The Influence of the Initial Associative Strength on the Rescorla-Wagner Predictions: Relative Validity

Similar documents
The Mechanics of Associative Change

Representation and Generalisation in Associative Systems

The Feature-Label-Order Effect In Symbolic Learning

Evaluating the Causal Role of Unobserved Variables

Contemporary associative learning theory predicts failures to obtain blocking. Comment on Maes et al. (2016)

Belief Updating in Moral Dilemmas

Baserate Judgment in Classification Learning: A Comparison of Three Models

Associative and causal reasoning accounts of causal induction: Symmetries and asymmetries in predictive and diagnostic inferences

A Bayesian Network Model of Causal Learning

Learned changes in the sensitivity of stimulus representations: Associative and nonassociative mechanisms

Blocking Effects on Dimensions: How attentional focus on values can spill over to the dimension level

Effects of Causal Strength on Learning from Biased Sequences

Finding the Cause: Examining the Role of Qualitative Causal Inference through Categorical Judgments

Surprise and change: Variations in the strength of present and absent cues in causal learning

Stimulus competition in the absence of compound conditioning

ALM: An R Package for Simulating Associative Learning Models

Uncertainty in causal inference: The case of retrospective revaluation

Learning to classify integral-dimension stimuli

Causal Induction and the Revision of Belief

A response rule for positive and negative stimulus interaction in associative learning and performance

Short article Backward blocking: The role of within-compound associations and interference between cues trained apart

Making Causal Judgments From the Proportion of Confirming Instances:

INFORMATIVE TRANSITIONS 1. How People Learn about Causal Influence when there are Many Possible Causes: A Model. Based on Informative Transitions

Discrimination blocking: Acquisition versus performance deficits in human contingency learning

T. Kushnir & A. Gopnik (2005 ). Young children infer causal strength from probabilities and interventions. Psychological Science 16 (9):

Simulation of associative learning with the replaced elements model

Metadata of the chapter that will be visualized online

Predictive and Diagnostic Learning Within Causal Models: Asymmetries in Cue Competition

A Connectionist Approach to Causal Attribution. Frank Van Overwalle and Dirk Van Rooy. Vrije Universiteit Brussel, Belgium === FINAL VERSION ===

COMPUTATIONAL MODELS OF CLASSICAL CONDITIONING: A COMPARATIVE STUDY

A Comparison of Three Measures of the Association Between a Feature and a Concept

The Fate of Redundant Cues in Human Predictive Learning

Test Question Modulates Cue Competition Between Causes and Between Effects

A dissociation between causal judgment and outcome recall

Effects of Repeated Acquisitions and Extinctions on Response Rate and Pattern

The wicked learning environment of regression toward the mean

Higher-order retrospective revaluation in human causal learning

Human latent inhibition and the density of predictive relationships in the context in which the target stimulus occurs

Proactive Interference in Human Predictive Learning

Effects of compound or element preexposure on compound flavor aversion conditioning

Generic Priors Yield Competition Between Independently-Occurring Preventive Causes

Model Uncertainty in Classical Conditioning

A configural theory of attention and associative learning

An elemental model of associative learning: I. Latent inhibition and perceptual learning

THE REFERENTIAL NATURE OF RULES AND INSTRUCTIONS: A RESPONSE TO INSTRUCTIONS, RULES, AND ABSTRACTION: A MISCONSTRUED RELATION BY EMILIO RIBES-IÑESTA

Comparing Patterning and Biconditional Discriminations in Humans

Judgement frequency, belief revision, and serial processing of causal information

The Rescorla Wagner Learning Model (and one of its descendants) Computational Models of Neural Systems Lecture 5.1

Trial Order Affects Cue Interaction in Contingency Judgment

Confidence in Causal Inferences: The Case of Devaluation

How People Estimate Effect Sizes: The Role of Means and Standard Deviations

Challenge for Comparator Theory. Klaus Lober* and Harald Lachnit. Philipps-Universität Marburg. David R. Shanks. University College London

E-01 Use interventions based on manipulation of antecedents, such as motivating operations and discriminative stimuli.

Outcome similarity modulates retroactive interference between cues trained apart

Changes to Associative Learning Processes in Later Life

Doing After Seeing. Seeing vs. Doing in Causal Bayes Nets

Parameter Invariability in the TD Model. with Complete Serial Components. Jordan Marks. Middlesex House. 24 May 1999

Representations of single and compound stimuli in negative and positive patterning

Value transfer in a simultaneous discrimination by pigeons: The value of the S + is not specific to the simultaneous discrimination context

Computational Versus Associative Models of Simple Conditioning i

Rescorla-Wagner (1972) Theory of Classical Conditioning

Attention and salience in associative blocking

An Attention Modulated Associative Network

THEORIES OF ASSOCIATIVE LEARNING

A Memory Model for Decision Processes in Pigeons

Associative learning in baboons (Papio papio) and humans (Homo sapiens): species differences in learned attention to visual features

When Learning Order Affects Sensitivity to Base Rates: Challenges for Theories of Causal. Learning. Ulf-Dietrich Reips. Department of Psychology

Why Does Similarity Correlate With Inductive Strength?

Attentional Theory Is a Viable Explanation of the Inverse Base Rate Effect: A Reply to Winman, Wennerholm, and Juslin (2003)

The Role of Feedback in Categorisation

SUPPLEMENTARY INFORMATION

Birds' Judgments of Number and Quantity

Effect of extended training on generalization of latent inhibition: An instance of perceptual learning

Project for Math. 224 DETECTION OF DIABETES

Seminar: Skinner s Analysis of Verbal Behavior PRIVATE EVENTS

Contextual modulation of attention in human category learning

Top-Down Control of Visual Attention: A Rational Account

The Influence of Blocking on Overt Attention and Associability in Human Learning

City Research Online. Permanent City Research Online URL:

Causal discounting in the presence of a stronger cue is due to bias

Flexible Use of Recent Information in Causal and Predictive Judgments

Slide 3.1. Learning and memory

Decisions based on verbal probabilities: Decision bias or decision by belief sampling?

Causal Models and the Acquisition of Category Structure

Within-compound associations in retrospective revaluation and in direct learning: A challenge for comparator theory

The interaction between response effects during the acquisition of response priming

The role of sampling assumptions in generalization with multiple categories

ARTICLE IN PRESS. Cognition xxx (2009) xxx xxx. Contents lists available at ScienceDirect. Cognition. journal homepage:

Applying Signal Detection Theory to Contingency Assessment

Using Taste Aversion as a Tool to Explore Context Conditioning and Perceptual Learning. Geoffrey Hall Department of Psychology University of York

Effects of generative and discriminative learning on use of category variability

Analogy-Making in Children: The Importance of Processing Constraints

Relations between premise similarity and inductive strength

Supplementary Figure 1. Recording sites.

Learning Deterministic Causal Networks from Observational Data

Learning and Adaptive Behavior, Part II

26:010:557 / 26:620:557 Social Science Research Methods

Is model fitting necessary for model-based fmri?

Contiguity and covariation in human causal inference

Context and Pavlovian conditioning

Transcription:

Methods of Psychological Research Online 4, Vol. 9, No. Internet: http://www.mpr-online.de Fachbereich Psychologie 4 Universität Koblenz-Landau The Influence of the Initial Associative Strength on the Rescorla-Wagner Predictions: Relative Validity Makoto Yamaguchi Waseda University, Japan The Rescorla-Wagner model s asymptotic predictions are influenced by the initial associative strength under some conditions. This is the case for the experimental paradigm called relative validity. It is possible that stimuli used in the experiment have certain initial associative strength reflecting the subjects expectancies. Thus researchers must fully understand this influence. In this article, the effects of the initial values on the predictions of the model concerning relative validity are explored. Using a symbolic computation software, these effects were thoroughly revealed. Keywords: Rescorla-Wagner model, relative validity, causality judgment One of the most extensively studied topics on classical conditioning is cue competition (e.g., Kamin, 968; Wagner, Logan, Haberlandt, & Price, 968), which triggered the influential Rescorla and Wagner s (97; henceforth R-W) model. Now the model s influence extends to many other areas of psychology including human causality judgment and category learning (see Gluck & Bower, 988, for example). This recent expansion of influence is due in part to its equivalence to the delta rule, a learning rule employed in connectionist networks, which is derived as method of gradient descent by calculating partial differentiation. The R-W model describes the updating of associative strength value V. It states that the change in the associative strength of stimulus i, V i, is determined as follows: V i = α i β us (λ ΣV j ) () Makoto Yamaguchi, Department of Educational Psychology, Waseda University, Tokyo. This research was funded by Grant-in-Aid for JSPS Fellows 4-353. Correspondence concerning this article should be addressed to Makoto Yamaguchi, Department of Educational Psychology, Waseda University, Tokyo 69-85, Japan. E-mail: yamag-psy@toki.waseda.jp

3 MPR-Online 4, Vol. 9, No. where λ is the outcome of a trial and takes the value on reinforced trials and on nonreinforced trials. In some literature, λ takes or, but this is not essential. α and β (both > ) are learning rate parameters; the former reflects the salience of conditional stimuli, and the latter reflects that of unconditional stimuli. Hereafter, the β parameters associated with reinforced trials and with nonreiforced trials are denoted as β and β, respectively. Usually it is assumed that β β, which seems a natural assumption given the impact of unconditional stimuli for the animals. As indicated by Σ, associative strengths of all stimuli present on a trial are summed. Traditionally, predictions of the model have almost always been derived by computer simulation. But Yamaguchi (999) recently showed that recent commercially available software that can perform symbolic computation, such as Mathematica and Maple, is able to solve the equations of the R-W model. Although the model is expressed as a difference equation, the limit can be taken and thus the equation can be considered as a differential equation. The solution is a closed form equation in that it is an explicit function of time (or of a trial, in the discrete case). The purpose of this article is to investigate the effects of the initial values of the associative strength on the R-W predictions for relative validity. This has an important implication particularly for human judgment studies because stimuli used in the experiment may have certain initial values reflecting the subjects prior expectancies. Solutions in this article were obtained with Mathematica, but other symbolic computation softwares can similarly be used. In the case of Mathematica, the "DSolve" command solves differential equations. Instead, the RSolve command for solving difference equations can also be used. The author has confirmed that both lead to the same conclusion. But in this article the solutions obtained with DSolve command are shown because treating the model as a differential equation will be more suited to deriving ideal predictions that do not involve fluctuation. After obtaining a solution, the Simplify[%] command can be used to simplify it. Actual input is not presented in this article, because Yamaguchi (999) has illustrated many examples and the rule for input construction. Notice that the input examples in Yamaguchi (999) include such parts as x[]==, which indicates that x at time equals. In contrast, solutions reported in this article were obtained by setting the initial value as a variable instead of. In cases where the solution is too long to express in the report, it will be omitted and only asymptotic predictions will be mentioned.

Yamaguchi: Relative Validity 3 Relative validity Wagner et al. (968) found a cue competition phenomenon referred to as relative validity. They used three stimuli (X, Y, Z), and made two compound stimuli (XY and XZ) for animal learning experiments. The former compound was always reinforced while the latter was never reinforced in the experimental condition. This procedure can be concisely represented as (XY+, XZ ). The target stimulus X was compared to X in the control condition, in which both of these two compound stimuli were reinforced 5% of the time (XY±, XZ±). Although X was equally often (5% of the time) reinforced in the two conditions, it evoked much weaker responses in the experimental condition. This experimental paradigm is called relative validity. Later, Wasserman and his colleagues (Van Hamme, Kao, & Wasserman, 993; Van Hamme & Wasserman, 993, 994; Wasserman, 99) have replicated this phenomenon in a number of experiments using human subjects. Their representative experimental design is to show subjects sheets of papers successively on which information is given about foods a fictional person ate, and about allergy resulting from eating them, and to ask subjects to rate the relationship between foods and allergy. For this paradigm, Rescorla and Wagner (97, pp. 8-86) presented extensive explanations for the predictions of their model with all initial values set to, and revealed the effects of parameters. Yamaguchi (999) confirmed them with closed form solutions obtained with a symbolic computation software, and argued that the investigation of the effects of the parameters is very difficult using simulation techniques and thus it is one of the greatest advantages of the closed form solution. Considering the experiments by Wasserman and his colleagues, which listed names of foods on papers a fictional person ate rather than actually presenting real foods to subjects, one can naturally assume salience of the three stimuli to be equal. In general, relative values of α i do influence the predictions, but it can be ignored here. Therefore, subscript for α is dropped hereafter. Conclusions by Rescorla and Wagner are: ) For the experimental condition, the asymptotic value of V x is /3 regardless of the β parameters; ) For the control condition, it is also /3 when β = β and greater than /3 when β > β. Therefore, the R-W model can accommodate relative validity findings under the assumption of β > β. This assumption is intuitively plausible implying that reinforced trials are more salient than nonreinforced trials for animals or humans.

3 MPR-Online 4, Vol. 9, No. Influence of the initial associative strength Here, one should bear in mind an important fact about the R-W model: asymptotic values are dependent on initial values for relative validity paradigm (Gallistel, 99; Melz, Cheng, Holyoak, & Waldmann, 993). For instance, suppose that all the three stimuli have an initial value of 7. Then asymptotic values are radically changed (see Figure for simulation for the experimental condition), and V x asymptotes at the value of. Positive initial values result in lower asymptotic values for V x. Some negative initial values (e.g., the three stimuli having the value of 7) even reverse the relative values of V x and V y, thus constituting a qualitatively different result. Experimental Value 8 6 4-3 6 9 5 8 4 7 3 33 36 Epoch X Y Z Figure. Experimental condition. α =.. β parameters are omitted. All the stimuli have the initial value of 7. Then, one may wonder whether the studies by Wasserman and his colleagues were inappropriate because they did not consider the effects of initial values. Also some of their data suggest that the stimuli might have had some initial positive values: Ratings were initially intermediate values rather than near zero (see Van Hamme & Wasserman, 994). Given that asymptotic values are radically altered by initial values, were their studies flawed? Fortunately, the present investigation revealed that their studies were not flawed. The effects of initial values can be clarified by the symbolic computation software. Assume that the initial values of the three stimuli (henceforth I s) are equal. And to begin with, let us assume β = β (thus represented simply by β). As α and β are multiplicative, α*β can be replaced by a new single constant, so one can simply omit β in the

Yamaguchi: Relative Validity 33 input. (As a result, α s below really represent α*β. However, this has no influences on the asymptotic predictions but only affects how fast the asymptote is reached.) The following solution for the experimental condition is revealed by the software: V x = { exp( 3αt) + [ + 4exp( 3αt)]I}/3 () It indicates that at asymptote (t ), V x = ( I)/3 (3) For the control condition (see Figure ), the solution is obtained: V x = { exp( 6αt) + [ + 4exp( 6αt)]I}/3 (4) Thus, the asymptotic value is exactly the same as in Equation 3. Therefore, regardless of the initial values, the asymptote is the same for the two conditions when β = β. 8 Control Value 6 4 X Y & Z 3 4 5 6 7 8 9 3 4 5 6 7 8 9 Epoch Figure. Control condition. α =.. β parameters are omitted. All the stimuli have the initial value of 7. Next, let us examine the effects of the β parameters to make the exploration more complete. As stated above (also see Melz et al., 993, for a formal derivation), the β parameters do not affect the asymptotic value in the experimental condition, whereas they alter the asymptotic value in the control condition. See Figures 3 and 4 for simulation, where β is larger than β and all the initial values are 7. Although the experi-

34 MPR-Online 4, Vol. 9, No. mental condition is different from Figure only preasymptotically, the control condition exhibits asymptotic values different from those in Figure. Experimental Value 8 6 4-3 6 9 5 8 4 7 3 33 36 39 4 45 48 5 54 57 6 Epoch X Y Z Figure 3. Experimental condition. α parameters are omitted. β =., β =.5. All the stimuli have the initial value of 7. Control Value 8 7 6 5 4 3 3 4 5 6 7 8 9 3 4 5 6 7 8 9 Epoch X Y & Z Figure 4. Control condition. α parameters are omitted. β =., β =.5. All the stimuli have the initial value of 7. In both conditions, one can obtain solutions with both β and β treated as variables. Unfortunately, they are interpretable only for the control condition, and the solution for the experimental condition is too long and totally unpractical. But the analytical solution is not necessary for the experimental condition because the β parameters do not affect the asymptote. The solution for the control condition shows that at asymptote,

Yamaguchi: Relative Validity 35 β I(β + β) V x = (5) 3(β + β ) Now the answer to the problem was obtained. Equation 5 minus Equation 3 indicates that the difference is always positive whenever β > β. To confirm this, let us see that the expression reduces to [ β I(β + β )] [ ( I) (β + β )] 3(β + β ) β (β + β) = 3(β + β ) (6) As the denominator is positive, examine the numerator, which further reduces to (β β ). Thus, the expression is positive if β > β. This conclusion is the same as in the case without initial associative strength. Conclusion In sum, regardless of the initial values, the fact remains that the V x reaches a greater value in the control than in the experimental condition so far as β > β. Thus, for the first time, the studies by Wasserman and his colleagues were proved to be valid in this article. But the above exploration concerning the initial values suggests an important implication: future research should explicitly consider the possibility of stimuli having some initial values. Animal learning researchers may be allowed to presume that the stimuli used in an experiment do not initially have associative strength for naïve subjects, but experimenters using human subjects will not be able to preclude such a possibility. Many experiments adopt the cover story with foods, allergy, symptoms or diseases, for instance. Human subjects will have had extensive experiences for such things in real life. References Gallistel, C. R. (99). The organization of learning. Cambridge, MA: MIT Press. Gluck, M. A., & Bower, G. H. (988). From conditioning to category learning: An adaptive network model. Journal of Experimental Psychology: General, 7, 7-47. Kamin, L. J. (969). Predictability, surprise, attention, and conditioning. In B. A. Cambell & R. M. Church (Eds.), Punishment and aversive behavior (pp. 79-96). New York: Appleton-Centrury-Crofts.

36 MPR-Online 4, Vol. 9, No. Melz, E. R., Cheng, P. W., Holyoak, K. J., & Waldmann, M. R. (993). Cue interaction in human categorization: Contingency or the Rescorla-Wagner learning rule? Comments on Shanks (99). Journal of Experimental Psychology: Learning, Memory, and Cognition, 9, 398-4. Rescorla, R. A., & Wagner, A. R. (97). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. In A. H. Black & W. F. Prokasy (Eds.), Classical conditioning II: Current research and theory (pp. 64-99). New York: Appleton-Century-Crofts. Van Hamme, L. J., Kao, S. F., & Wasserman, E. A. (993). Judging interevent relations: From cause to effect and from effect to cause. Memory & Cognition,, 8-88. Van Hamme, L. J., & Wasserman, E. A. (993). Cue competition in causality judgments: The role of method of information presentation. Bulletin of the Psychonomic Society, 3, 457-46. Van Hamme, L. J., & Wasserman, E. A. (994). Cue competition in causality judgments: The role of nonpresentation of compound stimulus elements. Learning and Motivation, 5, 7-5. Wagner, A. R., Logan, F. A., Haberlandt, K., & Price, T. (968). Stimulus selection in animal discrimination learning. Journal of Experimental Psychology, 76, 7-8. Wasserman, E. A. (99). Attributions of causality to common and distinctive elements of compound stimuli. Psychological Science,, 98-3. Yamaguchi, M. (999). New methods for solving the Rescorla-Wagner model. Behavior Research Methods, Instruments, & Computers, 3, 684-688. Yamaguchi, M. (). Application of the new method for the Rescorla-Wagner model to a probabilistic learning situation. Psychological Reports, 87, 43-44.