An Artificial Intelligence System Suggests Arbitrariness of Death Penalty

Similar documents
Multilayer Perceptron Neural Network Classification of Malignant Breast. Mass

Working to End Executions of Individuals Living with Mental Illness

Cognitive Neuroscience History of Neural Networks in Artificial Intelligence The concept of neural network in artificial intelligence

ANN predicts locoregional control using molecular marker profiles of. Head and Neck squamous cell carcinoma

Fact-Sheet Mumia Abu-Jamal and Hepatitis C

TIME SERIES MODELING USING ARTIFICIAL NEURAL NETWORKS 1 P.Ram Kumar, 2 M.V.Ramana Murthy, 3 D.Eashwar, 4 M.Venkatdas

Application of Artificial Neural Networks in Classification of Autism Diagnosis Based on Gene Expression Signatures

MEDICAL AND GERIATRIC SUSPENSION OF SENTENCE

Appendix: Brief for the American Psychiatric Association as Amicus Curiae Supporting Petitioner, Barefoot v. Estelle

CRIMINAL JUSTICE (CJ)

The Relationship between Crime and CCTV Installation Status by Using Artificial Neural Networks

Re-Entrenchment Through Reform: The Promises and Perils of Categorical Exemptions for Extreme Punishment Policy

Presentation at the BJS/JRSA 2010 National Conference Portland, Maine Meredith Farrar-Owens, Deputy Director Virginia Criminal Sentencing Commission

Automatic Definition of Planning Target Volume in Computer-Assisted Radiotherapy

Drug-Free Zones. A Presentation to Senate Appropriations Subcommittee on Criminal and Civil Justice. Claire K. Mazur.

Conversions and revocations of conditional orders for forensic psychiatric patients What factors contribute to success and failure?

Criminology Courses-1

Evaluation of the First Judicial District Court Adult Drug Court: Quasi-Experimental Outcome Study Using Historical Information

Dead Man Walking. Reading Guide. Introduction to this Reading Guide

Chapter 1. Introduction

Fact Sheet: Drug Data Summary

THE 21ST CENTURY CURES ACT: TACKLING MENTAL HEALTH FROM THE INSIDE OUT

The current system of using money bail to

Summary. 1 Scale of drug-related crime

LUCAS COUNTY TASC, INC. OUTCOME ANALYSIS

VISTA COLLEGE ONLINE CAMPUS

LEN 227: Introduction to Corrections Syllabus 3 lecture hours / 3 credits CATALOG DESCRIPTION

HOUSE BILL 3 (PRE-FILED) A BILL ENTITLED

Just Mercy by Bryan Stevenson Discussion Questions

Deterrence and the death penalty Why the statistics should be ignored

Chapter 4. More On Bivariate Data. More on Bivariate Data: 4.1: Transforming Relationships 4.2: Cautions about Correlation

SENTENCING AND NEUROSCIENCE

A hybrid Model to Estimate Cirrhosis Using Laboratory Testsand Multilayer Perceptron (MLP) Neural Networks

Artificial Neural Networks to Determine Source of Acoustic Emission and Damage Detection

HIV CRIMINALIZATION IN OHIO. Elizabeth Bonham, JD Staff Attorney, ACLU of Ohio

The American Criminal Justice System. Coach Presnell

Different Perspectives to Analyze the Penal Justice System in Function of Crime Control from Professionals of Social Sciences

Testimony of Marc Mauer Executive Director The Sentencing Project

Aging and mortality in the state prison population

EXECUTIVE SUMMARY. New Mexico Statistical Analysis Center April Prepared by: Kristine Denman, Director, NMSAC

Fact Sheet: Drug Data Summary

FAQ: Alcohol and Drug Treatments

Classıfıcatıon of Dıabetes Dısease Usıng Backpropagatıon and Radıal Basıs Functıon Network

5. Marijuana Arrests at the State and Local Level

Success in Drug Offenders in Rehabilitation Programs. Austin Nichols CJUS 4901 FALL 2012

PROMISING SHORT TERM INTERVENTIONS:

J2.6 Imputation of missing data with nonlinear relationships

FORENSIC PSYCHOLOGY E.G., COMPETENCE TO STAND TRIAL CHILD CUSTODY AND VISITATION WORKPLACE DISCRIMINATION INSANITY IN CRIMINAL TRIALS

Applying Neural Networks Approach to Achieve the Parameter Optimization for Censored Data

Educating Courts, Other Government Agencies and Employers About Methadone May 2009

Biceps Activity EMG Pattern Recognition Using Neural Networks

Keywords Artificial Neural Networks (ANN), Echocardiogram, BPNN, RBFNN, Classification, survival Analysis.

CRIMINAL JUSTICE (CJ)

Victorian Aboriginal Legal Service Co-operative Ltd.

Mid-1970s to mid- 80s, U.S. s incarceration rate doubled. Mid- 80s to mid- 90s, it doubled again. In absolute terms, prison/jail population from 1970

CURRICULUM VITA Jim P. Mann

Classification of electrocardiographic ST-T segments human expert vs artificial neural network

THE IMPACT OF METHAMPHETAMINE ENFORCEMENT ON THE CRIMINAL JUSTICE SYSTEM OF SOUTHWESTERN INDIANA

THE PENNSYLVANIA STATE UNIVERSITY SCHREYER HONORS COLLEGE DEPARTMENT OF SOCIOLOGY AND CRIMINOLOGY

CHAPTER 1 An Evidence-Based Approach to Corrections

Department of Public Safety Division of Adult Correction and Juvenile Justice

Study of Recidivism, Race, Gender, and Length of Stay

Efficient Classification of Lung Tumor using Neural Classifier

Research Department Report 56. Research on Crimes Committed by Elderly or Mentally Disordered Persons and Their Treatment

Evidence-Based Sentencing to Improve Public Safety and Reduce Recidivism. A Model Curriculum for Judges

A HMM-based Pre-training Approach for Sequential Data

Artificial neural networks: application to electrical stimulation of the human nervous system

Introduction: Foundation, history and general concept of human rights

Katsunari Shibata and Tomohiko Kawano

Sequential Intercept Model and Problem Solving/Specialty Courts: The Intersection with Brain Injury

NORTHAMPTON COUNTY DRUG COURT. An Overview

STATEMENT OF LANNY A. BREUER ASSISTANT ATTORNEY GENERAL CRIMINAL DIVISION UNITED STATES DEPARTMENT OF JUSTICE BEFORE THE

Criminology and Law Studies

A Social Workers Role on a Death Penalty Mitigation Defense Team

Policy Essay A View from the Field: Practitioners' Response to Actuarial Sentencing: An Unsettled Proposition

Neural Network based Heart Arrhythmia Detection and Classification from ECG Signal

Nebraska LB605: This bill is designed to reduce prison overcrowding and allows for alternatives to incarceration like CAM.

CSE Introduction to High-Perfomance Deep Learning ImageNet & VGG. Jihyung Kil

Peter Weir, Executive Director of the Department of Public Safety, Chair of the Commission on Criminal and Juvenile Justice

A Learning Method of Directly Optimizing Classifier Performance at Local Operating Range

Implementation of Inference Engine in Adaptive Neuro Fuzzy Inference System to Predict and Control the Sugar Level in Diabetic Patient

An Artificial Neural Network Architecture Based on Context Transformations in Cortical Minicolumns

CREATIVE INFERENCE IN IMAGERY AND INVENTION. Dept. of Psychology, Texas A & M University. College Station, TX , USA ABSTRACT

Using stigmergy to incorporate the time into artificial neural networks

ASSESSING EYEWITNESS IDENTIFICATION. Thomas D. Albright The Salk Institute for Biological Studies

THE CASE OF NORWAY: A RELAPSE

IN THE COURT OF CRIMINAL APPEALS OF TEXAS

Reactive agents and perceptual ambiguity

Department of Criminal Justice

Understanding Convolutional Neural

DRUG POLICY TASK FORCE

AGING OUT IN PRISON Age Distribution of the Colorado Prison System

Death Penalty Research in Nebraska: How Do Judges and Juries Reach Penalty Decisions?

Defendants who refuse to participate in pre-arraignment forensic psychiatric evaluation

Question 1 Multiple Choice (8 marks)

Modeling Sentiment with Ridge Regression

Sexual Predators: Mental Illness or Abnormality? A Psychiatrist's Perspective

Atkins v. Virginia: Execution of Mentally Retarded Defendants Revisited

Courts and Jails. Evidence-Based Judicial Decision Making

Using Connectionist Models to Evaluate Examinees Response Patterns to Achievement Tests

Transcription:

International Journal of Law and Information Technology Oxford University Press 2007; all rights reserved doi:10.1093/ijlit/eam006 An Artificial Intelligence System Suggests Arbitrariness of Death Penalty S tamos T. K aramouzis * and D ee W ood H arper * Abstract The arguments against the death penalty in the United States have centered on due process and fairness. Since the death penalty is so rarely rendered and subsequently applied, it appears on the surface to be arbitrary. Considering the potential utility of determining whether or not a death row inmate is actually executed along with the promising behavior of Artificial Neural Networks (ANNs) as classifiers led us into the development, training, and testing of an ANN as a tool for predicting death penalty outcomes. For our ANN we reconstructed the profiles of 1,366 death row inmates by utilizing variables that are independent of the substantive characteristics of the crime for which they have been convicted. The ANN s successful performance in predicting executions has serious implications concerning the fairness of the justice system. 1 Introduction The death penalty has an ancient history but in the modern world the United States is the only western democracy that maintains it. Historically, there has always been some disparity between the authorization of executions and actual executions. The highest rate of execution in * Truman & Anita Arnold Chair and Professor of Computer & Information Sciences, Texas A&M University - Texarkana, P.O. Box 5518, Texarkana, TX 75505-5518, USA, +1 903 223-3188, stamos. karamouzis@tamut.edu * Professor, Department of Criminal Justice, Loyola University New Orleans, Campus Box 14, 6363 St. Charles Ave., New Orleans, LA 70118, USA, + 1 504 865-2161, harper@loyno.edu 1

AN ARTIFICIAL INTELLIGENCE SYSTEM SUGGESTS ARBITRARINESS OF DEATH PENALTY the United States occurred in 1938 when there were about 2.01 executions per 100 homicides for the states with the death penalty. Even for capital murder the rate was less that 10 percent [ 1 ]. Between June 1967 and January 1977 no one was executed in the United States. In 1972 the U.S. Supreme Court in Furman v. Georgia found evidence of arbitrary and discriminatory sentencing that was in violation of the Eighth Amendment which prohibits cruel and unusual punishment. In Gregg v. Georgia (1976) the Supreme Court decided that if capital trials were restructured providing a sentencing phase with appropriate guideline for jurors, death sentences could be applied fairly. The moratorium ended with the execution of Gary Gilmore in Utah by firing squad in 1977. The 900 th post Gregg execution was carried out in the United States on March 3 rd 2004. Barbarity aside, the arguments against the death penalty in the United States have centered on due process and fairness. Since the death penalty is so rarely rendered and subsequently applied, it appears, prima facie, to be arbitrary. When the death sentence is rendered, poor and non-whites disproportionately receive it (There is also the issue of innocent persons being given an irreversible punishment) [ 2 ]. Our research focuses on what happens once a sentence is imposed. What are the characteristics of cases that will determine whether or not the defendant actually receives death? Realizing the elusive task of identifying the variables that account for death penalty outcomes and ultimately predicting death penalty outcomes holds an enormous potential utility for specifying the post sentencing variables that account for the death or non-death outcome. Research evidence that further specifies the post death conviction process can assist in determining how fair or unfair the process is and, perhaps, can be used as an abolition argument. The task of prediction can be thought as partitioning prisoners under death sentence into two classes: the inmates whose death sentences were removed (non-executed) and the inmates who were executed. Partitioning of a data set in classes is a very common problem in information processing. We find it in quality control, financial forecasting, laboratory research, targeted marketing, bankruptcy prediction, optical character recognition, etc. Artificial Neural Networks (ANNs) have been applied in these areas because they are excellent functional mappers (these problems can be formulated as finding a good input-output map) [ 3 ]. Considering the potential utility of predicting execution outcomes for prisoners under a sentence of death along with the promising behavior of multilayer perceptrons as classifiers led us into the investigation of ANNs as a tool for predicting death penalty outcomes. This article presents a test of the utility of ANNs and argues that the results pose a serious challenge to the fairness of the administration of the death penalty. 2

STAMOS T. KARAMOUZIS AND DEE WOOD HARPER 2 Methodology In achieving our goal for predicting death penalty outcomes (i.e. determining whether or not a death row inmate is actually executed) we developed, trained, and tested and Artificial Neural Network (ANN) of the feed forward type, normally called multilayer perceptron. An ANN is a multiprocessor computing system that resembles the way biological nervous systems process information. The main characteristic of such a computing system is the number of highly interconnected processing elements (neurons) working together to solve specific problems without being programmed with step-by-step instructions. Instead ANNs are capable of learning on their own or by example through a learning process that involves adjustments to the connections that exist between the neurons. 2.1 Subjects (data) The subjects (data) for the present study represented prisoners under a sentence of death during the 28-year period (1973-2000 inclusive) [ 4 ]. This data collection is available from the Interuniversity Consortium of Political and Social Research and is updated annually by the U.S. Department of Justice. Based on the following parameters a 19-parameter profile was created for each inmate. 1. Inmate identification number 2. State 3. Sex 4. Race 5. Hispanic origin 6. Year of birth 7. Third most serious capital offence 8. Second most serious capital offence 9. First most serious capital offence 10. Marital status at time of first imprisonment for capital offense 11. Highest year of education completed at time of first imprisonment for capital offense 12. Legal status at time of capital offense 13. Prior felony conviction(s) 14. Year of arrest for capital offense 15. Month of conviction for capital offense 16. Year of conviction for capital offense 17. Month of sentence for capital offense 18. Year of sentence for capital offense 19. Outcome (execution/non-execution) In total 1,366 profiles were constructed. Half of them represented executed inmates and the other half non-executed. Randomly, 1,000 profiles from the 3

AN ARTIFICIAL INTELLIGENCE SYSTEM SUGGESTS ARBITRARINESS OF DEATH PENALTY total population were used for training the neural network (training set), 66 for cross-validation, and the remaining 300 for testing (testing set). 2.2 Architecture Given the computational capabilities of a multilayer perceptron as a universal pattern classifier a three-layered perceptron was developed. The first layer (input level) comprised of 17 neurons (processing elements) - one for each profile parameter minus the inmate identification and outcome parameters. The second layer (hidden level) comprised of 5 processing elements. The third layer (output level) comprised of 2 neurons - one for denoting execution and the other non-execution. Each neuron (processing element) is fully connected to every neuron in the following layer. Each neuron accumulates input from the neurons in the prior layer and provides output to neurons in the higher layer ( figure 1 ). 2.3 Training Considering that the desired responses of our system are known our perceptron was trained with error correction learning [ 5, 6 ]. Denoting y i (n) the system s response at processing element i at iteration n, and d i (n) the desired response then for a given input profile an instantaneous error e i (n) is defined by e i (n) = d i (n) y i (n) Based on the principle of gradient descent learning [ 7 ] each weight in the network is adapted by correcting the present value of the weight with a term that is proportional to the present input and error at the weight. For updating the weights in our network we used an improvement to the straight gradient descent principle by using a memory term (the past increment to the weight). Training was implemented using batch learning, i.e. first we presented all the patterns that describe the inmate profiles, then accumulated the weight updates, and at the end we updated the weights with the average weight update. The update of the weights after we present all patters constitutes an epoch. Training took place over several epochs. To start the training we used small random values for each weight. 3 Results After optimizing the network s structure and training the network within 1000 epochs we tested the network s predictive power on the training data set (i.e on the same 1,000 profiles used to train it). The mean square error achieved was 0.077 and the network was able to correctly classify 460/488 profiles of non-executed inmates and 448/512 profiles of executed inmates. Table 1 represents the network s performance when tested with the training data. 4

STAMOS T. KARAMOUZIS AND DEE WOOD HARPER Figure 1. Network Architecture When tested with the testing set (300 profiles) it produced a mean square error of 0.07 on non-executed and 0.07 on executed inmates. The network successfully classified 147 out of 158 non-executed inmates (93.0%) and 130 out of 142 executed inmates (91.5%). 4 Conclusion & Discussion Having in mind importance of predicting death penalty outcomes and considering the classification power of ANN s we turned into ANN technology for predicting death outcomes. In this article we presented the development, training, and testing of such a network. The network was developed as a three-layered perceptron and was trained using the backpropagation principles. For training and testing various experiments were executed. In these experiments, a sample of 1,366 profiles of death penalty convictions was used. The sample was divided into three sets. The first set of 1,000 profiles was used for training, 66 profiles for cross-validation, and the remaining 300 profiles were used for testing. The predictability rate for the training and test sets was higher than 90%. Comparatively, this is considerably better than reported results in similar domains such as predicting juvenile recidivism rates by employing artificial neural networks [ 8 ]. What we have demonstrated here is that ANN technology can predict death penalty outcomes at better that 90%. From a practical point of view this is impressive. However, given that the variables employed in the study, have no direct bearing on the judicial process raises serious questions concerning the fairness of the justice system. Death penalty researchers believe that the most crucial variables for determining execution outcomes are whether or not DNA tests were conducted when relevant, and whether or not the defendant received competent representation [ 9 ]. Those variables are missing from our 5

AN ARTIFICIAL INTELLIGENCE SYSTEM SUGGESTS ARBITRARINESS OF DEATH PENALTY Table 1. Performance when tested with training data Performance Non-Executed(1) Executed(2) MSE 0,077 0,077 NMSE 0,308 0,309 MAE 0,161 0,162 Min Abs Error 0,000 0,000 Max Abs Error 0,984 0,975 r 0,831 0,831 Percent Correct 94.26 87.50 Table 2. Performance when tested with testing data Performance Non-Executed(1) Executed(2) MSE 0,072 0,072 NMSE 0,291 0,292 MAE 0,161 0,162 Min Abs Error 0,001 0,000 Max Abs Error 1,051 1,050 r 0,843 0,843 Percent Correct 93,03 91.54 Where MSE is the mean square error, NMSE is the normalized mean square error, MAE is the mean absolute error, and r is the correlation coefficient. data set because a) there is no available data on DNA testing at this time and it probably would not be a factor in cases decided before the test became available, and b) at this time we have no direct measure of competent representation. Despite of not including those two crucial variables our ANN yielded an impressive prediction rate solely based on variables that are independent of the substantive characteristics of the crimes. In the future, we plan to expand the repertoire of variables that describe the inmate profiles, include more profiles in the training set, and employ sensitivity analysis techniques that will help us identify the variables with the highest contributory weights in the predictive task. We believe that this future work will not only help the network to achieve even higher levels of predictability but will allow domain experts gain new insights in determining how fair or unfair the process of death sentencing is. 6

STAMOS T. KARAMOUZIS AND DEE WOOD HARPER References [1] Scott, G. The History of Capital Punishment (London : Torchstream Books, 1997 ) [2] Costanzo, M. Just Revenge. (New York : Saint Martin s Press, 1997). [3] Lippman, R. An introduction to computing with neural nets, IEEE Trans. ASSP Magazine, 1987, 4, 4 22. [4] U.S. Dept. of Justice, Bureau of Justice Statistics CAPITAL PUNISH- MENT IN THE UNITED STATES, 1973-2000 [Computer file]. Compiled by the U.S. Dept. of Commerce, Bureau of the Census. ICPSR ed. Ann Arbor, MI: Interuniversity Consortium for Political and Social Research [producer and distributor], 2003. [5] Stornetta W. S. &. B. A. Huberman, An improved three-layer, backpropagation algorithm, Proceedings of the IEEE First International Conference on Neural Networks, 2, 1987, 737 643. [6] Gallant, S. I. Neural Network Learning and Expert Systems ( Cambridge, MA: M.I.T. Press, 1993 ) [7] Rumelhart, D. E., G. E. Hinton, & R. J. Williams, Learning internal representations by error propagation. In D. E. Rumelhart, J. L. McClelland, and the PDP Research Group, editors. Parallel Distributed Processing: Explorations in the Microstructure of Cognition, volume 1: Foundations, chapter 8, 318 362 ( Cambridge, MA : MIT Press, 1986 ) [8] Karamouzis, S. T., Katsiyannis, T. Archwamety. An Application of Neural Networks for Predicting Juvenile Recidivism. In Proceedings of the 3 rd IASTED International Conference Artificial Intelligence and Applications, Spain : ACTA Press, 2003. [9] Zimring, F. The Contradictions of American Capital Punishment ( Oxford : Oxford University Press, 2003 ) 7