EFFICIENCY OF THE DISTAL SCREW IN THE DISTAL MOVEMENT OF MAXILLARY MOLARS

Similar documents
Molar distalisation with skeletal anchorage

Mini-implant-borne Pendulum B appliance for maxillary molar distalisation: design and clinical procedure

International Journal of Therapeutic Applications ISSN X

Intraoral molar-distalization appliances that

Assessment of palatal bone thickness in adults with cone beam computerised tomography

APPLICATION AND EFFECTIVENESS OF

Distalization of the molars has become a popular

Comparison of skeletal anchorage distalizers effect in maxillary buccal segment: A systematic review

Distalization of the upper molars is an important

eral Maxillary y Molar Distalization with Sliding Mechanics: Keles Slider

Indian Journal of Basic and Applied Medical Research; June 2014: Vol.-3, Issue- 3, P

Pendulum appliance: skeletal and dentoalveolar effects. A systematic review.

MOLAR DISTALIZATION WITH MODIFIED GRAZ IMPLANT SUPPORTED PENDULUM SPRINGS. A CASE REPORT.

Maxillary Molar Distalization with Noncompliance Intramaxillary Appliances in Class II Malocclusion

Analysis of midpalatal miniscrew-assisted maxillary molar distalization patterns with simultaneous use of fixed appliances: A preliminary study

Case Report Unilateral Molar Distalization: A Nonextraction Therapy

The International Journal of Periodontics & Restorative Dentistry

MAXILLARY FIRST MOLAR DISTALIZATION WITH THE FROG APPLIANCE: A CASE REPORT

Skeletal Anchorage for Orthodontic Correction of Severe Maxillary Protrusion after Previous Orthodontic Treatment

Three dimensional assessment of a newly designed distalizer (Bidirectional Distalizer) Wael M Refai* & Ahmed H El Sherbini**

Non-osseointegrated. What type of mini-implants? 3/27/2008. Require a tight fit to be effective Stability depends on the quality and.

Use of Palatal Miniscrew Anchorage and Lingual Multi-Bracket Appliances to Enhance Efficiency of Molar Scissors-Bite Correction

THE USE OF TEMPORARY ANCHORAGE DEVICES FOR MOLAR INTRUSION & TREATMENT OF ANTERIOR OPEN BITE By Eduardo Nicolaievsky D.D.S.

Zygoma-gear appliance for intraoral upper molar distalization

6. Timing for orthodontic force

An estimated 25-30% of all orthodontic patients can benefit from maxillary

The management of impacted

Lever-arm and Mini-implant System for Anterior Torque Control during Retraction in Lingual Orthodontic Treatment

A Novel Method of Altering the Buccal Segment Relationship

Distal Movement of Maxillary Molars Using Miniscrew Anchorage in the Buccal Interradicular Region

Orthodontic Microimplants and Its

ACCELEDENT CASE REPORT. S. Jay Bowman, DMD, MSD Kalamazoo Orthodontics Portage, MI

One of the most common orthodontic A COMPARISON OF TWO MAXILLARY MOLAR DISTALIZING APPLIANCES WITH THE DISTAL JET

Nonextraction treatment plans for Angle Class II

UNILATERAL UPPER MOLAR DISTALIZATION IN A SEVERE CASE OF CLASS II MALOCCLUSION. CASE PRESENTATION. 1*

Nonextraction Treatment of Upper Canine Premolar Transposition in an Adult Patient

Efficiency of Noncompliance Simultaneous First and Second Upper Molar Distalization:

EFFECTS OF DISTAL JET APPLIANCE IN CLASS-II MOLAR CORRECTION

AAO 115th Annual Session San Francisco, CA May 17 (Sunday), 1:15-2:00 pm, 2015

clinical orthodontics article

A New Fixed Interarch Device for Class II Correction

Anchorage Provided During Intra-arch Distal Molar Movement: A Comparison Between the Nance Appliance and a Fixed Frontal Bite Plane

Maxillary Molar Distalization with micro-implants:

Crowded Class II Division 2 Malocclusion

Case Report: Long-Term Outcome of Class II Division 1 Malocclusion Treated with Rapid Palatal Expansion and Cervical Traction

The use of mini-implants in en masse retraction for the treatment of bimaxillary dentoalveolar protrusion

KJLO. A Sequential Approach for an Asymmetric Extraction Case in. Lingual Orthodontics. Case Report INTRODUCTION DIAGNOSIS

International Journal of Medical and Health Sciences

Treatment of Class II, Division 2 Malocclusion with Miniscrew Supported En-Masse Retraction: Is Deepbite Really an Obstacle for Extraction Treatment?

Quantitative evaluation of palatal bone thickness for safe mini-implant placement using CBCT

Invisalign technique in the treatment of adults with pre-restorative concerns

As alternatives to the compliance-dependent headgear

IS THE PALATE AN OPTIMAL SITE FOR MINISCREW PLACEMENT?

Overerupted upper molars due to missing lower

JCO-Online Copyright 2010

Effects of a three-dimensional bimetric maxillary distalizing arch

Mini-implants in the palatal slope a retrospective analysis of implant survival and tissue reaction

Crowding and protrusion treated by unusual extractions

Miniscrew-supported coil spring for molar uprighting: Description

Dual Force Cuspid Retractor

Comparison of transverse dental changes induced by the palatally applied Frog appliance and buccally applied Karad s integrated distalizing system

Clinical indices for orthodontic mini-implants

Non Extraction philosophy: Distalization using Jone s Jig appliance- a case report

Skeletal class III maloeclusion treated using a non-surgieal approach supplemented with mini-implants: a case report

Dentoskeletal Effect Induced by Hyrax Screw Used in Maxillary Molar Distalization: Before After Study in Class II Patients

Maxillary sinus perforation by orthodontic anchor screws

Fabrication and Evaluation of a Noncompliant Molar Distalizing Appliance: Bonded Molar Distalizer

Bone density assessment for mini-implants position

New treatment paradigms have reduced the importance

The LOMAS System. Eric J. W. Liou, James C. Y. Lin

Influence of Surface Characteristics on Survival Rates of Mini-Implants

ORTH easy. The Complete System for Cortical Anchorage. OrthoEasy Pins

Australian Dental Journal

Gentle-Jumper- Non-compliance Class II corrector

Correction of a maxillary canine-first premolar transposition using mini-implant anchorage

Research Article Success Rate of Microimplants in a University Orthodontic Clinic

There is little controversy regarding whether temporary

Ideal treatment of the impaired

EUROPEAN SOCIETY OF LINGUAL ORTHODONTISTS

ORTHOdontics SLIDING MECHANICS

The main challenge in using the natural dentition

In recent years, orthodontic mini-implants have been

Miniscrews were initially proposed as a means

Evaluation of cortical bone thickness of mandible with cone beam computed tomography for orthodontic mini implant installation

The treatment options for nongrowing skeletal Class

Introduction Subjects and methods

Correction of Crowding using Conservative Treatment Approach

Three-dimensional analysis of the distal movement of maxillary 1st molars in patients fitted with mini-implant-aided trans-palatal arches

MemRx Orthodontic Appliances

Molar distalization A review

Tomographic mapping of the hard palate and overlying mucosa

Open Access Relationship Between the Thickness of Cortical Bone at Maxillary Mid-palatal Area and Facial Height Using CBCT

2007 JCO, Inc. May not be distributed without permission.

Canine Extrusion Technique with SmartClip Self-Ligating Brackets

NIH Public Access Author Manuscript J Oral Maxillofac Surg. Author manuscript; available in PMC 2010 July 27.

Maxillary Growth Control with High Pull Headgear- A Case Report

Premolar-extraction treatment with a multi-bracketed

Use of a Tip-Edge Stage-1 Wire to Enhance Vertical Control During Straight Wire Treatment: Two Case Reports

Maxillary protraction using a hybrid hyrax-facemask combination

Transcription:

Mauro Cozzani, DMD, MScD 1 Francesco Zallio, MD, DDS 2 Luca Lombardo, DDS 3 Antonio Gracco, DDS 3 EFFICIENCY OF THE DISTAL SCREW IN THE DISTAL MOVEMENT OF MAXILLARY MOLARS Aim: Conventionally, noncompliance distal movement of molars relies exclusively on intraoral anchorage. The distal screw, a distal jet appliance supplemented by two paramedian mini-implants, is an innovative alternative. The aim of this study was to evaluate the suitability of this device to move molars bodily and distally. Methods: The effects of the distal screw were evaluated in a sample of 18 consecutively treated preadolescent and adolescent individuals (nine females and nine males; mean age at the start of treatment, 11.2 years). Two conical mini-implants (length 11.0 mm, diameter 1.5 to 2.2 mm) were placed in the anterior paramedian area of the palate of each patient. The coil springs of the device were activated to deliver a force of 240 cn per side. The dental and skeletal effects were investigated on pre- and posttreatment cephalometric radiographs. Results: The distal screw produced a Class I occlusion of the first molars by moving them distally 4.7 mm, which is more than conventional appliances can accomplish. Although this took longer than conventional devices (9.1 months), it had the advantage of a roughly 2.1-mm premolar distal movement (ie, no anchorage loss as with traditional techniques). Conclusions: The distal screw anchored by two palatal mini-implants allows not only translatory molar distal movement, but also distal movement of the maxillary first premolars, thereby avoiding characteristic anchorage loss. World J Orthod 2010;11:341 345. Key words: maxillary molar distalization, mini-implant, skeletal anchorage 1 Private Practice, La Spezia, Italy. 2 Private Practice, Sestri Levante (GE), Italy. 3 Research Assistant, Department of Orthodontics, University of Ferrara, Ferrara, Italy. CORRESPONDENCE Dr Mauro Cozzani Via Fontevivo 21 N La Spezia 19125 Italy Email: maurocozzani@gmail.com Distal molar movement is useful in resolving a Class II occlusion in patients with dentoalveolar protrusion and only slight skeletal discrepancy. 1 While the conventional approach involves extraoral traction, 2 comparable results have been achieved using fixed, esthetically acceptable appliances that rely on intraoral anchorage, thereby eliminating the need for patient compliance. 3 In general, these devices exploit a combination of dental (maxillary premolars) and palatal (Nance button) anchorage. 4 This approach leads to an anchorage loss (a mesial displacement of the premolars, canines, and incisors), 5 a situation that cannot be improved by bracketing additional teeth. 6 One intraorally anchored device is the distal jet, an intramaxillary appliance that is effective due to two Ni-Ti coil springs attached to the bands on the maxillary first molars. 7 If the distal jet is constructed according to Bolla et al, 1 the force vector passes through the center of resistance of these teeth, which results in almost complete bodily movement. 8 Several authors, including those 341

Cozzani et al WORLD JOURNAL OF ORTHODONTICS Fig 2 Intraoral photograph of a distal screw, which is used as anchorage to retract the canines. Fig 3 A 2-mm titanium screw expressly designed for the distal screw. Fig 1 Metallic plate to be inserted in the resin of the Nance button; note that all holes are designed to fit the head of the specific mini-implant (Fig 3). of the present study, have developed skeletally anchored alternatives to the conventional distal jet. 4,9 11 The distal screw uses two palatally inserted miniimplants for skeletal anchorage. Numerous studies have demonstrated that the optimal sites for mini-implant are not only the lingual interradicular spaces, 12 but also the paramedian region of the palatal vault. 13,14 The aim of this study was to clinically evaluate the efficiency of the distal screw. METHOD AND MATERIALS Eighteen consecutive patients (nine males, nine females; mean age at beginning of treatment 11.2 years) with a bilateral dentoalveolar distal occlusion were treated solely with a distal screw. In six of these patients, the maxillary second molars had fully erupted, while they had erupted partially in four. They had not erupted in the remaining eight patients. No patients dropped out during the trial. For all patients, intra- and extraoral photographs, impressions, panoramic radiographs, and lateral cephalographs were obtained at the beginning and end of the first molars distal movement. The appliance was a modified distal jet in which the metallic arms normally used for dental anchorage were eliminated and the Nance button altered to enclose a moldable metal plaque fixed by two mini-implants (Figs 1 and 2). The two mini-implants were placed in the paramedian region of the anterior palatal vault along a line connecting the two synergetic premolars. They were inserted by predrilling and using a manual screwdriver after the patients had rinsed with a 0.1% chlorhexidine gluconate solution. Local anesthesia with an adrenalin-free analgetic was performed. The insertion site was selected on the basis of various studies demonstrating its safety, thereby eliminating the need for any fur ther radiographic evaluation. 13,14 Also, according to Ardekian et al, nasal floor perforations of less than 2 mm tend to heal spontaneously. 15 The mini-implants employed were made of titanium, measured 11.0 mm long, and were shaped like a truncated cone with a diameter of 1.5 mm at the tip and 2.2 mm at the neck. The shank was 1.0 mm in diameter, the threaded part had a length of 8.0 mm, and the head featured a hexagonal slot to house the head of the screwdriver or contraangle handpiece (Fig 3). 342

VOLUME 11, NUMBER 4, 2010 Cozzani et al Fig 4 Method suggested by Ghosh and Nanda 16 to quantify dental movements using cephalometric superimpositions. SN 5 4 3 2 SN 1 PTM PTV 7 8 4 3 1 2 6 5 PP A 9 B MnPI Table 1 Mean, standard deviation (SD), minimum, and maximum of all cephalometric parameters between T1 (beginning) and T2 (end of molar distal movement) Mean SD Minimum Maximum T1 T2 (months) 9.1 2.7 4.0 13.0 PTV U6 (mm) 4.7 1.6 8.2 2.7 PTV U4 (mm) 2.1 1.8 6.7 0.1 SN U6 (degrees) 2.6 2.3 5.8 4.2 SN U4 (degrees) 2.0 3.1 8.4 4.9 SN U1 (degrees) 0.3 2.9 4.8 6.8 PP U6 (mm) 0.7 1.9 3.2 6.4 PP U4 (mm) 1.3 1.5 1.9 3.9 PP U1 (mm) 0.4 0.8 1.2 2.4 PTV A (mm) 0.4 0.8 0.5 2.4 The superelastic springs were compressed by adjusting the attachment screws until a force of 240 cn could be measured; reactivation was carried out at 4-week intervals. To quantify the distal movement achieved, any premolar or canine displacement was evaluated according to the methodology suggested by Ghosh and Nanda 16 (Fig 4). This method was chosen to compare the results of this study with those of other studies. 1,17 Statistical analysis Mean, standard deviation, and range of each continuous variable were calculated before (T1) and after (T2) distal movement. Also, the absolute and relative frequencies of the categoric variables were determined. RESULTS The data from the cephalometric analyses are listed in Table 1. It also shows that the average time required to achieve a Class I molar relationship was 9.1 ± 2.7 months. The mean distal movement of the maxillary molars (PTV U6) was 4.7 ± 1.6 mm. Simultaneously, the first premolar (PTV U4) moved distally on average 2.1 ± 1.8 mm. Distal tipping of the first molars (SN U6/U4/U1) amounted to 2.6 ± 2.3 degrees and 2.0 ± 3.1 degrees for the first premolars. The incisors tipped labially 0.3 ± 2.9 degrees. Extrusion with respect to the bispinal plane of the first molars (PP U6/U4/U1) was 0.7 ± 1.9 mm, 1.3 ± 1.5 mm for the first premolars, and 0.4 ± 0.8 mm for the incisors. The distance PTV A increased by 0.4 ± 0.8 mm. 343

Cozzani et al WORLD JOURNAL OF ORTHODONTICS DISCUSSION The introduction of skeletal anchorage to orthodontics has permitted not only the simplification of many procedures conventionally employed to control anchorage, but also reduced the undesirable effects of many appliances. 18 Initial attempts were based on osseointegrated implants, 19,20 but the related costs, invasiveness, and delay of loading prompted clinicians to seek alternatives. 21,22 Thus, mini-implants were used based on their low cost, reduced invasiveness, and versatility. 23,24 Clinical and laboratory studies have demonstrated the usefulness of mini- implants for or thodontic purposes. 25,26 Compared to Bolla et al, 1 who treated a similar number and type of patients using a distal jet, the amount of molar distal movement was greater with the distal screw (3.2 vs 4.7 mm). Moreover, the patients treated with the distal screw did not experience any anchorage loss of the first premolar in contrast to those treated with the distal jet (mean loss 1.3 mm). Actually, the first premolars moved distally, too (2.1 mm). The fact that a Class I occlusion was achieved in 5 to 6 months in the study by Bolla et al 1 as compared to 9.1 months in this study could be explained by the fact that the distal occlusion might have been more severe in the patients treated with the distal screw. In any case, the distal movement of the first molars was nearly the same in both studies (0.5 vs 0.6 mm). From the cephalometric perspective, the distal screw conserves the positive characteristics of the distal jet but overcomes its negative aspect: the medioanterior anchorage loss. Finally, the distal screw seems to behave clinically differently than conventional and other skeletally anchored distal movement devices. Authors who used a pendulum with skeletal anchorage achieved a greater distal movement in a shorter time (5.4 mm in 6.5 months 27 ), which was, however, accompanied by severe first molar (5.6 to 12.2 degrees) and first premolar tipping (3.8 to 7.9 degrees). 22,27,28 In contrast, this appliance produced a tipping of only 2.6 (molars) and 1.9 degrees (premolars). Similar results for molar distal movement were documented in a study of 10 adolescent patients treated with a distal jet anchored to the first premolars by two palatal mini-implants. 2 It was also reported that the second premolar moved 1.9 mm distally with about 3.0 degrees of tipping. 2 In contrast to the results of this study, Kinzinger et al 3 described a mesial displacement of 0.7 mm for the first premolar, which can be explained by the different anchorage setup. Overall, the distal screw has numerous advantages with respect to both conventional appliances and other skeletally anchored molar distal movement devices. In fact, the distal screw not only overcomes anchorage loss, but also simplifies the treatment because premolar banding is rendered unnecessary and the same appliance, once inactive, can further be employed for final premolar and canine retraction. As these screws are positioned in the palate, they do not interfere with the distal movement of the posterior teeth. All advantages of the distal screw are obtained without taking additional radiographs. CONCLUSIONS The distal screw allows an almost completely bodily distal movement of the maxillary first molars and a spontaneous distal drift of the premolars. In comparison to the distal jet, the distal screw simplifies the clinical procedure without any special radiographic evaluation. The longer time needed to achieve a Class I relationship is compensated by the simpler subsequent distal movement of the remaining teeth because the premolars need less distal movement. 344

VOLUME 11, NUMBER 4, 2010 Cozzani et al REFERENCES 1. Bolla E, Muratore F, Carano A, Bowman SJ. Evaluation of maxillary molar distalization with the distal jet: A comparison with other contemporary methods. Angle Orthod 2002;72:481 494. 2. Melsen B, Verna C. A rational approach to orthodontic anchorage. Prog Orthod 1999;1: 10 22. 3. Kinzinger GS, Gulden N, Yildizhan F, Diedrich PR. Efficiency of a skeletonized distal jet appliance supported by miniscrew anchorage for noncompliance maxillary molar distalization. Am J Orthod Dentofacial Orthop 2009;136: 578 586. 4. Kinzinger G, Wehrbein H, Byloff FK, Yildizhan F, Diedrich PR. Innovative anchorage alternatives for molar distalization An overview. J Orofac Orthop 2005;66:397 413. 5. Ferguson DJ. Carano A, Bowman SJ, Davis EC, Gutierrez Vega ME, Lee SH. A comparison of two maxillary molar distalizing appliances with the distal jet. World J Orthod 2005;6:382 390. 6. Melsen B, Bosch C. Different approaches to anchorage: A survey and an evaluation. Angle Orthod 1997;67:23 30. 7. Carano A, Testa M. The distal jet for upper molar distalization. J Clin Orthod 1996;30:374 380. 8. Kinzinger GSM, Diedrich PR. Biomechanics of a distal jet appliance. Theoretical considerations and in vitro analysis of force systems. Angle Orthod 2008;78:676 681. 9. Kinzinger GS, Diedrich PR, Bowman SJ. Upper molar distalization with a miniscrew-supported distal jet. J Clin Orthod 2006;40:672 678. 10. Velo S, Rotunno E, Cozzani M. The implant distal jet. J Clin Orthod 2007;41:88 93. 11. Gracco A, Luca L, Siciliani G. Molar distalisation with skeletal anchorage. Aust Orthod J 2007; 23:147 152. 12. Poggio PM, Incorvati C, Velo S, Carano A. Safe zones : A guide for miniscrew positioning in the maxillary and mandibular arch. Angle Orthod 2006;76:191 197. 13. Gracco A, Lombardo L, Cozzani M, Siciliani G. Quantitative cone-beam computed tomography evaluation of palatal bone thickness for orthodontic miniscrew placement. Am J Orthod Dentofacial Orthop 2008;134:361 369. 14. Schlegel KA, Kinner F, Schlegel KD. The anatomic basis for palatal implants in orthodontics. Int J Adult Orthodon Orthognath Surg 2002;17:133 139. 15. Ardekian L, Oved-Peleg E, Mactei EE, Peled M. The clinical significance of sinus membrane perforation during augmentation of the maxillary sinus. J Oral Maxillofac Surg 2006;64: 277 282. 16. Ghosh J, Nanda RS. Evaluation of an intraoral maxillary molar distalization technique. Am J Orthod Dentofacial Orthop 1996;110:639 646. 17. Brickman CD, Sinha PK, Nanda RS. Evaluation of the Jones jig appliance for distal molar movement. Am J Orthod Dentofacial Orthop 2000;118:526 534. 18. Polat-Ozsoy O, Kırcelli BH, Arman-Özçırpıcı A, Pektas ZO, Uçkan S. Pendulum appliances with 2 anchorage designs: Conventional anchorage vs bone anchorage. Am J Orthod Dentofacial Orthop 2008;133:339.e9 339.e17. 19. Roberts WE, Smith RK, Silberman Y, Mozsary PG, Smith RS. Osseous adaptation to continuous loading of rigid endosseous implants. Am J Orthod 1984;86:95 111. 20. Roberts WE, Marshall KJ, Mozsary P. Rigid endosseous implant utilized as anchorage to protract molars and close atrophic extraction site. Angle Orthod 1990;60:135 152. 21. Gelgor IE, Buyukyilmaz T, Karaman AI, Dolanmaz D, Kalayci A. Intraosseous screw-supported upper molar distalization. Angle Orthod 2004;74:838 850. 22. Önçag G, Seçkin Ö, Dinçer B, Arikan F. Osseointegrated implants with pendulum springs for maxillary molar distalization: A cephalometric study. Am J Orthod Dentofacial Orthop 2007; 131:16 26. 23. Cheng SJ, Tseng IY, Lee JJ, Kok SH. A prospective study of the risk factors associated with failure of mini-implants used for orthodontic anchorage. Int J Oral Maxillofac Implants 2004;19: 100 106. 24. Miyawaki S, Koyama I, Inoue M, Mishima K, Sugahara T, Takano-Yamamoto T. Factors associated with the stability of titanium screws placed in the posterior region for orthodontic anchorage. Am J Orthod Dentofacial Orthop 2003;124:373 378. 25. Kinzinger GSM, Wehrbein H, Byloff FK, Yildizhan F, Diedrich P. Innovative anchorage alternatives for molar distalization An overview. J Orofac Orthop 2005;66:397 413. 26. Ohashi E, Pecho OE, Moron M, Lagravere MO. Implant vs screw loading protocols in orthodontics. Angle Orthod 2006;76:721 727. 27. Kircelli BH, Pektas ZO, Kircelli C. Maxillary molar distalization with a bone-anchored pendulum appliance. Angle Orthod 2006;76:650 659. 28. Escobar SA, Tellez PA, Moncada CA, Villegas CA, Latorre CM, Oberti G. Distalization of maxillary molars with the bone-supported pendulum: A clinical study. Am J Orthod Dentofacial Orthop 2007;131:545 549. 345