In vitro Studies of Antimicrobial Activity of Crude Extracts of the Indian Grasses Dhaman (Cenchrus ciliaris) and Kala Dhaman (Cenchrus setigerus)

Similar documents
IJGP. Volume 6 Issue 5 January - March 2012 ISSN Online full text at

CHAPTER 8 ANTIBACTERIAL ACTIVITY OF THE CRUDE ETHANOLIC EXTRACT AND THE ISOLATED COMPOUNDS FROM THE STEM OF COSTUS IGNEUS

Higher plants produced hundreds to thousands of diverse chemical compounds with different biological activities (Hamburger and Hostettmann, 1991).

Antimicrobial Activity of the Crude Extracts of Withania somnifera and Cenchrus setigerus In-vitro

International Journal of Scientific & Engineering Research, Volume 7, Issue 8, August ISSN

In vitro study of antibacterial activity of Carissa carandas leaf extracts

IN VITRO ANTIMICROBIAL ACTIVITY OF VARIOUS EXTRACTS OF MIRABILIS JALAPA LEAVES

ISSN (Online) ISSN (Print) Int.J.Pharm.Phytopharmacol.Res. 2012, 1(5):

Effect of various solvents on bacterial growth in context of determining MIC of various antimicrobials

ANTIBACTERIAL ACTIVITY OF GYMNEMA SYLVESTRE HYDROALCOHOLIC LEAF EXTRACT.

Effect of various solvents on bacterial growth in context of determining MIC of various antimicrobials

Octa Journal of Biosciences

SUPPORTING INFORMATION. Studies on antimicrobial evaluation of some 1-((1-(1H-benzo[d]imidazol-2-

Evaluation of Antibacterial and Antifungal Activities of Leaf and Seed Extracts of Croton Tiglium Plant against Skin Disease Causing Microbes

ANTIMICROBIAL ACTIVITY OF NON EDIBLE SEEDS AGAINST IMPORTANT PATHOGENIC MICROORGANISMS PROJECT REFERENCE NO.: 38S _B_MSC_010

INTERNATIONAL JOURNAL OF PHARMACY & LIFE SCIENCES

In vitro Antimicrobial Activity of Extracts from Careya arborea Roxb Leaves

Chandan Prasad.et.al. Int. Journal of Engineering Research and Application ISSN : , Vol. 7, Issue 9, ( Part -6) September 2017, pp.

Research Journal of Pharmaceutical, Biological and Chemical Sciences

International Journal of Pharma and Bio Sciences EFFICACY OF CLERODENDRUM INERME L. (GARDEN QUININE) AGAINST SOME HUMAN PATHOGENIC STRAINS

Antimicrobial activity of some medicinal plants against multidrug resistant skin pathogens

Bioprospecting of Neem for Antimicrobial Activity against Soil Microbes

In vitro Evaluation of Antibacterial Activity of Bark and Flower Extracts of Pimenta officinalis Lindl.

Antimicrobial activity of Terminalia chebula

NSave Nature to Survive

Antimicrobial Potential of Whole Plant and Callus Extract of Aristolochia bracteolata Lam

COMPARATIVE ANTI MICROBIAL STUDY OF SHUDDHA KASISA AND KASISA BHASMA

Determination of MIC & MBC

Prof. Dr. K. Aruna Lakshmi (DEAN Academic Affairs) Dept. of Microbiology GITAM University Visakhapatnam. Under the Guidance of.

ANTIBACTERIAL ACTIVITY OF LEAF AND SEED EXTRACTS OF DELONIX REGIA AND ACHYRANTHUS ASPERA AGAINST SELECTED BACTERIAL STRAINS

Studies on the Antibacterial Activity of Quercus Infectoria Galls

Antibacterial Activity of Francoeuria crispa, Pulicaria undulata, Ziziphus spina-christi and Cucurbita pepo Against Seven Standard Pathogenic Bacteria

Antibacterial Activities of Ginkgo biloba L. Leaf Extracts

ANTIMICROBIAL AND PHYTOCHEMICAL SCREENING OF TRAGIA INVOLUCRATA L. USING UV-VIS AND FTIR

In vitro antimicrobial activity of leaves and bark extracts of Ficus religiosa (Linn.)

Chapter 4. Anti-bacterial studies of PUFA extracts from Sardinella longiceps and Sardinella fimbriata. 4.1 Introduction

Antifungal activity of some plant extracts against Clinical Pathogens

International Journal of Research in Pharmaceutical and Nano Sciences Journal homepage:

Jl. Perintis Kemerdekaan KM.5 Makassar 90231, South Sulawesi Indonesia.

Antibacterial activities of extracts and their fractions of leaves of Tridax procumbens Linn

SCREENING OF ANTIMICROBIAL ACTIVITY OF OILS FROM DIFFERENT SPECIES OF OSCIMUM AGAINST PATHOGENIC BACTERIAL STRAINS

Received; accepted CHEMICAL COMPOSITION AND ANTIMICROBIAL PROPERTIES OF ESSENTIAL OIL OF AGONIS FLEXUOSA

Biomarkers as a Tool for Validation of Herbs and Spices

SCREENING THE BIOACTIVE POTENTIAL OF PROTEIN ISOLATED FROM CYPRINUS CARPIO. Iyyanuchamy, S.K and A. Periyanayagasamy*

Enhanced antibacterial potential of ethanolic extracts of neem leaf (Azadiracta indica A. Juss.) upon combination with bacteriocin

A Study of antimicrobial activity of some spices

INTERNATIONAL JOURNAL OF INSTITUTIONAL PHARMACY AND LIFE SCIENCES

International Journal of Pharma and Bio Sciences A COMPARITIVE STUDY OF ANTIMICROBIAL ACTIVITY OF SOME HERBS AND THEIR SYNERGISTIC EFFECT ABSTRACT

Available online at

Screening of Antimicrobials of some Medicinal Plants by TLC Bioautography

Influence of the crude Phenolic, Alkaloid and Terpenoid compounds extracts of Cardaria draba (Lepidium draba L.) on Human Pathogenic Bacteria

Research Article. Study on antibacterial activity of some medicinally important plants

Minimum Inhibitory Concentration (MIC) of antimicrobial activity in various dried extracts of Gnaphalium polycaulon, Indian folkloric medicinal plant

Preservative A15 Safe antimicrobial for cosmetics and pharmaceuticals

BMC Research Notes. Open Access RESEARCH NOTE. Jennifer Suurbaar *, Richard Mosobil and Addai Mensah Donkor *

Evaluation of Biological Activity (In-Vitro) of Some 2-Phenyl Oxazoline Derivatives

The textile material is goods carrier of various types

Antifungal activity of methanolic and ethanolic leaf extracts of medicinal plants

ANTIMICROBIAL ACTIVITY AND PHYTOCHEMICAL SCREENING OF SERIAL EXTRACTS FROM LEAVES OF AEGLE MARMELOS (LINN.)

Evaluation of Antimicrobial Efficacy of Flavonoids of Withania Somnifera L.

*MIAN SHAHZADA ZIA AHMAD & ZAHEER-UD-DIN KHAN. Department of Botany, GC University, Lahore. ABSTRACT INTRODUCTION

Antimicrobial activity of Trinpanchmool drugs

PRELIMINARY PHYTOCHEMICAL SCREENING AND ANTIMICROBIAL ACTIVITY OF DIFFERENT EXTRACTS OF Saccharum officinarum Linn (Ikshu) ROOTS

Mr. Vipul R. Suryavanshi Department of Pharmaceutical Analysis Bombay College of Pharmacy, Kalina, Santacruz (E), Mumbai

Pelagia Research Library. A Study on Antibacterial Properties of Rosa indica against Various Pathogens

Phytochemical screening and antibacterial properties of Garcinia kola

Antibacterial Activity of Boerhaavia diffusa L. (Punarnava) On certain Bacteria

Journal of Chemical and Pharmaceutical Research

Evaluation of antifungal activity of Zingiber officinale against Fusarium oxysporum f.sp. lycopersici

Phytochemical study and bioactivity of solvent extracts on Coriandrum sativum

Pharmacologyonline 3: (2009) Newsletter Maridass and Raju. Investigation of Phytochemical and Antimicrobial Activity of Huberzia Species

Jigna Parekh, Nehal Karathia and Sumitra Chanda*

Pharmacologyonline 2: (2011) ewsletter Tiwari et al. A EVALUATIO OF A TIMICROBIAL ACTIVITIES OF ROOT EXTRACT OF CALE DULA OFFICI ALIS (LI.

Journal of Chemical and Pharmaceutical Research

Roula M. Abdel-Massih Dept. of Biology, University of Balamand, Lebanon

[PHAR06] Anti Helicobacter pylori from extracts of ten species of Phyllanthus sp. with special emphasis on chloroform extracts of Phyllanthus pulcher

International Journal of Pharma and Bio Sciences

Puducherry. Antimicrobial activity, Crude drug extraction, Zone of Inhibition, Culture Media, RVSPHF567.

World Journal of Pharmaceutical and Life Sciences WJPLS

THE EFFECT OF ALKALOIDS AND FLAVONOIDS EXTRACTS OF VITEX DONIANA SEED ON SOME MICROORGANISMS

EVALUATION OF ANTIMICROBIAL ACTIVITY AND PHYTOCHEMICAL ANALYSIS OF Zingiber officinale (GINGER) RHIZOME EXTRACT

Evaluation of Antibacterial Effect of Odor Eliminating Compounds

Anti-Microbial Activities of Michelia champaca L. Essential Oil

Evaluation of Antibacterial Activity of Disulfiram.

CHAPTER 6 EVALUATION OF SELECTED PLANT EXTRACTS FOR EVALUATION OF SELECTED PLANT EXTRACTS FOR ANTI-ACNE ACTIVITY

Antimicrobial activity of Karuveppilai vadagam against Enteric pathogens

Life Science Archives (LSA)

Antimicrobial Activity of Black Fruit Variant of Solanum nigrum L.

THE ATRACTYLODES LANCEA EXTRACT FOR BACTERIAL RESISTANT IN TEXTILES

World Journal of Pharmaceutical and Life Sciences WJPLS

3. REVIEW OF LITERATURE

SUBMISSION OF THE FINAL REPORT OF THE WORK DONE ON THE PROJECT

Extraction and Pharmacological Evaluation of Some Extracts of Tridax procumbens and Capparis decidua

2. Samplying and Extraction

Evaluation of antimicrobial activity and Bidens biternata ehrenb Leaves

Evaluation of antimicrobial activity and phytochemical analysis of Citrus limon

CHAPTER 3 PHYTOCHEMICAL SCREENING AND ANTI-MICROBIAL ACTIVITY OF THE EXTRACTS OF SELECTED MEDICINAL PLANTS

International Journal of Advanced Research in Biological Sciences ISSN: Research Article

Antimicrobial Investigation and determination of total phenolic and flavonoid contents of Indian Propolis from Satpuda Hills of Maharashtra

Synthesis and Antimicrobial Evaluation of some 2-Azetidinone derivatives

Transcription:

In vitro Studies of Antimicrobial Activity of Crude Extracts of the Indian Grasses Dhaman (Cenchrus ciliaris) and Kala Dhaman (Cenchrus setigerus) PREMLATA SINGARIYA*, K. K. MOURYA 1 AND PADMA KUMAR Department of Botany, Laboratory of Tissue Culture and Secondary Metabolites, University of Rajasthan, Jaipur, 1 Department of Animal Husbandry, Pahari, Bharatpur-321 001, India Singariya, et al.: Antimicrobial Activity of Cenchrus ciliaris and C. setigerus The aim of present study was to investigate the antimicrobial activity of Cenchrus ciliaris and Cenchrus setigerus extracts in order to use it as a possible source for new antimicrobial substances against important human pathogens. Crude extracts of the stem of Cenchrus ciliaris and Cenchrus setigerus were evaluated against some medically important pathogens viz. Escherichia coli, Raoultella planticola, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Enterobacter aerogenes, Candida albicans and Aspergillus flavus. The dried and powdered stems were successively extracted with hexane, toluene, isopropyl alcohol, acetone and ethanol using soxhlet assembly. The antimicrobial activity assay was done by both disc diffusion and serial dilution methods. Isopropyl alcohol extract of Cenchrus setigerus showed highest activity against Escherichia coli. The test pathogens were more sensitive to the isopropyl alcohol, acetone and ethanol extracts than to the hexane and toluene extracts except against Bacillus subtilis. Result reveals that the most bioactive compound was cycloleucolenol 9,19 cycloergost 24 (28) en 3 ol, 4, 14 dimethyl acetate in both the species of Cenchrus grass, (19.15%) in isopropanol extract of Cenchrus setigerus whereas, (14.03%) in acetone extract of Cenchrus ciliaris. Key words: Bacillus subtilis, Candida albicans, Dhaman grass, Enterobacter aerogenes, Kala dhaman grass, Raoultella planticola The use of antibiotics has revolutionized the treatment of various bacterial infections [1]. However, in recent times, there have been increases in antibiotic resistant strains of clinically important pathogens [2]. The nonavailability and high cost of new generation antibiotics with a limited effective span has resulted in increase in morbidity and mortality, Therefore, there is a need to look for substances from other sources with proven antimicrobial activity [3]. A number of plants have been documented for their biological [4] and antimicrobial properties [5]. Dhaman (Cenchrus ciliaris) and Kala dhaman (Cenchrus setigerus) are known as C 4 grasses. These grasses are more competitive under the conditions of high temperature, solar radiation and low moisture. and are more efficient at gathering CO 2 and utilizing nitrogen from the atmosphere and recycled N in the soil. These grasses have an excellent soil binding capacity which helps to conserve soil in the desert areas [6]. The objective of present study was to evaluate the in vitro antimicrobial properties of crude *Address for correspondence E mail: premlatasingariya@gmail.com extracts of Cenchrus grass in different polar solvents with gentamycin and ketoconazole against six (two Gram positive and four Gram negative) different species of bacteria and two fungi. Stem extracts of C. ciliaris and C. setigerus prepared with a series of nonpolar to polar solvents by hot extraction method [7] in soxhlet assembly were first screened for antimicrobial activity by disc diffusion method [8] against a few medically important bacteria and fungi. The fraction showing best activity was then used for the assay of minimum inhibitory concentration (MIC) by tube dilution method [9]. Stems of C. ciliaris (RUBL 14118) and C. setigerus (RUBL 5299) were collected in the month of August 2009 from the Central Arid Zone Research Institute, Jodhpur, Rajasthan. Plant samples were identified and deposited in the herbarium, Department of Botany, University of Rajasthan, Jaipur. The collected plant materials were cleaned with water and selected plant parts were separately shade dried for 1 week. Shade dried parts were powdered with the help of a grinder. Fine powder May - June 2012 Indian Journal of Pharmaceutical Sciences 261

of each sample was stored in clean container to be used for Soxhlet extraction following the method of Subramanian and Nagarjan [10] in different polar solvents selected. Stems were sequentially extracted with different solvents according to their increasing polarity using Soxhlet apparatus for 18 h at a temperature not exceeding the boiling point of the respective solvent. The obtained extracts were filtered using Whatman No. 1 filter paper and then concentrated at 40 using an evaporator. The organisms used in this study were four Gram negative bacteria and two Gram positive bacteria namely, Escherichia coli (MTCC 46), Staphylococcus aureus (MTCC 3160), Raoultella planticola (MTCC 530), Pseudomonas aeruginosa (MTCC 1934), Bacillus subtilis (MTCC 121), Enterobacter aerogenes (MTCC 111), Candida albicans (MTCC 183) and Aspergillus flavus (MTCC 277). Selected pathogenic microorganisms were procured from Microbial Type Culture Collection, IMTECH, Chandigarh, India. Bacterial strains were grown and maintained on nutrient agar (NA) medium, whereas fungi were maintained on Sabouraud dextrose agar (SDA) medium. Disc diffusion assay (DDA) was performed for screening by standard method [11]. NA and SDA base plates were seeded with the bacterial and fungal inoculum, respectively (inoculum size 1 10 8 CFU/ml for bacteria and 1 10 7 cell/ml for fungi). Sterile filter paper discs (Whatman No. 1, 5 mm in diameter) were impregnated with 100 μl of each of the extracts to give a final concentration of 1 mg/disc (dissolve the extracts in dimethyl sulfoxide (DMSO) solvent) and left to dry in vaccuo so as to remove the residual solvent, which might interfere with the determination. Petri plates were preseeded with 15 ml of growth agar medium and 1.0 ml of inoculum. Extract discs were then placed on the seeded agar plates. Each extract was tested in triplicate with gentamycin (10 μg/ disc) and ketoconazole (10 0 μg/disc) as standard for bacteria and fungi, respectively. Activity index (AI) for each extract was calculated. MIC was determined as the least extract concentration which inhibited the growth of the test organisms [12]. Bacterial and fungal suspensions were used as negative controls, whereas broth containing standard drug was used as the positive control. Equal volumes of the various concentrations of each extract and nutrient broth were mixed in micro tubes to make up 0.5 ml of solution. 0.5 ml of McFarland standard of the organism suspension was added to each tube. The tubes were incubated aerobically and Minimum bactericidal concentration (MBC) was determined by subculturing and further incubated for 24 h. The highest dilution that yielded no single bacterial/ fungal colony was taken as the MBC/Minimum fungicidal concentration (MFC) (minimum microcidal concentration[mmc]). Total activity (TA) is the volume at which the test extract can be diluted with the ability to kill microbes. Maximum antibacterial activities were observed by ethanol extracts of C. setigerus, inhibition zone was (IZ) 16.67±0.28, AI was 0.696 against B. subtilis followed by isopropyl extracts which showed IZ 15.67±0.27 mm, AI 0.784 and IZ 14.5±0.64 mm,, AI 0.906, against E. coli and S. aureus, respectively, by the same. Maximum antifungal activity observed by the acetone extract of C. setigerus was IZ 9.17±0.28 mm, AI 0.573 against C. albicans and in C. ciliaris i.e. IZ 8.17±0.25 mm, AI 0.454 against A. flavus (by isopropyl extracts)(table 1). Minimum inhibitory concentration (MIC) and MMC values (Table 2) were evaluated for those plant extracts, which were showing activity in diffusion assay. In the present investigation, lowest MIC value 0.938 mg/ml was recorded by isopropanolic extracts of C. setigerus and 1.875 mg/ml by toluene, isopropanol and acetone extracts of C. ciliaris against S. aureus indicating significant antimicrobial potential. The preliminary phytochemical profiling for the stem extracts of both the species of Cenchrus was carried out, wherein the consistency was found to be sticky in the isopropyl extracts of C. setigerus whereas the other polar solvent extracts were found to be nonsticky. The yield mg/10 g±sd (w/w) of the extracts was also analysed wherein the highest yield was found in acetone extract of C. ciliaris, i.e. 648±9.51 and 348±9.22 in ethanol extract of C. setigerus (fig. 1). Amount of extract isolated from plant parts and TA was calculated (Table 3). Maximum TA values calculated were 40 ml against S. aureus, 10 ml against P. aeruginosa, B. subtilis bacteria and 16.40 ml against C. albicans, respectively. Interpretation on mass spectrum of GC MS was done using the database of National Institute of 262 Indian Journal of Pharmaceutical Sciences May - June 2012

Standard and Technology (NIST) having more than 62,000 patterns. The mass spectrum of the unknown component was compared with the spectrum of the known components stored in the NIST library. The most bioactive compound was cycloleucolenol 9,19 cycloergost 24 (28) en 3 ol, TABLE 1: INHIBITION ZONE AND ACTIVITY INDEX OF STEMS OF CENCHRUS GRASS IN DIFFERENT POLAR SOLVENTS AGAINST TESTED PATHOGENS Solvents with polarity Plants IZ (mm)* and AI Bio activity of stem extracts of Cenchrus against pathogens Escherichia coli Staphylococcus aureus Raoultella Pseudomonas planticola aeruginosa Bacillus subtilis Enterobacter aerogenes Aspergillus flavus Candida albicans Hexane (0.1) C.s. 76 IZ 7.17±0.24 9.33±0.26 11.17±0.24 AI 0.448 0.622 0.698 C.c. 358 IZ 12.67±0.24 7.17±0.26 7.33±0.24 AI 0.487 0.359 0.611 Toluene (2.4) C.s. 76 IZ 9.67±0.26 12.33±0.24 AI 0.645 0.44 C.c. 358 IZ 8.83±0.21 7.67±0.24 7.33±0.21 AI 0.552 0.384 0.407 Iso propyl Alcohol (3.4) Acetone (5.1) C.s. 76 IZ 15.67±0.27 14.5±0.64 8.17±0.24 7.17±0.24 9.33±0.24 AI 0.784 0.906 0.409 0.341 0.333 C.c. 358 IZ 12.50±0.64 10.50±0.64 8.17±0.25 AI 0.962 0.583 0.454 C.s. 76 IZ 10.33±0.22 7.5±0.64 8.17±0.24 10.67±0.27 9.17±0.28 AI 0.517 0.375 0.545 0.534 0.573 C.c. 358 IZ 8.83±0.27 7.67±0.24 AI 0.491 0.274 Ethanol (5.2) C.s. 76 IZ 7.33±0.22 9.67±0.25 16.67±0.28 AI 0.367 0.604 0.695 C.c. 358 IZ 10.50±0.64 9.17±0.27 AI 0.808 0.573 *All values are mean±sd, n=3. C.s. 76=Cenchrus setigerus, C.c. 358=Cenchrus ciliaris, IZ=Inhibition zone in mm±sd, AI Activity index TABLE 2: MINIMUM INHIBITORY CONCENTRATION AND MINIMUM MICROCIDAL CONCENTRATION OF STEMS OF CENCHRUS IN DIFFERENT POLAR SOLVENTS AGAINST TESTED PATHOGENS Solvents Plants MIC MMC Bio activity of stem extracts of Cenchrus against pathogens E. c. S. a. R. p. P. a. B. s. E. a. A. f. C. a. Hexane C.s. 76 MIC 7.5 7.5 3.75 MMC 15 15 3.75 C.c. 358 MIC 3.75 7.5 7.5 MMC 7.5 15 15 Toluene C.s. 76 MIC 3.75 1.875 MMC 7.5 3.75 C.c. 358 MIC 3.75 7.5 7.5 MMC 7.5 15 15 Isopropyl alcohol C.s. 76 MIC 3.75 1.875 7.5 7.5 7.5 MMC 3.75 3.75 7.5 15 15 C.c. 358 MIC 3.75 3.75 7.5 MMC 3.75 7.5 15 Acetone C.s. 76 MIC 3.75 7.5 7.5 3.75 3.75 MMC 7.5 15 15 7.5 7.5 C.c. 358 MIC 7.5 7.5 MMC 15 15 Ethanol C.s. 76 MIC 7.5 7.5 1.875 MMC 15 7.5 3.75 C.c. 358 MIC 1.875 7.5 MMC 3.75 15 C.s. 76=Cenchrus setigerus, C.c. 358=Cenchrus ciliaris, MIC=Minimum inhibitory concentration, MMC=Minimum microcidal concentration, E. c.=escherichia coli, S. a.=staphylococcus aureus, R. p.=raoultella planticola, P. a.=pseudomonas aeruginosa, B. s.=bacillus subtilis, E. a.=enterobacter aerogenes, A. f.=aspergillus flavus, C. a.=candida albicans May - June 2012 Indian Journal of Pharmaceutical Sciences 263

4,14 dimethyl acetate in both the species of Cenchrus grass, (19.15%) in isopropanol extract of C. setigerus whereas, (14.03%) in acetone extract of C. ciliaris. Antimicrobial activities of these grasses may be due to this compound (fig. 2). Antimicrobial activities (assessed in terms of IZ and AI) were recorded. Results of the present study showed that all the 10 extracts tested inhibited the growth of selected bacteria and fungi, indicating broad spectrum bioactive nature of the two selected plants (in C. setigerus and in C. ciliaris). Most Fig. 1: Total yields of extracts. Total yield (mg/10 g) of stem extracts of C. ciliaris and C. setigerus in different polar solvents susceptible organism in the investigation was B. subtilis against which, most of the plant extracts showed IZ. Isopropyl alcohol and acetone extracts in both species of Cenchrus express maximum antibacterial and antifungal activities, respectively, by suppressing the growth of all microbes (by low MIC and MMC values) under investigation. MMC values were found to be higher than the MIC values of the extracts against the microorganisms tested; and they indicate the bacteriostatic and fungistatic effects of the extracts. Five extracts of C. setigerus and four extracts of C. ciliaris were found to be bactericidal in nature. Isopropyl alcohol extracts of both the species of Cenchrus were bactericidal against S. aureus and P. aeruginosa. Gram negative bacteria P. aeruginosa was the second most susceptible organism after S. aureus, which supported the finding that plant extracts are usually more active against Gram positive bacteria than Gram negative [12]. Overall, the test pathogens were more sensitive to the isopropyl alcohol, acetone and ethanol extracts than to the hexane and toluene extract. This finding suggests that some of the active compounds in the crude extracts are polar, and thus dissolved readily Fig. 2: Mass spectrum of cycloleucolenol 9,19 cycloergost 24 (28) en 3 ol, 4,14 dimethyl acetate (RT: 33.82) TABLE 3: TOTAL ACTIVITY OF STEMS OF CENCHRUS IN DIFFERENT POLAR SOLVENTS AGAINST TESTED PATHOGENS Solvents Plants Colour Consistency Total activity of stem extracts against pathogens E.c. S.a. R.p. P.a. B.s. E.a. A. f. C.a. Hexane C.s 76 Colourless Nonsticky 1.83 1.83 3.65 C.c 358 Yellow Nonsticky 6.24 3.12 3.12 Toluene C.s 76 Brown Nonsticky 3.68 7.36 C.c 358 Light yellow Nonsticky 1.89 0.95 0.95 Isopropyl alcohol C.s 76 Dark brown Sticky 6.88 13.76 3.44 3.44 3.44 C.c 358 Yellow Nonsticky 2.91 2.91 1.45 8.53 Acetone C.s 76 Colourless Nonsticky 8.53 4.27 4.27 8.53 C.c 358 Yellow Nonsticky 8.64 8.64 Ethanol C.s 76 Pale green Nonsticky 4.64 4.64 18.56 C.c 358 Yellow Nonsticky 22.72 5.68 C.s. 76=Cenchrus setigerus, C.c. 358=Cenchrus ciliaris, E.c.=Escherichia coli, S.a.=Staphylococcus aureus, R.p.=Raoultella planticola, P.a.=Pseudomonas aeruginosa, B.s.=Bacillus subtilis, E.a.=Enterobacter aerogenes, A.f.=Aspergillus flavus, C.a.=Candida albicans 264 Indian Journal of Pharmaceutical Sciences May - June 2012

in the isopropyl alcohol, acetone and ethanol whereas the hexane and toluene extract may have dissolved out nonpolar compounds that possess less antimicrobial activity. Previous studies have noted alcohols to be reliable and consistent solvents for the extraction of antimicrobial substances from plants [13]. ACKNOWLEDGEMENTS The authors express their thanks to UGC for providing the funds for the valuable project under Dr. D. S. Kothari Postdoctoral fellowship scheme. REFERENCES 1. Arora DS, Kaur GJ. Antibacterial activity of some Indian medicinal plants. J Nat Med 2007;61:313 7. 2. Hart CA, Karriuri S. Antimicrobial resistance in developing countries. BMJ 1998;317:421 52. 3. Chopra I, Hodgson J, Metcalf B, Poste G. The search for antibacterial agents effective against bacteria resistant to multiple antibiotics. Antimicrob Agents Chemother 1997;41:497 503. 4. Grover JK, Yadav S, Vats V. Medicinal plants of India with anti diabetic potential. J Ethnopharmacol 2002;81:81 100. 5. Gajera HP, Patel SV, Golakiya BA. Antioxidant properties of some therapeutically active medicinal plants: An overview. J Med Aromat Plant Sci 2005;27:91 100. 6 Sinha RK, Bhatia S, Vishnoi R. Desertification control and rangeland management in the Thar desert of India. In: Rala Report no. 200; 1996. p. 115 23. 7. Harborne JB. Methods of plant analysis. In: Harborne JB, editor. Phytochemical Methods. 2 nd ed. London: Chapman and Hall; 1984. p. 5 6. 8. Andrews JM, BSAC Working Party On Susceptibility Testing ft. BSAC standardized disc susceptibility testing method. J Antimicrob Chemother 2001;48:43 57. 9. Omoregbe RE, Ikuebe OM, Ihimire IG. Antimicrobial activity of some medicinal plants extracts on Escherichia coli, Salmonella paratyphi and Shigella dysenteriae. Afr J Med Med Sci 1996;25:373 5. 10. Subramanian SS, Nagarjan S. Flavonoids of the seeds of Crotolaria retusa and Crotolaria striata. Curr Sci 1969;38:65-6. 11. Khanna P, Mohan S, Nag TN. Antimicrobials from plant tissue culture. Lloydia 1971;34:168 9. 12. Lin J, Opoku AR, Geheeb Keller M, Hutchings AD, Terblanche SE, Jäger AK, et al. Preliminary screening of some traditional zulu medicinal plants for anti inflammatory and anti microbial activities. J Ethnopharmacol 1999;68:267 74. 13. Ahmad I, Mehmood Z, Mohammad F. Screening of some Indian medicinal plants for their antimicrobial properties. J Ethnopharmacol 1998;62:183 93. Accepted May 22, 2012 Revised May 13, 2012 Received August 6, 2011 Indian J. Pharm. Sci., 2012, 74 (3): 261-265 Constituents of Artemisia gmelinii Weber ex Stechm. from Uttarakhand Himalaya: A Source of Artemisia Ketone S. Z. HAIDER, H. C. ANDOLA* AND M. MOHAN 1 Centre for Aromatic Plants (CAP), Industrial Estate, Selaqui 248 197, 1 Department of Chemistry, D. A. V. (P.G) College, Dehradun-248 001, India Haider, et al.: Constituents of Artemisia gmelinii The essential oils isolated from the aerial parts of two different populations of Artemisia gmelinii growing in Uttarakhand Himalaya region were analysed by gas chromatography and gas chromatography/mass spectrometry (GC MS) in order to determine the variation of concentration in their constituents. Artemisia ketone was detected as a major constituent in both the populations i.e., Niti valley and Jhelum samples. Niti oil was found to have considerably greater amounts of artemesia ketone (53.34%) followed by a thujone (9.91%) and 1,8 cineole (6.57%), Similarly, the first major compound in Jhelum oil was artemesia ketone (40.87%), whereas ar curcumene (8.54%) was identified as a second major compound followed by a thujone (4.04%). Artemisia ketone can be useful for perfumery and fragrance to introduce new and interesting herbaceous notes. Key words: Artemesia ketone, Artemisia gmelinii, Asteraceae, essential oil composition *Address for correspondence E mail: andolah@rediffmail.com May - June 2012 Indian Journal of Pharmaceutical Sciences 265