Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis

Similar documents
Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis

How Cells Divide. Chapter 10

Chapter 8 The Cell Cycle

Why do cells divide? Cells divide in order to make more cells they multiply in order to create a larger surface to volume ratio!!!

The Process of Cell Division

The Cell Cycle. Packet #9. Thursday, August 20, 2015

Mitosis. AND Cell DiVISION

Cell Cycle. Interphase, Mitosis, Cytokinesis, and Cancer

Almost every cell in the human body has an identical set of 46 chromosomes, produced through the process of mitosis.

Mitosis and Cytokinesis

Cellular Reproduction, Part 1: Mitosis Lecture 10 Fall 2008

Name: Date: Block: 10-2 Cell Division Worksheet

Mitosis and the Cell Cycle

Creating Identical Body Cells

Genetics and Cellular Function

Biology is the only subject in which multiplication is the same thing as division

Outline Interphase Mitotic Stage Cell Cycle Control Apoptosis Mitosis Mitosis in Animal Cells Cytokinesis Cancer Prokaryotic Cell Division

Chapter 2. Mitosis and Meiosis

10-2 Cell Division. Chromosomes

Mitosis & Meiosis. Diploid cells- (2n)- a cell that has 2 of each chromosome - 1 from mom, 1 from dad = 1 pair

BIOLOGY - CLUTCH CH.12 - CELL DIVISION.

Ploidy and Human Cell Types. Cell Cycle and Mitosis. DNA and Chromosomes. Where It All Began 11/19/2014. Chapter 12 Pg

Biology is the only subject in which multiplication is the same thing as division

Biology is the only subject in which multiplication is the same thing as division

Cell Division (Mitosis)

APGRU4L1 Chap 12 Extra Reading Cell Cycle and Mitosis

The Cell Cycle. Chapter 10

The Cell Cycle and How Cells Divide

meiosis asexual reproduction CHAPTER 9 & 10 The Cell Cycle, Meiosis & Sexual Life Cycles Sexual reproduction mitosis

CELL CYCLE INTRODUCTION PART I ANIMAL CELL CYCLE INTERPHASE

Mitosis and Cellular Division. EQ: How do the cells in our body divide?

10-2 Cell Division. Slide 1 of 38. End Show. Copyright Pearson Prentice Hall

-The cell s hereditary endowment of DNA -Usually packaged into chromosomes for manageability

Biology is the only subject in which multiplication is the same thing as division

Cell Cycle and Mitosis

KEY CONCEPT Cells have distinct phases of growth, reproduction, and normal functions. The cell cycle has 4 main stages. The cell cycle is a regular

Cell Division and Mitosis

Chromosomes & Cell Division

Cell Division. The Process of Cell Division Section Section 10.2: The Process of Cell Division 12/8/2010

10-2 Cell Division mitosis. cytokinesis. Chromosomes chromosomes Slide 1 of 38

Chapter 10. Cell Growth and Division

Biology is the only subject in which multiplication is the same thing as division. AP Biology

Part II The Cell Cell Division, Chapter 2 Outline of class notes

Unit 4 Student Notes Cell Cycle

Mitosis THE CELL CYCLE. In unicellular organisms, division of one cell reproduces the entire organism Multicellular organisms use cell division for..

Omnis cellula e cellula

Genes and Proteins. Key points: The DNA must be copied and then divided exactly so that each cell gets an identical copy.

Biology is the only subject in which multiplication is the same thing as division

Chapter 12 The Cell Cycle: Cell Growth, Cell Division

Prentice Hall Biology Slide 1 of 38

Mitosis: Cell Division

Chapter 6. Cell Reproduction

Chromosomes and Cell Cycle

3/19/17. Chromosomes. Chromosome Structure. Chromosome Structure. Chromosome Structure. Chapter 10: Cell Growth & Division

Cell Division. Chromosome structure. Made of chromatin (mix of DNA and protein) Only visible during cell division

Cell Growth and Division *

Cell Division Mitosis Notes

Chapter 10 Chromosomes and Cell Reproduction

Mitosis: cell division that forms identical daughter cells with the same number of chromosomes as the parent cell (duplicate and divide)

Mitosis. An Introduction to Genetics. An Introduction to Cell Division

Unit 9: The Cell Cycle

Origin of replication. Septum

Bacterial cell. Origin of replication. Septum

Reproduction is a fundamental property of life. Cells are the fundamental unit of life. Reproduction occurs at the cellular level with one mother

U3.2.3: Eukaryotic chromosomes are linear DNA molecules associated with histone proteins. (Oxford Biology Course Companion page 151).

10-2 Cell Division. Copyright Pearson Prentice Hall

Why do cells reproduce?

Histones- protein molecules that are used to fold and package DNA into chromosomes.

CELL CYCLE INTRODUCTION PART I ANIMAL CELL CYCLE INTERPHASE EVOLUTION/HEREDITY UNIT. Activity #3

Biology is the only subject in which multiplication is the same thing as division

The Cellular Basis of Reproduction and Inheritance

Unit 9: The Cell Cycle

Chapter 10 Cell Growth and Division

Cell Division. During interphase, a cell s DNA is in a loose form called. It condenses into tightly coiled structures called chromosomes during.

Genetics. Instructor: Dr. Jihad Abdallah Lecture 2 The cell cycle and Cell Division

The Cell Cycle CHAPTER 12

The Cell Cycle. Materials 2 pipe cleaners of one color and 2 of another color Drawing paper

Montana Comprehensive Assessment System (MontCAS, Phase 2)

Name Date Class. Interphase. (1) The. grows. DNA is duplicated.

Cell division functions in 1. reproduction, 2. growth, and 3. repair

Cell Division Mitosis Notes

BIOLOGY 111. CHAPTER 9: The Links in Life s Chain Genetics and Cell Division

MITOSIS AND THE CELL CYCLE PowerPoint Notes

9 The Cell Cycle CAMPBELL BIOLOGY IN FOCUS. Urry Cain Wasserman Minorsky Jackson Reece

Cell Cycle Notes --PreAP

Unduplicated. Chromosomes. Telophase

Part I: The Cell Cycle

Cell Division. Learning Objectives: Introduction. Revised Fall 2018

Cell Growth, Division, & Reproduction

The Cell Cycle. Dr. SARRAY Sameh, Ph.D

Chapter 8: Cellular Reproduction

T R L J. Version 2, 2018 NAME: OPTION GROUP: CELL DIVISION MITOSIS WORKBOOK

Chapter 12. The Cell Cycle

Cell Growth and Division

Cell Cycle - Introduction

BIOLOGY. Cell Cycle - Mitosis. Outline. Overview: The Key Roles of Cell Division. identical daughter cells. I. Overview II.

Chapter 12 The Cell Cycle

Cell Cycle/Mitosis -Notes-

Chapter 10. Cell Cycle - Mitosis

NOTES- CHAPTER 6 CHROMOSOMES AND CELL REPRODUCTION

Transcription:

Breaking Up is Hard to Do (At Least in Eukaryotes) Mitosis Chromosomes Chromosomes were first observed by the German embryologist Walther Fleming in 1882. Chromosome number varies among organisms most eukaryotes have between 10 and 50 chromosomes in their somatic cells Chromosomes are paired in somatic cells these pairs are called homologous chromosomes, or homologues homologues contain information about the same traits but the information may vary cells that have two of each type of chromosome are called diploid cells one chromosome of each pair is inherited from the mother and the other is inherited from the father Prior to cell division, each of the homologous chromosomes replicates, forming two identical copies called sister chromatids the sister chromatids are joined together by a structure called a centromere humans have 23 pairs of homologous chromosomes The difference between homologous chromosomes and sister chromatids A karyotype is an arrangement of chromosomes Chromosomes can be compared based on size, shape, and centromere location The karyotype at right shows the 23 pairs of human chromosomes Chromosomes are comprised of chromatin, a complex of DNA (~ 40%) and protein (~ 60%). A typical human chromosome contains about 140 million nucleotides in its DNA. This is equivalent to About 5 cm in stretched length 2,000 printed books of 1,000 pages each! there is also some RNA associated with chromosomes the DNA in a chromosome is one very long double-stranded fiber that extends unbroken for the length of the chromosome the DNA is coiled in order to allow it to fit into a small space despite being very long DNA is coiled around proteins called histones the histones have positive charges to counteract the negative charges associated with the phosphate groups of the DNA The DNA coils around a core of eight histone proteins to form a complex called a nucleosome the nucleosomes in turn can be coiled together further to form ultimately a compact chromosome

Levels of eukaryotic chromosomal organization Eukaryotes Have a More Complex Cell Cycle Eukaryotic cells contain more DNA than prokaryotic cells and the DNA is also packaged differently cell division in eukaryotic cells is more complex DNA in eukaryotic cells is linear and packaged into a compact chromosome there is more than one chromosome in a eukaryotic cell Eukaryotic cells undergo two different mechanisms to divide up the DNA mitosis is a cell division mechanism that occurs in non-reproductive cells these cells are called somatic cells meiosis is a cell division mechanism that occurs in cells that participate in sexual reproduction these cells are called germ cells The Cell Cycle The cell cycle is an ordered set of events, culminating in cell growth and division into two daughter cells. Non-dividing cells are not considered to be in the cell cycle. The phases in the cell cycle are G1-S-G2-M. G1-S-G2 together make up what is known commonly as Interphase. These are the traditional subdivisions used, however, sometimes there is a G0 phase. The G Phases of the Cell Cycle The G1 phase stands for "GAP 1". It is the interval between the completion of mitosis and the beginning of DNA synthesis. Most cells spend the majority of their lifespan in this phase The G2 phase stands for "GAP 2". It is the interval between the end of DNA synthesis and the beginning of mitosis. Further preparation for cell division, including replication of mitochondria and synthesis of microtubules During G1, the cell looks over its environment and its current size. If everything looks right, the step is taken to commit the cell to DNA replication and completion of the cell cycle. The G2 phase provides a safety gap for the cell to ensure that DNA replication is complete before the cell is thrown into cell division. G0 is a place where, the cell can rest or pause, if the cell has not committed itself to DNA replication. The S Phase The S phase stands for "Synthesis". This is the stage when DNA replication occurs. In this phase, the cell s genome (DNA) is doubled. The DNA in this phase is, at this point, prepared to undergo division in the M phase.

The M phase stands for "mitosis", and is when nuclear (chromosomes separate) and cytoplasmic (cytokinesis) division occur. Cell Division Interphase sets the stage for cell division chromosomes are first duplicated although not visible, chromosomes begin to wind up tightly in a process called condensation sister chromatids are held together by a protein complex called cohesin The cell division that follows interphase is a division of the nuclear contents, known as mitosis mitosis is a continuous process but it is divided, for ease of study, into four distinct stages 1. Prophase 2. Metaphase 3. Anaphase 4. Telophase Prophase The beginning of mitosis and the point where the condensed chromosomes first become visible The nuclear envelope begins to disintegrate and the nucleolus disappears Centrioles separate in the center of the cell and migrate to opposite ends ( poles ) of the cell the centrioles start to form a network of protein cables called the spindle each cable in the spindle is made of microtubules some of the microtubules extend toward the centromere of the chromosomes these microtubules will grow from each pole until attached to a centromere at a disc of protein called a kinetochore Metaphase Spindle fibers align the chromosomes along the middle of the cell nucleus. The centromeres are aligned along an imaginary plane that divides the cell in half, known as the equatorial plane This organization helps to ensure that in the next phase, when the chromosomes are separated (into individual chromatids), each new nucleus will receive one copy of each chromosome. Anaphase The centromeres replicate and the paired chromosomes separate at the kinetochores and move to opposite sides of the cell. Enzymes break the cohesin and the kinetochores Motion results from a combination of kinetochore movement along the spindle microtubules and through the physical interaction of polar microtubules. Simply, the microtubules are reeled in towards the centrioles. This gives each pole a set of chromosomes.

Telophase Chromosomes arrive at opposite poles of cell, and new membranes form around the daughter nuclei. The chromosomes disperse and are no longer visible under the light microscope. The spindle fibers disperse, and cytokinesis or the partitioning of the cell may also begin during this stage. Cytokinesis Occurs at the end of mitosis and is a division of the cytoplasm into roughly equal halves in animals, cytokinesis occurs by actin filaments contracting and pinching the cell in two this action is evident as a cleavage furrow that appears between the daughter cells (which can be seen at the end of Telophase) in plants, a new cell wall is laid down to divide the two daughter cells the cell wall grows at right angles to the mitotic spindle and is called the cell plate Controlling the Cell Cycle The cell cycle is controlled by checkpoints to ensure that a previous phase is fully completed before advancing to the next phase feedback from the cell determines whether the cycle switches to the next stage three principal checkpoints control the cycle in eukaryotes G1, G2, and M checkpoints G1 checkpoint this checkpoint makes the decision about whether the cell should divide and enter S some cells never pass this point and are said to be in G0 G2 checkpoint this checkpoint leads to mitosis M checkpoint this checkpoint occurs during metaphase and triggers the exit process of the M phase and entry to the G1 phase Nothing lasts forever Cells can die by injury due to exposure to toxic chemicals, hard mechanical damage, or programmed cell death. Programmed cell death (apoptosis) is a process in which the cell ends its own life. Apoptosis results in cell shrinking, the mitochondria releasing toxic substances, the nuclear material degrading, etc. How does it know? Well, signals alert the cell as to when it should die. If positive signals are withdrawn (growth factors are gone), then the cell sees no reason to carry on. If negative signals are given (toxicity or oxidative damage) then the cell will die to

prevent harm to the organism that it resides in. Unprogrammed cell death (necrosis) occurs when the cell dies by the other means mentioned. Injury, mechanical stress, and lack of blood flow can all be classified as necrosis. What Is Cancer? Cancer is a growth disorder of cells begins when apparently normal cells grow uncontrollably and spread to other parts of the body the result is a growing cluster of cells called a tumor benign tumors are surrounded by a healthy layer of cells (also known as encapsulated) and do not spread to other areas malignant tumors are not encapsulated and are invasive cells from malignant tumors leave and spread to different areas of the body to form new tumors» these cells are called metastases Cancer is caused by a genetic disorder in somatic tissue in which damaged genes fail to properly control the cell cycle mutations cause damage to genes may result from chemical or environmental exposure, such as UV rays viral exposure may also alter DNA There are two general classes of genes that are usually involved in cancer proto-oncogenes these genes encode proteins that stimulate cell division mutations to these genes can cause cell to divide excessively when mutated, these genes become oncogenes tumor-suppressor genes these genes normally turn off cell division in healthy cells when mutated, these genes allow uncontrolled cell division Cancer and Control of the Cell Cycle Cancer results from damaged genes failing to control cell division one such gene, p53, affects the G1 checkpoint its normal action is to detect abnormal DNA it prevents cell division of a cell with damaged DNA until the DNA is repaired or directs the cell to be destroyed if the damage cannot be fixed if this gene itself becomes damaged, it will allow damaged cells to divide unchecked