliary angular velocity (degrees ms 1 ) 3 2 1 3 B C 5 1 5 1 2 1 5 1 Time (ms) Fig. 2. Angular velocities of ciliary movements on the cortical sheet. Ciliary movement was reactivated successively by the basic medium (A), 1 mol l 1 cyclic AMP medium (B) and 1 mol l 1 cyclic GMP medium (C). Angular changes in the ciliary base orientation were measured every 5 ms (frame-to-frame). Typical data from 1 12 cycles of ciliary beating in the respective conditions are plotted for approximately two cycles.

Ciliary movements and metachronal waves 77 rotational angular velocities during effective and recovery strokes were, respectively, 12±2 degrees ms 1 (N=1) and 5±2 degrees ms 1 (N=7) (Fig. 2A). The frequency of ciliary beating was 17±3 Hz (N=1). When metachronal waves were generated during perfusion of cyclic AMP reactivation medium, the angular velocities during the effective and recovery strokes were, respectively, 3±4 degrees ms 1 (N=1) and 5±2 degrees ms 1 (N=5) (Fig. 2B). The frequency of ciliary beating was 22±2 Hz (N=1). In the cyclic GMP reactivation medium, the angular velocities during effective and recovery strokes were, respectively, 22±4 degrees ms 1 (N=8) and 3±1 degrees ms 1 (N=46) (Fig. 2C). In this case, the frequency of ciliary beating was approximately 19±3 Hz (N=1). It is apparent that, when metachronal waves were created in the cyclic AMP and cyclic GMP reactivation media, the angular velocities during the effective stroke were, respectively, 2.5-fold and 1.8-fold greater than that in the basic reactivation medium. The angular velocities during the recovery stroke were almost the same under all three conditions. Dependence of ciliary movements on the concentration of ATP Ciliary movements reactivated by the cyclic GMP medium showed clear differences between the effective and recovery strokes, and the pattern of metachronal waves corresponded to that of living cells swimming forwards (Okamoto and Nakaoka, 1994). We examined the dependencies of the rotational angular velocities during the effective and recovery strokes on the ATP concentration of the cyclic GMP reactivation medium. The rotational angular velocity during the effective stroke rose steeply with an increase in ATP concentration and saturated at approximately.8 mmol l 1 (Fig. 3A). In contrast, Ciliary angular velocity (degrees ms 1 ) A 3 2 1 B 6 4 2.1 1 1.1 1 1 [ATP] (mmol l 1 ) [ATP] (mmol l 1 ) Ciliary beating frequency (Hz) Fig. 3. Dependence of the angular velocity (A) and the ciliary beating frequency (B) on the ATP concentration. The ciliated cortical sheet was reactivated by 1 mol l 1 cyclic GMP media containing different concentrations of ATP. Open circles, ciliary angular velocities during the effective stroke; filled circles, ciliary angular velocities during the recovery stroke; open squares, ciliary beating frequency. Values are means ± S.D.(N=4 2).

78 K.-I. OKAMOTO AND Y. NAKAOKA 4A B C Fig. 4. Effects of cyclic AMP and cyclic GMP on the form of beating exhibited by isolated cilia. A single cilium on a small cortical sheet was reactivated successively by basic medium (A), 1 mol l 1 cyclic AMP medium (B) and 1 mol l 1 cyclic GMP medium (C). In each medium, 24 successive images taken at 1/6 s intervals were summed into a single image using computer analysis. The white area shows the extent of ciliary movement. The black spot shows the position of the ciliary base, and the ring of white spots in A shows the area of the cortical sheet. Scale bar, 1 m. the angular velocity during the recovery stroke rose only gradually with the ATP concentration. The frequency of ciliary beating increased gradually with ATP concentration (Fig. 3B), in parallel with the increase in angular velocity during the recovery stroke. The propagation velocity of the metachronal waves rose in proportion to the increase in the beating frequency, keeping the wavelength at approximately 11 m and the direction of wave propagation at approximately 14 (Okamoto and Nakaoka, 1994). Effects of cyclic AMP and cyclic GMP on movements of an isolated cilium In order to test whether the movements of a single cilium, isolated from neighbouring cilia on the cortical sheet, are affected by cyclic AMP or cyclic GMP, the cortical sheet was mechanically disrupted by gentle pipetting. A small piece of cortical sheet containing a single cilium was attached to a coverslip and successively reactivated by perfusions of the reactivation media. During perfusion of the basic reactivation medium, the cilium moved without a large inclination. It was therefore impossible to bring the full cilium length into focus, so it was recorded as a small circle in dark-field images (Fig. 4A). In the cyclic AMP or cyclic GMP reactivation media, the cilium inclined and moved almost parallel to the surface of the cortical sheet during the recovery phase and the radius of the area swept by the cilium extended to approximately 1 m (Fig. 4B,C). The area swept by the cilium in the cyclic GMP reactivation medium was larger than that in the cyclic AMP medium. At the beginning of the effective stroke, the cilium was perpendicular to the cortical surface and was no longer in focus. Movements of detached cilia In order to determine whether movements of cilia detached from the cortical sheet are affected by cyclic GMP, we attempted to reactivate bending movements in cilia detached from the detergent-extracted cells. Although most of the detached cilia did not move, a few of the cilia that had a spherical particle of 1 2 m diameter at one end began bending

Ciliary movements and metachronal waves 79 5A B 2 C Percentage of cilia 1.5 1. 1.5 Amplitude ratio Fig. 5. Changes in the form of beating of isolated cilia. The cilia were detached from the cortical sheet. After suspension in the basic reactivation medium (A) or in the 1 mol l 1 cyclic GMP reactivation medium (B), the swinging movements of cilia that had adhered by one end to the glass surface were video recorded. Sixty successive frames taken at 1/6 s intervals were summed into one photograph. A and B show typical examples of beating cilia. Scale bar, 5 m. From these photographs, the ratios of the swinging amplitude (linear distance between tip ends) to the ciliary length (linear distance from ciliary base to tip) were obtained. These ratios are shown in the histogram (C) as the percentage of 2 measured cilia reactivated either by the basic medium (open bars) or by the cyclic GMP medium (filled bars). movements in the cyclic GMP reactivation medium. When a cilium adhered to the coverslip by the spherical particle, it swung its other end around in a funnel-shaped movement. Observed from the upper side, the area swept by the cilium resembled a folded fan (Fig. 5A,B). The mean amplitude of movement in the cyclic GMP reactivation medium was 1.7-fold larger than that in the basic reactivation medium (Fig. 5C), suggesting that, even after detachment from the cortical sheet, ciliary movements are affected by cyclic GMP. Discussion Using the ciliated cortical sheet, it was possible to change the reactivation medium and

8 K.-I. OKAMOTO AND Y. NAKAOKA to make close microscopic observations of the resulting ciliary movements. The asymmetry in ciliary movements was increased by perfusion of either cyclic AMP or cyclic GMP reactivation media (in which metachronal waves were generated). In terms of temporal asymmetry, the differences in rotational angular velocities between the effective and recovery strokes increased (Fig. 2) and, in terms of spatial asymmetry, the ciliary inclination during the recovery stroke became larger than that in the basic reactivation medium (Fig. 4). Spatial asymmetry seems to be more important than temporal asymmetry for the metachronal coordination of cilia. Even when the angular velocity during the recovery stroke approaches that during the power stroke at an increased ATP concentration in the cyclic GMP reactivation medium (Fig. 3A), the metachronal waves are still generated. In contrast, a small inclination during the recovery stroke in the basic reactivation medium is not accompanied by metachronal waves. Ciliary inclination during the recovery stroke is, therefore, needed for the generation of metachronal waves. Considering that the distance between cilia on the cortical sheet is 2.5 m and the inclined cilia extend approximately 1 m, ciliary interactions that coordinate the metachronal waves are made during the inclined recovery stroke. In single cilia, isolated from neighbouring cilia, a large inclination during the recovery stroke was induced by the addition of either cyclic AMP or cyclic GMP (Fig. 4). This suggests that the ciliary inclination occurs in each cilium without mechanical interactions between cilia. The experiments using cilia detached from a cortical sheet (Fig. 5) support this view. The increase in the amplitude of swinging induced by cyclic GMP possibly corresponds to the increase in inclination during the recovery stroke, although the nature of the motion of detached cilia must be studied further. In this study, the dependence on ATP of the ciliary angular velocities during the effective and recovery strokes has been measured separately for the first time. The angular velocity during the effective stroke rose steeply with ATP concentration and saturated at approximately.8 mmol l 1, whereas the angular velocity during the recovery stroke increased gradually up to 6 mmol l 1 ATP (Fig. 3A). This difference suggests that different ATPases underlie the effective and recovery strokes. In the reactivation of sea-urchin sperm axoneme, both the sliding velocity and the ATPase saturate at approximately 1 mmol l 1 ATP (Yano and Miki-Noumura, 198). Similar saturation is observed in assays of microtubule sliding on ciliary-dynein-coated glass in vitro (Vale and Yano-Toyoshima, 1988). The saturation of Paramecium ciliary angular velocity during the effective stroke probably corresponds to axonemal sliding and ATPase activity. In contrast, the frequency of the beating of sperm flagella shows a gradual increase with ATP concentration that obeys Michaelis Menten type kinetics (Gibbons and Gibbons, 1972; Brokaw, 1975). A gradual increase in the beating frequency of detergent-extracted Paramecium cilia has previously been reported (Nakaoka et al. 1984). Because the rate-limiting step of the ciliary cycle is the slow recovery stroke, the gradual increase in angular velocity during the recovery stroke coincides with the gradual increase in the frequency of beating. The present study shows that cyclic nucleotides cause different effects on the effective and the recovery strokes: the effective stroke becomes faster and the recovery stroke

Ciliary movements and metachronal waves 81 inclines closer to the cell surface. Recently, Hamasaki et al. (1991) have reported that a cyclic-amp-dependent phosphorylation of Paramecium dyneins increases the sliding velocity of microtubules. We have observed a similar phenomenon in the sliding of Paramecium axonemes: the sliding velocity of detergent- and protease-treated ciliary axonemes increased after the addition of either cyclic AMP or cyclic GMP by up to 1.5 1.7 times that in the basic reactivation medium (K. Okamoto and Y. Nakaoka, unpublished data). These results correspond to the observed increase in the angular velocity during the effective stroke. Corresponding data for the recovery stroke are not available. Because the present study implicates the importance of inclination during the recovery stroke, a detailed study of the recovery stroke is needed to elucidate the ciliary interaction that underlies the generation of metachronal waves. References BROKAW, C. J. (1975). Effects of viscosity and ATP concentration on the movement of reactivated seaurchin sperm flagella. J. exp. Biol. 62, 71 719. GIBBONS, B. H. AND GIBBONS, I. R. (1972). Flagellar movement and adenosine triphosphatase activity in sea urchin sperm extracted with Triton X-1. J. Cell Biol. 54, 75 97. HAMASAKI, T., BROKALOW, K., RICHMOND, J. AND SATIR, P. (1991). Cyclic AMP-stimulated phosphorylation of an axonemal polypeptide that copurifies with the 22S dynein arm regulates microtubule translocation velocity and swimming speed in Paramecium. Proc. natn. Acad. Sci. U.S.A. 88, 7918 7922. MACHEMER, H. (1972). Ciliary activity and the origin of metachrony in Paramecium: effects of increased viscosity. J. exp. Biol. 57, 239 259. NAKAOKA, Y., TANAKA, H. AND OOSAWA, F. (1984). Ca 2+ -dependent regulation of beat frequency of cilia in Paramecium. J. Cell Sci. 65, 223 231. OKAMOTO, K. AND NAKAOKA, Y. (1994). Reconstitution of metachronal waves in ciliated cortical sheet of Paramecium. I. Wave stabilities. J. exp. Biol. 192, 61 72. PARDUCZ, B. (1967). Ciliary movement and coordination in ciliates. Int. Rev. Cytol. 21, 91 128. VALE, R. D. AND YANO-TOYOSHIMA, Y. (1988). Rotation and translocation of microtubules in vitro induced by dyneins from Tetrahymena cilia. Cell 52, 459 469. YANO, Y. AND MIKI-NOUMURA, T. (198). Sliding velocity between outer doublet microtubules of seaurchin sperm axonemes. J. Cell Sci. 44, 169 186.