Accuracy of Multislice Computed Tomography in the Preoperative Assessment of Coronary Disease in Patients With Aortic Valve Stenosis

Similar documents
Chapter 4. Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands. Department of Radiology,

Diagnostic Accuracy of Noninvasive Coronary Angiography Using 64-Slice Spiral Computed Tomography

Improvement of Image Quality with ß-Blocker Premedication on ECG-Gated 16-MDCT Coronary Angiography

Chapter. Non-Invasive Coronary Imaging and Assessment of Left Ventricular Function using 16-slice Computed Tomography

Radiation Dose Reduction and Coronary Assessability of Prospective Electrocardiogram-Gated Computed Tomography Coronary Angiography

Improved Noninvasive Assessment of Coronary Artery Bypass Grafts With 64-Slice Computed Tomographic Angiography in an Unselected Patient Population

Improving Diagnostic Accuracy of MDCT Coronary Angiography in Patients with Mild Heart Rhythm Irregularities Using ECG Editing

The diagnostic evaluation of dual-source CT (DSCT) in the diagnosis of coronary artery stenoses

Coronary CT Angiography

Image quality and diagnostic accuracy of 16-slice multidetector computed tomography for the detection of coronary artery disease in obese patients

Clinical Medicine Insights: Cardiology

Coronary Artery Imaging. Suvipaporn Siripornpitak, MD Inter-hospital Conference : Rajavithi Hospital

, David Stultz, MD. Cardiac CT. David Stultz, MD Cardiology Fellow, PGY 6 March 28, 2006

A Noninvasive Assessment of CAD

Studies with electron beam computed tomography (EBCT) Imaging

Fundamentals, Techniques, Pitfalls, and Limitations of MDCT Interpretation and Measurement

RAMA-EGAT Risk Score for Predicting Coronary Artery Disease Evaluated by 64- Slice CT Angiography

Multislice Computed tomography and CAD

M Marwan, D Ropers, T Pflederer, W G Daniel, S Achenbach

Optimal image reconstruction intervals for non-invasive coronary angiography with 64-slice CT

Ultrasound. Computed tomography. Case studies. Utility of IQon Spectral CT in. cardiac imaging

Low-Dose Computed Tomography Coronary Angiography With Prospective Electrocardiogram Triggering

A ortic stenosis (AS) is the most common valvular disease

Diagnostic Accuracy of Multidetector Computed Tomography Coronary Angiography in Patients With Dilated Cardiomyopathy

Spiral Multislice Computed Tomography Coronary Angiography: A Current Status Report

ECG-Gated 16-MDCT of the Coronary Arteries: Assessment of Image Quality and Accuracy in Detecting Stenoses

128-slice dual-source CT coronary angiography using highpitch scan protocols in 102 patients

Accuracy of dual-source CT coronary angiography: first experience in a high pre-test probability population without heart rate control

Clinical material and methods. Clinical Departments of 1 Radiology II and 2 Cardiology, Innsbruck Medical University, Innsbruck, Austria

Low-dose CT coronary angiography in the step-andshoot mode: diagnostic performance

Computed Tomography of the Coronary Arteries

Purpose. Methods and Materials

Non-invasive Coronary Angiography: the Role, Limitations and Future of 64-Slice Spiral Computed Tomography Coronary Angiography

Adapted Transfer Function Design for Coronary Artery Evaluation

Angio-CT: heart and coronary arteries

Perspectives of new imaging techniques for patients with known or suspected coronary artery disease

Cardiac Computed Tomography

The Final 10-Year Follow-up Results from the Bari Randomized Trial J Am Coll Cardiol (2007) 49;1600-6

Multidetector CT Angiography for the Detection of Left Main Coronary Artery Disease. Rani K. Hasan, M.D. Intro to Clinical Research July 22 nd, 2011

Diagnostic accuracy of dual-source computed tomography in the detection of coronary chronic total occlusion: Comparison with invasive angiography

Electron Beam CT versus 16-slice Spiral CT: How Accurately Can We Measure. Coronary Artery Calcium Volume?

2004;77:800 4 MSCT OF CORONARY ARTERY BYPASS GRAFTS. Results. CABG With Adequate Diagnostic Quality

doi: /j.jacc This information is current as of October 23, 2006

Non-invasive intravenous coronary angiography using electron beam tomography and multislice computed tomography

Bypass Graft and Native Postanastomotic Coronary Artery Patency: Assessment With Computed Tomography

Multidetector Computed Tomography (MDCT) in Coronary Surgery: First Experiences With a New Tool for Diagnosis of Coronary Artery Disease

Noninvasive Evaluation With Multislice Computed Tomography in Suspected Acute Coronary Syndrome

Department of Cardiology, Grosshadern Clinic, University of Munich, Marchioninistrasse 15, Munich, Germany. Department of Cardiology,

Sixty four slice Computed Tomography Scan (64-slice

Cardiac computed tomography: indications, applications, limitations, and training requirements

Sixty-four-slice multidetector computed tomography: the future of ED cardiac care

b. To facilitate the management decision of a patient with an equivocal stress test.

Zurich Open Repository and Archive

Triple Rule-out using 320-row-detector volume MDCT: A comparison of the wide volume and helical modes

Simon Nepveu 1, Irina Boldeanu 1, Yves Provost 1, Jean Chalaoui 1, Louis-Mathieu Stevens 2,3, Nicolas Noiseux 2,3, Carl Chartrand-Lefebvre 1,3

Image quality and, hence, the diagnostic value of cardiac. Imaging

Journal of the American College of Cardiology Vol. 45, No. 11, by the American College of Cardiology Foundation ISSN /05/$30.

Diagnostic and Prognostic Value of Coronary Ca Score

Recent developments in cardiac CT

Diagnostic Accuracy of Computed Tomography Angiography in Patients After Bypass Grafting

Coronary Calcium Screening Using Low-Dose Lung Cancer Screening: Effectiveness of MDCT with Retrospective Reconstruction

What every radiologist should know about cardiac CT: A case-based pictorial review

X-ray coronary angiography is considered the diagnostic

Is computed tomography angiography really useful in. of coronary artery disease?

Aortic Valve Calcification as a Marker for Aortic Stenosis Severity: Assessment on 16-MDCT

Impact of 64-Slice Multidetector Computed Tomography on Other Diagnostic Studies for Coronary Artery Disease

Noninvasive Coronary Angiography Using Multislice Computed Tomography (MSCT) Jeffrey M. Schussler, MD, Paul A. Grayburn, MD

Cardiac Imaging Tests

Journal of the American College of Cardiology Vol. 47, No. 8, by the American College of Cardiology Foundation ISSN /06/$32.

Noncardiac Findings in Cardiac Imaging With Multidetector Computed Tomography

Horizon Scanning Technology Summary. Magnetic resonance angiography (MRA) imaging for the detection of coronary artery disease

Contrast-Enhanced Computed Tomography Angiography (CTA) for Coronary Artery Evaluation

CONVENTIONAL INVASIVE COROnary

SYMPOSIA. Coronary CTA. Indications, Patient Selection, and Clinical Implications

Cardiac CT Angiography

Radiation dose of cardiac CT what is the evidence?

Characteristics of Subclinical Coronary Artery Disease in Diabetic Patients without Known Coronary Artery Disease

Medical Policy An Independent Licensee of the Blue Cross and Blue Shield Association

Eur Heart J. 2011;32:637-45

Computed Tomography Imaging of the Coronary Arteries

MEDICAL POLICY. Proprietary Information of Excellus Health Plan, Inc. A nonprofit independent licensee of the BlueCross BlueShield Association

General Cardiovascular Magnetic Resonance Imaging

Multisclice CT in combination with functional imaging for CAD. Temporal Resolution. Spatial Resolution. Temporal resolution = ½ of the rotation time

Cardiac CT - Coronary Calcium Basics Workshop II (Basic)

Imaging Strategies for Endovascular Cardiovascular Procedures and Percutaneous Aortic Valves. Roy K Greenberg, MD

Εξελίξεις και νέες προοπτικές στην καρδιαγγειακή απεικόνιση CT. Σταμάτης Κυρζόπουλος Ωνάσειο Καρδιοχειρουργικό Κέντρο

Coronary revascularization treatment based on dual-source computed tomography

Pushing the limits of cardiac CT. Steven Dymarkowski Radiology / Medical Imaging Research Centre

Cardiopulmonary Imaging Original Research

Use of Nuclear Cardiology in Myocardial Viability Assessment and Introduction to PET and PET/CT for Advanced Users

, David Stultz, MD. Journal Club. David Stultz, MD Cardiology Fellow, PGY 6 November 3, 2005

Noninvasive Visualization of the Cardiac Venous System Using Multislice Computed Tomography

CARDIAC IMAGING FOR SUBCLINICAL CAD

Effect of dose reduction on image quality and diagnostic performance in coronary computed tomography angiography

Indications of Coronary Angiography Dr. Shaheer K. George, M.D Faculty of Medicine, Mansoura University 2014

Recent developments in coronary computed tomography imaging

Dr Felix Keng. Imaging of the heart is technically difficult because: Role of Cardiac MSCT. Current: Cardiac Motion Respiratory Motion

Diagnostic Performance of MDCT for Detecting Aortic Valve Regurgitation

TITLE: Multi-Slice Computed Tomography Coronary Angiography for Coronary Artery Disease: A Review of the Clinical Effectiveness and Guidelines

Correlation of Cardiac CTA to Conventional Cardiac Angiography in Diagnosing Coronary Artery Stenosis in a Community Based Center

Transcription:

Journal of the American College of Cardiology Vol. 47, No. 10, 2006 2006 by the American College of Cardiology Foundation ISSN 0735-1097/06/$32.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2005.11.085 Accuracy of Multislice Computed Tomography in the Preoperative Assessment of Coronary Disease in Patients With Aortic Valve Stenosis Cardiac Imaging Martine Gilard, MD,* Jean-Christophe Cornily, MD,* Pierre-Yves Pennec, MD,* Cedric Joret,* Grégoire Le Gal, MD, Jacques Mansourati, MD,* Jean-Jacques Blanc, MD,* Jacques Boschat, MD* Brest, France OBJECTIVES BACKGROUND METHODS RESULTS CONCLUSIONS To evaluate multislice computed tomography (MSCT) as an alternative to coronary angiography, we prospectively studied its diagnostic accuracy for the detection of significant coronary artery lesions in patients with significant aortic valve stenosis undergoing valve surgery. In patients with aortic valve stenosis, coronary angiography is still recommended before surgery. Multislice computed tomography is a promising noninvasive technique for the detection of significant coronary artery lesions. Fifty-five consecutive patients scheduled for coronary angiography in the preoperative assessment of aortic valve stenosis underwent 16-slice MSCT 24 h before coronary angiography. We analyzed coronary lesions, image quality, and arterial calcium score. The sensitivity of the MSCT-based strategy in detecting significant stenosis was 100%, and its specificity 80%. The positive and negative predictive values were respectively 55% and 100%. For calcium scores 1,000 (77% of patients), MSCT detected all patients without coronary artery disease, enabling conventional coronary angiography to be avoided in 35 of 55 cases (80%). For calcium scores 1,000, MSCT enabled conventional coronary angiography to be avoided in only 6% of cases, either because significant stenosis was found with a possible indication of revascularization, or because the examination was not interpretable. The results of this initial experience in relatively few patients suggest that MSCT-based coronary angiography may serve as an alternative to invasive coronary angiography to rule out significant coronary artery disease in patients scheduled for elective aortic valve replacement. Larger studies are necessary to fully explore the potential of coronary MSCT to improve preoperative risk stratification. (J Am Coll Cardiol 2006;47:2020 4) 2006 by the American College of Cardiology Foundation Multislice computed tomography (MSCT) is a promising noninvasive technique for the detection of obstructive epicardial coronary artery disease (CAD) (1 5). In all forms of valvular heart disease, significant associated CAD worsens the peri-operative prognosis. Although no large-scale clin- See page 2025 ical trial has assessed the contribution of coronary angiography, this invasive investigation is recommended in the preoperative assessment of patients with valvular heart disease (class I American College of Cardiology/American Heart Association guidelines) (6). To evaluate MSCT as an alternative to coronary angiography, we prospectively studied its diagnostic accuracy for the detection of significant coronary artery lesions in patients with significant aortic valve stenosis undergoing valve surgery. From the *Department of Cardiology and EA 3878 and the Department of Internal Medicine, Brest University Hospital, Brest, France. Manuscript received July 18, 2005; revised manuscript received November 28, 2005, accepted November 30, 2005. METHODS Study population. A total of 63 consecutive patients referred for conventional coronary angiography in the preoperative assessment of aortic valve stenosis were considered for inclusion (Fig. 1). Eight patients were excluded because of the presence of one of the following exclusion criteria: irregular heart rate (n 4), contrast agent contraindications (n 1), or renal insufficiency (n 3). Patients with a heart rate 70 beats/min received additional intravenous betablocker therapy (5 mg atenolol). Thus, our final sample was composed of 55 patients with severe aortic valve stenosis (mean transvalvular pressure gradient, 57 16 mm Hg; aortic valve area, 0.35 0.06 cm 2 /m 2 ), who were additionally studied using MSCT 24 h before angiography. The characteristics of the study group are listed in Table 1. Surgical aortic valve replacement was performed in 47 patients (85%). All patients signed an informed consent form. MSCT protocol and image reconstruction. The MSCT data sets were acquired using a 16-slice MSCT (Philips Mx8000 IDT 16, Eindhoven, the Netherlands). Briefly, a native scan without contrast medium was performed to

JACC Vol. 47, No. 10, 2006 May 16, 2006:2020 4 Gilard et al. MSCT and Aortic Valve Stenosis 2021 Abbreviations and Acronyms ASE Agatston score equivalent CAD coronary artery disease MSCT multislice spiral computed tomography ROC receiver-operating characteristic determine total coronary and aortic valve calcium. Then, a volume data set was acquired (16 0.75-mm cross-section; gantry rotation time, 420 ms; table feed, 2.8 mm per rotation) covering the distance from the carina to the diaphragmatic side of the heart. Tube current was 400 ma, with a tube voltage of 120 kv. The entire heart was scanned during a single breath-hold; 120 ml of contrast agent (Xenetix 350, Guerbet, Aulnay sous Bois, France) was continuously injected at a rate of 4 ml/s. Automated detection of peak enhancement in the aortic root was used to time the scan. Cross-sectional images were reconstructed with a slice thickness of 0.8 mm at 0.4-mm intervals with retrospective gating, to obtain an image acquisition window of 100 ms. Axial images at 0%, 20%, 30%, 40%, 50%, 65%, 75%, and 85% of the RR interval were reconstructed for each patient and analyzed for motion artifacts. A scoring method analogous to the Agatston score (7) was used to quantify coronary calcium. A calcified lesion was defined as an area of 3 connected pixels 130 Table 1. Patient Characteristics Total number of patients 55 Male (%) 38 Weight (kg) 71 17 Creatinine clearance (ml/mn) 73.8 25.4 Age (yrs) 70 10 Smokers (%) 31 Dyslipidemia (%) 54.5 Diabetes mellitus (%) 16.4 Hypertension (%) 58.2 Family history (%) 16.4 Symptoms of angina (%) 40 Syncope (%) 15 NYHA functional class I (%) 7 NYHA functional class II (%) 69 NYHA functional class III (%) 10 NYHA functional class IV (%) 0 NYHA New York Heart Association. Hounsfield units, and expressed as Agatston score equivalent (ASE). All data sets were independently analyzed by two blinded physicians experienced in MSCT, using multiplanar reformations and three-dimensional reconstructions by the volume rendering technique. They were then asked to give a consensus regarding the presence of significant CAD per vessel and per patient. Image quality was classified as good (no or only minor motion artifacts), moderate (substantial motion artifacts), or bad (significant motion artifacts and/or low signal-to-noise ratio, and no luminal assessment of Figure 1. Different grades of aortic valve calcification. (A) Grade 1 normal valve without calcification. (B) Grade 2 moderate calcification. (C) Grade 3 heavy calcification. (D) Heavily calcified bicuspid aortic valve.

2022 Gilard et al. JACC Vol. 47, No. 10, 2006 MSCT and Aortic Valve Stenosis May 16, 2006:2020 4 Figure 2. (A) Calcified, nonassessable right coronary artery. Black arrows heavily calcified areas. (B) Normal, assessable right coronary artery. significant stenosis possible in at least one vessel). In addition, the observers were asked to state what would have been their recommendations for patient management (coronary angiography indicated or not). Quantitative coronary angiography. Invasive coronary angiograms were obtained one day after MSCT, after intracoronary injection of 0.5 mg isosorbide dinitrate. Angiograms were evaluated by a blinded independent observer using quantitative coronary angiography (Numeric System, DX-DLX, General Electric Medical Systems, Buc, France) as stenosis detection gold standard. Lesions with 50% diameter reduction counted as significant stenosis. Statistics. General characteristics of the study sample were assessed by means and standard deviations for continuous variables, and by percentages for categorical variables. We estimated the sensitivity, specificity, and their 95% confidence intervals, and positive and negative predictive values for an MSCT-based strategy with coronary angiography performed in case of abnormal or inconclusive MSCT. A receiver-operating characteristic (ROC) curve analysis was performed to assess the ability of ASE to detect patients in whom conventional coronary angiography would be required under the above strategy. All analyses used SPSS analysis software (release 12.0, SPSS Inc., Chicago, Illinois). RESULTS All patients underwent MSCT without any complications. Mean scan duration was 23.7 4.7 s. Mean heart rate was 66 6 beats/min. Intravenous beta-blocking was performed in eight patients (14%). Image quality was good in 41 patients (75%), moderate in 10 patients (18%), and poor in 4 patients (7%). Coronary artery analysis. The prevalence of significant CAD (at least one 50% stenosis) was 20% (11 of 55 patients), on the basis of conventional coronary angiography (one-vessel disease in 4 patients, two-vessel disease in 5 patients, and three-vessel disease in 2 patients). In 14 of the 55 patients (25%), lumen assessment by MSCT was prevented in at least one vessel by heavy calcification (n 11) (Fig. 2) and/or motion artifact (n 5) and/or low signalto-noise ratio (n 5); 5 of these patients had CAD on conventional coronary angiography. The MSCT did not show significant CAD in 35 patients (64%), none of whom had CAD on conventional coronary angiography. Finally, MSCT showed evidence of CAD in six patients, all of whom had CAD on conventional coronary angiography (Fig. 3). No patients with significant CAD were considered normal on MSCT. All 11 patients with CAD had either evidence of CAD on MSCT or calcification and/or motion artifact that precluded interpretation of the MSCT. The sensitivity of a strategy based on MSCT with coronary angiography in case of abnormal or inconclusive MSCT was 100% (95% confidence interval [CI] 75 to 100), and the specificity was 80% (95% CI 66 to 89). The positive and negative predictive values were respectively 55% and 100%. Calcium scoring. Calcification was successfully assessed in all patients. The mean calcium score, expressed as ASE, was 609 860. The ability of the calcium score to detect patients in whom conventional coronary angiography was indicated was plotted as an ROC curve; the area under the ROC curve was 0.84 (Fig. 4). A cut-off of 1,000 was chosen as the best compromise between as low as possible a proportion of noninterpretable MSCTs and as high as possible a proportion of patients in whom the MSCT alone could rule out CAD. DISCUSSION In our study population of 55 patients with significant aortic valve stenosis, we found moderate positive predictive value (55%) and specificity (80%) but high negative predictive value (100%) and sensitivity (100%) for 16-slice MSCT in the detection of significant coronary stenosis. The 20% prevalence of CAD in our study might seem surprising when compared with some series from North America (8). However, this prevalence is in accordance with the actual pattern in our geographic area. For example, CAD prevalence was 16% in the report by Logeais et al. (9) on 4,129 patients who underwent valvular replacement for calcified aortic stenosis in western France. Most practitioners feel compelled to assess coronary anatomy ahead of

JACC Vol. 47, No. 10, 2006 May 16, 2006:2020 4 Gilard et al. MSCT and Aortic Valve Stenosis 2023 Figure 3. Angiogram (A) and multislice spiral computed tomography (B) of a subocclusive left circumflex artery. valve surgery and to treat significant stenosis during surgery by percutaneous intervention or bypass graft in the hope of avoiding subsequent reoperation. All patients with chest pain or noninvasive evidence of CAD should undergo coronary angiography (class I American College of Cardiology/American Heart Association guidelines) (6). It still seems advisable to perform coronary angiography in patients who are at increased risk of CAD because of age or other risk factors (6). An MSCT with 16 to 64 rows has been shown to be accurate in detecting CAD (1 5). In many studies, sensitivity (72% to 95%) and specificity (86% to 98%) (1 5,10) were calculated on the interpretable artery segments, whereas 0 to 20% of segments were not analyzable because of artifacts or calcification. We chose to evaluate coronary arteries on a per-vessel instead of a per-segment basis because a single distal segment stenosis Figure 4. Receiver-operating characteristic (ROC) curve. Angiography is necessary according to calcium score. Area under the curve 0.84. (number 4, 8, 15, or 16 of the classification of the American Heart Association [11]) will not have any impact on the management of such patients. Calcifications obscure the lumen because of beam hardening artifacts and therefore may impair assessment of luminal obstruction (5,12). Coronary calcifications are very frequent in patients with aortic valve stenosis as in the present study, with a mean calcium score of 609 to 860. Kuettner et al. (13) showed calcification to be an important factor in analyzing coronary artery scans: when the ASE score falls below 1,000, stenosis detection sensitivity increases from 0.72% to 0.98%. In the present study, for an ASE 1,000 (77% of patients), MSCT detected all patients without CAD, enabling us to avoid conventional coronary angiography in 35 of these 41 patients (85%). For an ASE 1,000, MSCT enabled us to avoid conventional coronary angiography in only 6% of cases, either because significant stenosis was found with a possible indication of revascularization or because the examination could not be interpreted (Fig. 4). In those patients with an ASE 1,000, we do not recommend a contrast-enhanced scan, which would be of virtually no benefit. Nevertheless, the positive predictive value for significant stenosis of a calcium score of 1,000 was no more than 45%. Study limitations. The limitations of MSCT are radiation exposure (1.5 to 2 msv for calcium scoring and 4 to 12 msv for a contrast-enhanced scan) (5,11,14), the need for iodinated contrast agents, and the necessity of a relatively low heart rate. Our study may also be potentially limited by the low prevalence of CAD; CAD is, however, much less prevalent in Southern Europe than in Northern Europe or North America. Conclusions. The results of this initial experience in relatively few patients suggest that MDCT-based coronary angiography may serve as an alternative to invasive coronary angiography to rule out significant CAD in patients scheduled for elective aortic valve replacement. Larger studies are

2024 Gilard et al. JACC Vol. 47, No. 10, 2006 MSCT and Aortic Valve Stenosis May 16, 2006:2020 4 necessary to fully explore the potential of coronary MDCT to improve preoperative risk stratification. Reprint requests and correspondence: Dr. Martine Gilard, Department of Cardiology, La Cavale Blanche Hospital, 29609 Brest Cedex, France. E-mail: martine.gilard@chu-brest.fr. REFERENCES 1. Nieman K, Cademartiri F, Lemos PA, Raaijmakers R, Pattynama PM, de Feyter PJ. Reliable noninvasive coronary angiography with fast submillimeter multislice spiral computed tomography. Circulation 2002;106:2051 4. 2. Ropers D, Baum U, Pohle K, et al. Detection of coronary artery stenoses with thin-slice multidetector row spiral computed tomography and multiplanar reconstruction. Circulation 2003;107:664 6. 3. Martuscelli E, Romagnoli A, D Eliseo A, et al. Accuracy of thin-slice computed tomography in the detection of coronary stenoses. Eur Heart J 2004;25:1043 8. 4. Mollet NR, Cademartiri F, Krestin GP, et al. Improved diagnostic accuracy with 16-row multislice computed tomography coronary angiography. J Am Coll Cardiol 2005;45:128 32. 5. Leschka S, Alkadhi H, Plass A, et al. Accuracy of MSCT coronary angiography with 64-slice technology: first experience. Eur Heart J 2005;26:1482 7. 6. Scanlon PJ, Faxon DP, Audet AM, et al. ACC/AHA guidelines for coronary angiography. A report of the American College of Cardiology/American Heart Association Task Force on practice guidelines (Committee on Coronary Angiography). Developed in collaboration with the Society for Cardiac Angiography and Interventions. J Am Coll Cardiol 1999;33:1756 824. 7. Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M Jr., Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol 1990;15:827 32. 8. Potter D, Sundt T, Zehr K, et al. Operative risk of reoperative aortic valve replacement. J Thorac Cardiovasc Surg 2005;129:94 103. 9. Logeais Y, Leguerrier A, Rioux C, et al. Results of surgical treatment of calcified aortic valve stenosis: report of a series of 4129 interventions. Bull Acad Natl Med 2001;185:163 74. 10. Kuettner A, Beck T, Drosch T, et al. Diagnostic accuracy of noninvasive coronary imaging using 16-detector slice spiral computed tomography with 188 ms temporal resolution. J Am Coll Cardiol 2005;45:123 7. 11. Austen WG, Edwards JE, Frye RL, et al. A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease, Council on Cardiovascular Surgery, American Heart Association. Circulation 1975;51 Suppl:5 40. 12. Adams DH, Chen RH, Kadner A, Aranki SF, Allred EN, Cohn LH. Impact of small prosthetic valve size on operative mortality in elderly patients after aortic valve replacement for aortic stenosis: does gender matter? J Thorac Cardiovasc Surg 1999;118:815 22. 13. Kuettner A, Trabold T, Schroeder S, et al. Noninvasive detection of coronary lesions using 16-detector multislice spiral computed tomography technology: initial clinical results. J Am Coll Cardiol 2004;44: 1230 7. 14. Jakobs TF, Becker CR, Ohnesorge B, et al. Multislice helical CT of the heart with retrospective ECG gating: reduction of radiation exposure by ECG-controlled tube current modulation. Eur Radiol 2002;12:1081 6.