Epithelial membrane protein 1 expression in ovarian serous tumors

Similar documents
Characterization and significance of MUC1 and c-myc expression in elderly patients with papillary thyroid carcinoma

Correlation between expression and significance of δ-catenin, CD31, and VEGF of non-small cell lung cancer

Study on the expression of MMP-9 and NF-κB proteins in epithelial ovarian cancer tissue and their clinical value

Original Article CREPT expression correlates with esophageal squamous cell carcinoma histological grade and clinical outcome

Expression and Significance of GRP78 and HER-2 in Colorectal Cancer

High expression of fibroblast activation protein is an adverse prognosticator in gastric cancer.

Roles of the AIB1 protein in the proliferation and transformation of human esophageal squamous cell carcinoma

ACCURACY OF IMMUNOHISTOCHEMISTRY IN EVALUATION

Prognostic significance of nemo like kinase in nasopharyngeal carcinoma

Original Article Increased hepatocyte growth factor and c-met receptor expression in nasopharyngeal carcinoma

Astrocyte Elevated Gene 1 (AEG-1): A Promising Candidate for Molecular Targeted Therapy in Oral Squamous Cell Carcinomas

Senior of Histopathology Department at Khartoum, Radiation and Isotopes Center

The clinical value of detecting circulating tumour cells in the peripheral blood of nasopharyngeal carcinoma patients

H&E, IHC anti- Cytokeratin

Biomarker expression in normal fimbriae: Comparison of high- and low-grade serous ovarian carcinoma

Expression of Thyroid Transcription Factor-1 (TTF-1) in Lung Carcinomas and Its Correlations with Apoptosis and Angiogenesis

Interpretation of p53 Immunostains. P53 Mutations are Ubiquitous in High Grade Serous Carcinoma. Diffuse strong positive nuclear staining

Clinical significance of CD44 expression in children with hepatoblastoma

Trends in the incidence of thyroid cancer, Israel,

RCD24, B7-H4 and PCNA expression and clinical significance in ovarian cancer

EDUCATIONAL COMMENTARY CA 125. Learning Outcomes

Applications of IHC. Determination of the primary site in metastatic tumors of unknown origin

Roles of transcriptional factor Snail and adhesion factor E-cadherin in clear cell renal cell carcinoma

Higher expression of deoxyuridine triphosphatase (dutpase) may predict the metastasis potential of colorectal cancer

VENTANA MMR IHC Panel Interpretation Guide for Staining of Colorectal Tissue

Claudin-4 Expression in Triple Negative Breast Cancer: Correlation with Androgen Receptors and Ki-67 Expression

Histopathological Spectrum of Lesions in Fallopian Tube

CircHIPK3 is upregulated and predicts a poor prognosis in epithelial ovarian cancer

P16 GENE EXPRESSION IN OVARIAN EPITHELIAL CYSTADENOCARCINOMA

Is Ovarian Preservation Feasible in Early-Stage Adenocarcinoma of the Cervix?

MPH Quiz. 1. How many primaries are present based on this pathology report? 2. What rule is this based on?

VENTANA PD-L1 (SP142) Assay Guiding immunotherapy in NSCLC

Expression and clinical significance of ADAM17 protein in esophageal squamous cell carcinoma

Downregulation of long non-coding RNA LINC01133 is predictive of poor prognosis in colorectal cancer patients

The diagnostic value of determination of serum GOLPH3 associated with CA125, CA19.9 in patients with ovarian cancer

Cell Culture. The human thyroid follicular carcinoma cell lines FTC-238, FTC-236 and FTC-

Mir-595 is a significant indicator of poor patient prognosis in epithelial ovarian cancer

Original Article Clinical significance of SOX2 and snail expression in esophageal squamous cell carcinoma

Foxp3 is correlated with VEGF-C expression and lymphangiogenesis in cervical cancer

Catechin s anti-angiogenic effects in epithelial ovarian cancer

Low levels of serum mir-99a is a predictor of poor prognosis in breast cancer

Cancers of unknown primary : Knowing the unknown. Prof. Ahmed Hossain Professor of Medicine SSMC

ORIGINAL ARTICLE Stromal podoplanin expression and its clinicopathological role in breast carcinoma

Quiz. b. 4 High grade c. 9 Unknown

Assessment Run GATA3

Original contribution

Identifying ALK+ NSCLC patients for targeted treatment

Case Report Aggressive invasive micropapillary salivary duct carcinoma of the parotid gland

Current Concept in Ovarian Carcinoma: Pathology Perspectives

JMSCR Vol 05 Issue 11 Page November 2017

Function and clinical significance of SUMOylation in type I endometrial carcinoma

Supplementary Information

p53 expression in invasive pancreatic adenocarcinoma and precursor lesions

Correlation between survivin expression and prognosis in non-small cell lung cancer

Detection and Clinical Significance of Lymph Node Micrometastasis in Gastric Cardia Adenocarcinoma

Urinary Bladder: WHO Classification and AJCC Staging Update 2017

ACCME/Disclosures. Case History 4/13/2016. USCAP GU Specialty Conference Case 3. Ann Arbor, MI

Stage IIIC transitional cell carcinoma and serous carcinoma of the ovary have similar outcomes when treated with platinum-based chemotherapy

Expression of nestin in ovarian serous cancer and its clinicopathologic significance

Int. J. Curr. Res. Med. Sci. (2018). 4(7): 1-7. International Journal of Current Research in Medical Sciences

Role of peritoneal washing cytology in ovarian malignancies: correlation with histopathological parameters

The expression and significance of tumor associated macrophages and CXCR4 in non-small cell lung cancer

Prognostic value of thrombocytosis and the neutrophil/lymphocyte ratio in patients with gastric cancer: A retrospective study.

Carcinoembryonic antigen (CEA)

Case Report Five-Year Survival after Surgery for Invasive Micropapillary Carcinoma of the Stomach

Abnormality of p16/p38mapk/p53/wipl pathway in papillary thyroid cancer

Cancer incidence and patient survival rates among the residents in the Pudong New Area of Shanghai between 2002 and 2006

Thyroid transcription factor-1 (TTF1) Assessment run

Correlation between estrogen receptor β expression and the curative effect of endocrine therapy in breast cancer patients

Cytokeratin 5/6 expression in bladder cancer: association with clinicopathologic parameters and prognosis

GYNECOLOGIC MALIGNANCIES: Ovarian Cancer

Patterns of E.cadherin and Estrogen receptor Expression in Histological Sections of Sudanese Patients with Breast Carcinoma

OVERALL SURVIVAL IN PATIENTS WITH STAGE IV NON-SMALL CELL LUNG CANCER

Original Article CyclinD1 promotes lymph node metastasis by inducing lymphangiogenesis in human ovarian carcinoma

Clinicopathologic Implications of PIWIL2 Expression in Colorectal Cancer

Hypoxia inducible factor-1 alpha and carbonic anhydrase IX overexpression are associated with poor survival in breast cancer patients

Expression levels of survivin, Bcl-2, and KAI1 proteins in cervical cancer and their correlation with metastasis

The international health care burden of cancers of the gastrointestinal tract and liver

Expression of mir-1294 is downregulated and predicts a poor prognosis in gastric cancer

Cancer Cell Research 19 (2018)

Correlation Between GATA-3, Ki67 and p53 Expressions to Histopathology Grading of Breast Cancer in Makassar, Indonesia

Immunohistochemical Expressions of AKT, ATM and Cyclin E in Oral Squamous Cell Carcinoma

The clinical relevance of circulating, cell-free and exosomal micrornas as biomarkers for gynecological tumors

Borderline Ovarian Tumours. Andreas Obermair Brisbane

EGFR immunoexpression, RAS immunoexpression and their effects on survival in lung adenocarcinoma cases

Vascular endothelial growth factor (VEGF)-C, VEGF-D, VEGFR-3 and D2-40 expressions in primary breast cancer: Association with lymph node metastasis

How to Recognize Gynecologic Cancer Cells from Pelvic Washing and Ascetic Specimens

Vascular Endothelial Growth Factor Expression in Oral Epithelial Dysplasia and Oral Squamous Cell Carcinoma

Coordinate Expression of Cytokeratins 7 and 20 in Prostate Adenocarcinoma and Bladder Urothelial Carcinoma

Corporate Medical Policy

Nuclear overexpression of the overexpressed in lung cancer 1 predicts worse prognosis in gastric adenocarcinoma

Please complete prior to the webinar. HOSPITAL REGISTRY WEBINAR FEMALE REPRODUCTIVE SYSTEM EXERCISES CASE 1: FEMALE REPRODUCTIVE

Correlation of Vascular Endothelial Growth Factor Expression and Neovascularization with Colorectal Carcinoma: A Pilot Study

Središnja medicinska knjižnica

Original Article Expression of E-cadherin and vimentin in oral squamous cell carcinoma

Clinical significance of serum mir-196a in cervical intraepithelial neoplasia and cervical cancer

A Comparison of Endothelial Cell-Selective Adhesion Molecule and von Willebrand Factor Expression in Breast Cancer Growth and Metastasis

Value of serum galectin-3 and midkine level determination for assessing tumor severity in patients with thyroid cancer

Dr. dr. Primariadewi R, SpPA(K)

Transcription:

2140 Epithelial membrane protein 1 expression in ovarian serous tumors GUZIN GONULLU DEMIRAG 1, MEHMET KEFELI 2, YASEMIN KEMAL 1 and IDRIS YUCEL 1 Departments of 1 Medical Oncology and 2 Pathology, Faculty of Medicine, Ondokuz Mayis University, Samsun 53139, Turkey Received December 11, 2014; Accepted November 23, 2015 DOI: 10.3892/ol.2016.4202 Abstract. The present study aimed to analyze the clinical significance of epithelial membrane protein 1 (EMP1) expression in ovarian serous tumors. A total of 84 cases of ovarian serous tumor (50 patients with malignant ovarian serous tumors and 34 patients with borderline and benign serous tumors) were retrospectively analyzed. Differences in the expression levels of EMP1 between the malignant and non malignant tumor groups were evaluated by immunohistochemical staining. In addition, the association between EMP1 expression and prognostic factors in malignant ovarian serous tumors was investigated. The expression levels of EMP1 were significantly reduced in all the 50 malignant ovarian serous tumors, compared with the 34 non malignant ovarian serous tumors (P<0.000). Reduced expression of EMP1 was correlated with high grade (P=0.009) and stage (P<0.000) of malignant tumors. EMP1 expression was not observed to be correlated with any other investigated parameters, including surgery, type of operation and chemotherapy response (P>0.005). These results indicated that EMP1 may have a significant role as a negative regulator in ovarian serous tumors, and reduced EMP1 expression in serous tumors may be associated with increased disease severity. Introduction Ovarian cancer is the seventh most common cancer in women worldwide, with ~239,000 cases and 151,000 mortalities recorded in 2012 (1). Previous studies have revealed that nulliparous women possess an increased risk of developing epithelial ovarian cancer (EOC), while women who have previously given birth, breastfed, undergone tubal ligation or received oral contraceptives possess a reduced risk of Correspondence to: Dr Yasemin Kemal, Department of Medical Oncology, Faculty of Medicine, Ondokuz Mayıs University, Kurupelit Campus, Ataturk Bulvarı, Samsun 53139, Turkey E mail: drturkmen@yahoo.com Key words: epithelial membrane protein 1, serous tumors, ovary, prognosis developing EOC (2). Patients exhibiting EOC have been diagnosed with certain molecular abnormalities. However, the role of these molecular abnormalities in early malignant transformation remains to be elucidated (2). A previous study detected cytogenetic abnormalities, mutations in the proto oncogene p53 and overexpression of pro apoptotic genes (2). Lai et al (3) reported an association between epithelial membrane protein 1 (EMP1) expression and tumor development and progression. In particular, EMP1 was proposed to participate in the development and progression of non small cell lung cancer via activation of the phosphoinositide 3 kinase/akt signaling pathway (3). To the best of our knowledge, no previous studies describing the association between epithelial ovarian tumors and EMP1 expression have been reported to date. Serous tumors are the most frequently observed epithelial tumors of the ovaries (2). In the present study, the expression levels of EMP1 in patients with ovarian serous tumors were investigated using immunohistochemistry, and the association between EMP1 expression and certain clinical features of these patients was analyzed. Materials and methods Patient samples. Following approval from the ethics committee of Ondokuz Mayıs University (Samsun, Turkey; approval no. 568.2014), informed consent was obtained from all patients enrolled in the study. The present retrospective study included 84 cases of ovarian serous tumor who had been diagnosed between 2005 and 2013 at the Department of Pathology of the Faculty of Medicine of Ondokuz Mayıs University. Each sample had undergone routine hematoxylin (cat. no. 105175) and eosin staining (cat. no. 115935; Merck KGaA, Darmstadt, Germany), and all hematoxylin and eosin stained slides were re examined to confirm the original diagnosis. A total of 82 serous tumors were classified into three groups: i) Serous adenocarcinoma (n=50); ii) borderline serous tumor (n=16); and iii) benign serous tumor (n=18). All borderline serous tumors were categorized as classical type, and micropapillary serous borderline tumors were excluded from the study. All specimens were routinely fixed in formalin (cat. no. 104003; Merck KGaA) and processed in paraffin wax (cat. no. 107337; Merck KGaA). Representative samples were selected for immunohistochemistry, and the association between EMP1 expression and tumor type, grade,

DEMIRAG et al: EMP1 IN OVARIAN CANCER 2141 Table I. Clinicopathological features of patients with ovarian serous tumors. Variable Total patients, n (%) Age, years Mean ± standard deviation 57.6±11.9 CA125 levels at diagnosis, U/ml Median (range) 719 (18 5,000) Surgery TAH BSO 40 (83.3) Frozen pelvis 8 (16.7) Surgery success Optimal 16 (32.0) Suboptimal 34 (68.0) Stage I 11 (22.0) II 12 (24.0) III 15 (30.0) IV 12 (24.0) Chemotherapy response Complete 30 (62.5) Stable disease 3 (6.2) Progression 2 (4.2) Partial 13 (27.1) Grade Low 13 (26.0) High 37 (74.0) CA125, cancer antigen 125; TAH, total abdominal hysterectomy; BSO, bilateral salpingo oophorectomy. Table II. Expression of epithelial membrane protein 1 in patients with malignant vs. non malignant ovarian serous tumors. Malignant, Non malignant, Total, Score n (%) n (%) n (%) 0 22 (88.0) 3 (12.0) 25 (100.0) 1 5 (83.3) 1 (16.7) 6 (100.0) 2 14 (53.8) 12 (46.2) 26 (100.0) 3 9 (33.3) 18 (66.7) 27 (100.0) Total a 50 (59.5) 34 (40.5) 84 (100.0) a χ 2 =17.861 (Pearson's χ 2 test); P<0.0001 (degrees of freedom=3). stage and other prognostic parameters in EMP1 + patients was investigated. Immunohistochemical staining. Sections (4 µm) were prepared from routinely processed paraffin blocks. Slides were placed into an oven at 56 C for 1 h. All immunohistochemical stains were performed with BOND MAX Table III. Association between epithelial membrane protein 1 expression and tumor grade in malignant ovarian tissues. Score Low grade, n (%) High grade, n (%) Total, n (%) 0 1 (4.5) 21 (95.5) 22 (100.0) 1 1 (20.0) 4 (80.0) 5 (100.0) 2 6 (42.9) 8 (57.1) 14 (100.0) 3 5 (55.6) 4 (44.4) 9 (100.0) Total a 13 (26.0) 37 (74.0) 50 (100.0) a χ 2 =21.965 (Pearson's χ 2 test); P=0.009 (degrees of freedom=6).

2142 Table IV. Association between epithelial membrane protein 1 expression and tumor stage in malignant ovarian tissues. Score Stage I, n (%) Stage II, n (%) Stage III, n (%) Stage IV, n (%) Total, n (%) 0 0 (0.0) 1 (4.5) 10 (45.5) 11 (50.0) 22 (100.0) 1 1 (20.0) 0 (0.0) 3 (60.0) 1 (20.0) 5 (100.0) 2 4 (28.6) 8 (57.1) 2 (14.3) 0 (0.0) 14 (100.0) 3 6 (66.7) 3 (33.3) 0 (0.0) 0 (0.0) 9 (100.0) Total a 11 (22.0) 12 (24.0) 15 (30.0) 12 (24.0) 50 (100.0) a χ 2 =43.543 (Pearson's χ 2 test); P<0.0001 (degrees of freedom=9). A A B B C C D D Figure 1. Light microscopy images of epithelial membrane protein 1 (EMP1) expression in high grade ovarian serous adenocarcinoma samples. (A and B) Representative samples of ovarian serous adenocarcinoma demonstrating no expression of EMP1. Representative images of (C) weak and (D) strong staining for EMP1 (3,3' diaminobenzidine staining; magnification, x200). Figure 2. Light microscopy images of epithelial membrane protein 1 (EMP1) expression in borderline and benign ovarian serous tumor samples. Representative images of (A) weak and (B) strong staining for EMP1 in borderline serous tumor samples. (C and D) Strong staining for EMP1 in two representative benign serous tumor samples (3,3' diaminobenzidine staining; magnification, x200).

DEMIRAG et al: EMP1 IN OVARIAN CANCER 2143 autostainer (Leica Microsystems, Inc., Buffalo Grove, IL, USA). Antigen retrieval was performed by incubating the slides in citrate buffer (Thermo Fisher Scientific, Waltham, MA, USA) until the temperature reached 95 C. Slides were then incubated for 30 min at room temperature with primary rabbit anti human EMP1 antibody (cat. no. orb10588; polyclonal; 1:100 dilution; Biorbyt Ltd., Cambridge, UK), and revealed with the chromogen 3,3' diaminobenzidine (cat. no. 901 DB801 082914; Biocare Medical, Inc., Concord, CA, USA). Assessment of immunohistochemical staining. Pathologists assessed the stained slides blindly, with no knowledge of the pathological diagnosis, using light microscopy (Olympus BX51; Olympus Corporation, Tokyo, Japan). Cytoplasmic staining was considered to indicate positivity for EMP1. Each slide was evaluated according to the extent and intensity of staining. Samples were categorized as negative if <5% of tumor cells were positive for EMP1. Staining extent was assessed as the percentage of EMP1 + cells present in the sample, and scored semi quantitatively using the following 0 3 scale: i) 0, <5%; ii) 1, 5 25%; iii) 2, 26 50%; and iv) 3, 51 100%. Staining intensity was categorized into three groups based on the intensity of chromogen staining exhibited by the tumor cells: i) 0, negative; ii) 1, weak staining (light yellow); iii) 2, moderate staining (yellowish brown); and iv) 3, strong staining (brown). By adding the staining extent and intensity scores, a final score for EMP1 expression was calculated. Samples were divided into four groups, according to their final scores, as follows: i) 0, negative; ii) 2, weak staining; iii) 3 4, moderate staining; and iv) 5 6, strong staining. A final score of 1 was not possible based on the scoring system used. Statistical analyses. All statistical analyses were performed with SPSS software version 16.0 (SPSS, Inc., Chicago, IL, USA). χ 2 test was utilized to determine the P values for the clinicopathological features analyzed. P<0.05 indicated a statistically significant difference. Results Demographic characteristics and response rates. The characteristics of 50 malignant ovarian serous adenocarcinoma patients, who were evaluated in the present study, are summarized in Table I. The mean age of the patients was 57.6 years, with a median CA125 level at diagnosis of 719 U/ml (range, 18-5,000 U/ml). A total of 13 patients exhibited low-grade disease, while 37 patients exhibited high-grade disease. Of the 50 patients with malignant ovarian serous adenocarcinoma evaluated, the characteristics of 48 patients with available demographic characteristics and chemotherapy response rates were also summarized in Table I. A complete response was observed in 30 patients (62.5%), stable disease in 3 patients (6.2%), progression in 2 patients (4.2%) and partial response in 13 patients (27.1%). EMP1 expression. EMP1 was expressed in all the 50 cases of malignant ovarian serous adenocarcinoma. However, the expression levels of EMP1 in these patients were significantly reduced, compared with those observed in the 34 borderline and benign serous tumor cases (P<0.0001; Table II). Reduced expression of EMP1 was correlated with high grade (P=0.009; Table III) and stage (P<0.0001; Table IV; Figs. 1 and 2) of cancer. EMP1 expression was not correlated with any of the other investigated parameters, including surgery, operation type or chemotherapy response (P>0.005). Discussion The EMP1 gene encodes four ~18 kda transmembrane domains (4). EMP1 differs from EMP2 and EMP3 in terms of hydrophobic groups (4). Zoidl et al (5) revealed that EMP1 was significantly expressed in undifferentiated embryonic stem cells, while poorly expressed in differentiated adult cells, and appeared to be involved in prolonging the transition of Schwann cells from G to S/G 2 /M phase. The EMP membrane glycoprotein family is considered to be associated with cell proliferation and differentiation (6). Previous studies have demonstrated that the EMP1 gene is expressed in several normal tissues, including the colon, lung, testis and ovary (7 9). Sun et al (6 8), identified that the protein levels of EMP1 were significantly reduced in nasopharyngeal carcinoma, breast and prostate cancer, compared with normal tissue, and were correlated with T stage, lymph node metastasis and clinical stage in these tumors. In addition, Sun et al (9) identified that the expression levels of EMP1 were significantly reduced in gastric cancer tissues, compared with normal tissues, and observed that reduced EMP1 expression in gastric cancer was associated with increased disease severity. Similarly, the present study revealed that the expression levels of EMP1 were significantly reduced in patients with malignant serous tumors, compared with patients exhibiting benign and borderline serous tumors. In addition, this decrease in EMP1 expression in high grade and advanced stage tumors indicated that EMP1 expression may be associated with tumor grade and stage. Gnirke and Weidle (10) demonstrated that EMP1 expression was correlated with cell invasion and metastatic characteristics in several human mammary carcinoma cell lines. Wang et al (11) reported that the EMP1 gene may act as a regulatory factor in cell signaling, communication and adhesion. Zhang et al (12) observed that the downregulation of the EMP1 gene was correlated with lymph node metastasis. Sun et al (6) reported that the protein levels of caspase 9 increased significantly with the levels of EMP1, which indicated that the mitochondrial dependent apoptosis pathway may be involved in EMP1 induced apoptosis. Vascular endothelial growth factor C (VEGFC) promotes the proliferation of endothelial cells, increases vascular permeability, and acts as an essential factor for tumor angiogenesis, invasion and metastasis (6). Sun et al (6) demonstrated that VEGFC expression was significantly decreased following transfection with EMP1, which suggested that EMP1 was able to inhibit tumor angiogenesis by suppressing VEGFC expression and tumor metastasis. In conclusion, EMP1 may possess a significant role in ovarian cancer cell proliferation, apoptosis, invasion and metastasis, and may be involved in a number of biological functions. Further extensive studies on EMP1 are required to aid the development

2144 of novel therapy options for the treatment of ovarian cancer, and the potential identification of novel prognostic factors. References 1. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D and Bray F: GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. IARC, Lyon, France, 2013. http://globocan.iarc.fr. Accessed December 31, 2015. 2. Cannistra SA, Gershenson DM and Recht A: Ovarian cancer, fallopian tube carcinoma and peritoneal carcinoma. In: DeVita, Hellman, and Rosenberg's Cancer: Principles and practice of oncology. DeVita DT, Lawrence TS and Rosenberg SA (eds). Vol 2. 9th edition. Lippincott Williams & Wilkins, Philadelphia, PA, pp1368 1391, 2011. 3. Lai S, Wang G, Cao X, Li Z, Hu J and Wang J: EMP 1 promotes tumorigenesis of NSCLC through PI3K/AKT pathway. J Huazhong Univ Sci Technolog Med Sci 32: 834 838, 2012. 4. Lobsiger CS, Magyar JP, Taylor V, et al: Identification and characterization of a cdna and the structural gene encoding the mouse epithelial membrane protein 1. Genomics 36: 379 387, 1996. 5. Zoidl G, Blass Kampmann S, D'Urso D, Schmalenbach C and Müller HW: Retroviral mediated gene transfer of the peripheral myelin protein PMP22 in Schwann cells: Modulation of cell growth. EMBO J 14: 1122 1128, 1995. 6. Sun GG, Wang YD, Cui DW, Cheng YJ and Hu WN: EMP1 regulates caspase 9 and VEGFC expression and suppresses prostate cancer cell proliferation and invasion. Tumour Biol 35: 3455 3462, 2014. 7. Sun GG, Lu YF, Fu ZZ, Cheng YJ and Hu WN: EMP 1 inhibitis nasopharyngeal cancer cell growth and metastasis through induction apoptosis and angiogenesis. Tumour Biol 35: 3185 3193, 2014. 8. Sun GG, Wang YD, Lu YF and Hu WN: EMP 1, a member of a new family of antiproliferative genes in breast carcinoma. Tumour Biol 35: 3347 3354, 2014. 9. Sun G, Zhao G, Lu Y, Wang Y and Yang C: Association of EMP1 with gastric carcinoma invasion, survival and prognosis. Int J Oncol 45: 1091 1098, 2014. 10. Gnirke AU and Weidle UH: Investigation of prevalence and regulation of expression of progression associated protein (PAP). Anticancer Res 18: 4363 4369, 1998. 11. Wang HT, Kong JP, Ding F, Wang XQ, Wang MR, Liu LX, Wu M and Liu ZH: Analysis of gene expression profile induced by EMP 1 in esophageal cancer cells using cdna microarray. World J Gastroenterol 9: 392 398, 2003. 12. Zhang J, Cao W, Xu Q and Chen WT: The expression of EMP1 is downregulated in oral squamous cell carcinoma and possibly associated with tumour metastasis. J Clin Pathol 64: 25 29, 2011.