Autosomal Dominant Orthostatic Hypotensive Disorder Maps to Chromosome 18q

Similar documents
Dan Koller, Ph.D. Medical and Molecular Genetics

Stat 531 Statistical Genetics I Homework 4

Effects of Stratification in the Analysis of Affected-Sib-Pair Data: Benefits and Costs

Introduction to linkage and family based designs to study the genetic epidemiology of complex traits. Harold Snieder

Genetics and Genomics in Medicine Chapter 8 Questions

Letters to the Editor

Chapter 2. Linkage Analysis. JenniferH.BarrettandM.DawnTeare. Abstract. 1. Introduction

During the hyperinsulinemic-euglycemic clamp [1], a priming dose of human insulin (Novolin,

Combined Analysis of Hereditary Prostate Cancer Linkage to 1q24-25

Performing. linkage analysis using MERLIN

Suggestion of a major gene for familial febrile

Genome - Wide Linkage Mapping

Genome Scan Meta-Analysis of Schizophrenia and Bipolar Disorder, Part I: Methods and Power Analysis

Genetics Unit Exam. Number of progeny with following phenotype Experiment Red White #1: Fish 2 (red) with Fish 3 (red) 100 0

Nonparametric Linkage Analysis. Nonparametric Linkage Analysis

D.R. Nyholt, BSc Rons; R.A. Lea, BSc Rons; P.J.Goadsby, MD, PhD; P.J.Brimage, FRACP; and L.R. Griffiths, PhD

Exam #2 BSC Fall. NAME_Key correct answers in BOLD FORM A

Problem set questions from Final Exam Human Genetics, Nondisjunction, and Cancer

Linkage Analyses at the Chromosome 1 Loci 1q24-25 (HPC1), 1q (PCAP), and 1p36 (CAPB) in Families with Hereditary Prostate Cancer

MULTIFACTORIAL DISEASES. MG L-10 July 7 th 2014

Abstract. Introduction. RBMOnline - Vol 8. No Reproductive BioMedicine Online; on web 10 December 2003

Effect of Genetic Heterogeneity and Assortative Mating on Linkage Analysis: A Simulation Study

Chapter 1 : Genetics 101

Complex Multifactorial Genetic Diseases

Solutions to Genetics Unit Exam

Genomewide Linkage of Forced Mid-Expiratory Flow in Chronic Obstructive Pulmonary Disease

SSN SBPM Workshop Exam One. Short Answer Questions & Answers

BST227 Introduction to Statistical Genetics. Lecture 4: Introduction to linkage and association analysis

Chapter 7: Pedigree Analysis B I O L O G Y

Genetics Review. Alleles. The Punnett Square. Genotype and Phenotype. Codominance. Incomplete Dominance

Pedigree Analysis. A = the trait (a genetic disease or abnormality, dominant) a = normal (recessive)

Insights from whole genome sequencing of a family with Venous Thromboembolism

Introduction to Genetics and Genomics

Chapter 4 PEDIGREE ANALYSIS IN HUMAN GENETICS

Genetics Mutations 2 Teacher s Guide

Familial Chordoma, a Tumor of Notochordal Remnants, Is Linked to Chromosome 7q33

POSTURAL ORTHOSTATIC TACHYCARDIA SYNDROME (POTS) IT S NOT THAT SIMPLE

National Disease Research Interchange Annual Progress Report: 2010 Formula Grant

Psych 3102 Lecture 3. Mendelian Genetics

Human Heredity: The genetic transmission of characteristics from parent to offspring.

GENETICS - NOTES-

BIOLOGY - CLUTCH CH.15 - CHROMOSOMAL THEORY OF INHERITANCE

B-4.7 Summarize the chromosome theory of inheritance and relate that theory to Gregor Mendel s principles of genetics

Problem 3: Simulated Rheumatoid Arthritis Data

IS IT GENETIC? How do genes, environment and chance interact to specify a complex trait such as intelligence?

Blood pressure QTLs identified by genome-wide linkage analysis and dependence on associated phenotypes

A Unified Sampling Approach for Multipoint Analysis of Qualitative and Quantitative Traits in Sib Pairs

Meiotic Mistakes and Abnormalities Learning Outcomes

Linkage of creatinine clearance to chromosome 10 in Utah pedifunction that can be detected while subjects are still healthy.

Mendelian Inheritance. Jurg Ott Columbia and Rockefeller Universities New York

Challenges of CGH array testing in children with developmental delay. Dr Sally Davies 17 th September 2014

Lecture 6: Linkage analysis in medical genetics

Lab Activity 36. Principles of Heredity. Portland Community College BI 233

Multifactorial Inheritance

Lecture 17: Human Genetics. I. Types of Genetic Disorders. A. Single gene disorders

Global variation in copy number in the human genome

Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Patterns of Inheritance

LINKAGE ANALYSIS IN PSYCHIATRIC DISORDERS: The Emerging Picture

Alzheimer Disease and Complex Segregation Analysis p.1/29

Non-Mendelian inheritance

A Genomewide Screen in a Four-Generation Dutch Family with Celiac Disease: Evidence for Linkage to Chromosomes 6 and 9

Evidence for linkage of nonsyndromic cleft lip with or without cleft palate to a region on chromosome 2

Pedigree Analysis Why do Pedigrees? Goals of Pedigree Analysis Basic Symbols More Symbols Y-Linked Inheritance

Mendelian & Complex Traits. Quantitative Imaging Genomics. Genetics Terminology 2. Genetics Terminology 1. Human Genome. Genetics Terminology 3

Name Class Date. KEY CONCEPT The chromosomes on which genes are located can affect the expression of traits.

5/2/18. After this class students should be able to: Stephanie Moon, Ph.D. - GWAS. How do we distinguish Mendelian from non-mendelian traits?

By Mir Mohammed Abbas II PCMB 'A' CHAPTER CONCEPT NOTES

ORIGINAL ARTICLE. Genomewide Linkage Analysis to Presbycusis in the Framingham Heart Study

E). Children regress; become vegetative, and 5). Autosomal dominant; shows anticipation.

HST.161 Molecular Biology and Genetics in Modern Medicine Fall 2007

22q11.2 DELETION SYNDROME. Anna Mª Cueto González Clinical Geneticist Programa de Medicina Molecular y Genética Hospital Vall d Hebrón (Barcelona)

Literature databases OMIM

Lecture 1 Mendelian Inheritance

Basic Definitions. Dr. Mohammed Hussein Assi MBChB MSc DCH (UK) MRCPCH

What favorite organism of geneticists is described in the right-hand column?

Genome-wide Association Analysis Applied to Asthma-Susceptibility Gene. McCaw, Z., Wu, W., Hsiao, S., McKhann, A., Tracy, S.

GENETIC LINKAGE ANALYSIS

CS2220 Introduction to Computational Biology

A gene is a sequence of DNA that resides at a particular site on a chromosome the locus (plural loci). Genetic linkage of genes on a single

Linkage of a bipolar disorder susceptibility locus to human chromosome 13q32 in a new pedigree series

IVF Michigan, Rochester Hills, Michigan, and Reproductive Genetics Institute, Chicago, Illinois

(b) What is the allele frequency of the b allele in the new merged population on the island?

INTRODUCTION POTS is: Poorly understood Rarely considered SIGNIFICANT morbidity Appropriate initial diagnosis & care will expedite management of POTS

Lab Activity Report: Mendelian Genetics - Genetic Disorders

Mendelian Genetics. KEY CONCEPT Mendel s research showed that traits are inherited as discrete units.

droxidopa (Northera )

Introduction to the Genetics of Complex Disease

Lecture 6 Practice of Linkage Analysis

An Introduction to Quantitative Genetics I. Heather A Lawson Advanced Genetics Spring2018

Downloaded from

Human Genetics 542 Winter 2018 Syllabus

MCB140: Second Midterm Spring 2010

Non-parametric methods for linkage analysis

Hypertension The normal radial artery blood pressures in adults are: Systolic arterial pressure: 100 to 140 mmhg. Diastolic arterial pressure: 60 to

SNP Array NOTE: THIS IS A SAMPLE REPORT AND MAY NOT REFLECT ACTUAL PATIENT DATA. FORMAT AND/OR CONTENT MAY BE UPDATED PERIODICALLY.

Pedigree Construction Notes

Cardiac Pathophysiology

Human Genetics 542 Winter 2017 Syllabus

Linkage analysis: Prostate Cancer

Multifactorial Inheritance. Prof. Dr. Nedime Serakinci

Transcription:

Am. J. Hum. Genet. 63:1425 1430, 1998 Autosomal Dominant Orthostatic Hypotensive Disorder Maps to Chromosome 18q Anita L. DeStefano, 1,2 Clinton T. Baldwin, 3 Michael Burzstyn, 2,* Irene Gavras, 2 Diane E. Handy, 2 Oscar Joost, 3 Timothy Martel, 3 Michael Nicolaou, 1 Faina Schwartz, 2 David H. P. Streeten, 4 Lindsay A. Farrer, 1,2 and Haralambos Gavras 2 Departments of 1 Neurology, Epidemiology and Biostatistics, and 2 Medicine and 3 Center for Human Genetics, Boston University School of Medicine, Boston; and 4 Department of Medicine, State University of New York Health Science Center, Syracuse Summary Familial orthostatic hypotensive disorder is characterized by light-headedness on standing, which may worsen to syncope, palpitations, and blue-purple ankle discoloration, and is accompanied by a marked decrease in systolic blood pressure, an increase in diastolic pressure, and tachycardia, all of which resolve when supine. We ascertained three families in which this disorder is inherited as an autosomal dominant trait with reduced penetrance. A genomewide scan was conducted in the two largest families, and three regions with multipoint LOD scores 11.5 were identified. Follow-up of these regions with additional markers in all three families yielded significant evidence of linkage at chromosome 18q. A maximum multipoint LOD score of 3.21 in the three families was observed at D18S1367, although the smallest family had negative LOD scores in the entire region. There was significant evidence of linkage in the presence of heterogeneity at 18q, with a maximum LOD score of 3.92 at D18S1367 in the two linked families. Identification of the gene responsible for orthostatic hypotensive disorder in these families may advance understanding of the general regulatory pathways involved in the continuum, from hypotension to hypertension, of blood pressure. Received March 17, 1998; accepted for publication September 3, 1998; electronically published October 9, 1998. Address for correspondence and reprints: Dr. Clinton T. Baldwin, Center for Human Genetics, Boston University School of Medicine, 80 East Concord Street, W408, Boston, MA 02118. E-mail: cbaldwin@bu.edu * Present affiliation: Department of Medicine, Hadassah University Hospital, Jerusalem. 1998 by The American Society of Human Genetics. All rights reserved. 0002-9297/98/6305-0020$02.00 Introduction The regulation of blood pressure (BP) is a multifactorial process that involves numerous biological pathways that maintain a constant equilibrium between vasoconstricting and vasodilating factors. Arterial hypertension is the result of chronic tilting of this balance toward vasoconstriction, owing to an interplay of genetic and environmental factors, and, consequently, results in an increase in peripheral resistance. Hypotension is usually an acute clinical syndrome that follows loss of blood volume, endocrine or vasomotor disorders, or cardiac (rhythm or function) disturbances. Hypotension can also be a chronic condition that stems from autonomic dysfunction and is either idiopathic or secondary to a variety of systemic diseases, such as diabetes mellitus or amyloidosis (Robertson et al. 1992). In rare cases, hypotension is part of the constellation of abnormalities that define a variety of familial disorders that are a result of specific genetic defects, such as the monoamine oxidase deficiency owing to an X-chromosome deletion (Sims et al. 1989). The majority of studies to identify genes that influence BP have focused on hypertensive individuals, but the isolation of genes in familial disorders characterized by hypotension is equally important to the dissection of the process of BP regulation. In 1972, Streeten and colleagues reported a novel familial orthostatic hypotensive syndrome (MIM 143850; Streeten et al. 1972). Five patients from four families were described as having orthostatic intolerance that ranged in severity from light-headedness to syncope, owing to a profound fall in systolic BP (SBP) and a rise in diastolic BP, that in many cases was associated with flushing, palpitations, leg edema, and/or varying purplish discoloration. The original clinical evaluation ruled out known causes of orthostatic hypotension and attributed the symptoms to hyperbradykininism. All patients had affected first-degree relatives, indicating a genetic basis for the disorder. Extended pedigree information and DNA samples were obtained for three of the families in the original 1425

1426 Am. J. Hum. Genet. 63:1425 1430, 1998 report, and linkage analyses were conducted. We report here the identification of a chromosomal region on 18q, which demonstrates significant evidence of linkage to the disorder in these families. Families and Methods Families Members of the four families from which the five patients described by Streeten et al. (1972) originated were contacted directly and were asked about the presence of symptoms, including dizziness and/or purple discoloration of legs on standing, their use of medication for BP regulation, and their ability to engage in physical activity. Information on minor children was provided by a parent. Medical records from prior exams (by D.H.P.S.) were available for the majority of patients who selfreported an affected status. In addition, local physicians were questioned regarding their patients symptoms, BP response to orthostasis, and treatment. One family was excluded from this study because its current physician observed no important changes in BP or in heart rate during orthostasis, despite the presence of other symptoms. For the remaining three families, DNA samples were obtained from 38 individuals, including 14 affected individuals and 1 obligate carrier (fig. 1). Clinical measurements for patients are shown in table 1. For linkage analysis, individuals were classified as affected if an excessive orthostatic drop in SBP (118 mm/hg) and rise in heart rate were observed. Individuals for whom detailed clinical information was not available were classified as affected if they reported orthostatic symptoms. Individual 5066 is not currently being treated and was initially reported as unaffected. Reevaluation of his clinical status revealed that he experiences light-headedness on standing; however, he declines treatment. In this analysis he is classified as affected. Individual 5052 experiences a significant drop in SBP on standing and is, therefore, classified as affected, but she experiences no symptoms. She is a high-level athlete, and it is possible that her physical condition enables her to compensate for her BP changes. A single nonpenetrant individual (5176) with an affected parent and offspring was observed. Genotyping Peripheral blood was obtained from the subjects in accordance with institutional guidelines for human subjects, and DNA was isolated from blood leukocytes by the proteinase K-SDS method (Sambrook et al. 1989). A series of 200 highly polymorphic tri- and tetranucleotide microsatellite markers, spaced an average of 20 cm apart, were typed in the two largest families (Sheffield et al. 1995). To make efficient use of laboratory resources, the third family was typed only for markers in the regions of interest that had been identified in the two larger families. A standard amplification reaction (10 ml; Saiki et al. 1988) was performed, with 40 ng genomic DNA and 1.0 pmol of each primer. Cycling parameters consisted of 95 C for 5 min, followed by 35 cycles of 94 C for 1 min, 60 C for 30 s, and 72 C for 30 s. Prior to amplification, one primer was end-labeled with 32 P and polynucleotide kinase (New England Biolabs), in order for the amplification product to be visible by autoradiography after application to a standard sequencing gel. Linkage Analysis For initial screening, multipoint parametric linkage was assessed using GENEHUNTER (Kruglyak et al. 1996) in the two families (BU134 and BU233) in which the genome scan was performed. An autosomal dominant mode of transmission with a reduced penetrance of 80% was assumed. Penetrance was not modeled as age dependent, because symptoms typically appear in childhood, and all unaffected children included in the analysis are older than the youngest onset age. Markerallele frequencies were assumed to be equal, but this assumption had little influence on the linkage results, because nearly complete genotype information was available for the founders. Given the number of individuals in the largest family and computational limitations, two unaffected individuals (5067 and 5069) could not be included in the GENEHUNTER analysis. Since the sharing of alleles among affected individuals is most critical for identifying linkages in a reduced-penetrance model, no linked regions would be missed by exclusion of these two unaffected persons. The genetic information provided by them could have small effects on the LOD scores, however. To maximize the amount of genetic information extracted from the largest family, regions that yielded an aggregate LOD score x1.5 were reanalyzed by VITESSE (O Connell and Weeks 1995). This enabled the inclusion of all individuals when a limited number of markers in a specific chromosomal region was selected. Positive regions were further examined by the typing of additional markers in all three families. After completion of the genome screen, a DNA sample was obtained on an additional affected individual (7051). Therefore, LOD scores computed on the basis of the follow-up of positive regions reflect an additional meiotic event, as well as increased marker information. Model assumptions for VITESSE analyses were identical to those used in GENEHUNTER. The possibility of linkage heterogeneity was considered by performance of the admixture test, implemented in the program HOMOG (Ott 1991).

Figure 1 Pedigrees of three families with BP-regulation disorder. Identification numbers, which indicate that a DNA sample was obtained, are given under the symbols. Onset age (affected individuals) or current age (unaffected individuals) are shown. Values in parentheses are age at diagnosis for affected individuals for whom precise onset age could not be established.

1428 Am. J. Hum. Genet. 63:1425 1430, 1998 Table 1 Clinical Information Obtained from Affected and Unaffected Family Members FAMILY AND INDIVIDUAL BLOOD PRES- SURE(mm/Hg) HEART RATE (bpm) a Lying Standing Lying Standing CLINICAL DIAGNOSIS b BU133: 5050 124/90 98/88 88 144 A 5051 124/50 122/84 64 84 N 5052 114/68 94/70 80 104 A 5058 108/58 90/82 72 104 A 5060 126/68 64/60 80 156 A BU134: 5063 118/70 100/74 54 72 A 5064 114/74 86/74 72 112 A 5065 136/70 102/90 68 108 A 5068 116/58 80/70 88 132 A BU233: 5177 154/86 128/100 76 116 A 5178 100/60 104/64 60 68 N 5182 118/76 80/74 76 164 A 5185 114/64 104/76 60 72 N 5186 90/52 90/60 72 88 N 5187 106/56 106/64 72 96 N 7051 115/72 84/76 70 108 A a bpm beats per minute b A affected; N unaffected. Results Multipoint parametric LOD-score analysis excluded 1,512 cm by the conservative criterion of a LOD score! 2. An additional 705 cm had negative evidence for linkage (LOD score! 1). Three regions (13p, 3q, and 18q) showed suggestive evidence of linkage, on the basis of the criterion of an aggregate LOD score 11.5. Reanalysis of the positive regions, conducted by use of the VITESSE program, yielded a maximum multipoint LOD score (Z max ) of 2.19 at 13p, 2.21 at 3q, and 3.5 at 18q. These locations were investigated further by typing additional markers in all three families. Saturation of the 18q region with additional markers resulted in an aggregate LOD score of 3.21 in the three families. Haplotype sharing within each family was observed for all affected individuals and for obligate carriers in the three families. However, in BU133, three unaffected persons share the complete putative disease haplotype, resulting in negative LOD scores throughout the region (fig. 2). The admixture test as implemented in the program HOMOG was used to test for evidence of locus heterogeneity (Ott 1991). Evidence of linkage to 18q in the presence of heterogeneity was obtained 2 ( x(2) 15.16; P.0003), and the likelihood ratio L2/ L0 (1,961:1) approached the suggested criterion of 2,000:1 (Terwilliger and Ott 1994). The conditional probability of linkage was high for BU134 (.99 [.98 1.0]) and for BU233 (.98 [.08 1.00]) and low for BU133 (.43 [.02 1.00]). In the linked families (BU233 and BU134), the multipoint Z max was 3.92. Recombinations in two affected individuals place the disease gene within a 25-cM region, between D18S858 and D18S541 (fig. 3). A multipoint Z max of 2.44 was obtained at the chromosome 13p region in the three families. The strongest evidence for linkage was observed in BU134 (Zmax 2.14 at D13S221), which does not reach the criterion for significance. Follow-up of the 3q region yielded a maximum multipoint LOD score of 1.71, between D3S2398 and D3S1754, with the majority of evidence for linkage observed in BU134 ( Zmax 2.3 at D3S2455). The admixture test provided weak evidence for linkage 2 in the presence of heterogeneity ( x(2) 8.8; P.006), with odds for linkage and heterogeneity of 83:1. It is unlikely, therefore, that a gene at this location accounts for disease susceptibility in these families. Discussion The three families displayed a broad spectrum of severity of phenotype. The most severely affected individuals frequently experience light-headedness and fainting on standing and are unable to perform daily tasks unless treated. In contrast, two mildly affected individuals (5066 and 5068) experience orthostatic light-headedness but are not receiving treatment for the disorder. One individual (5176) is an obligate carrier of the disease gene but experiences no symptoms and has normal BP verified by yearly exams. Uncertainty about the mutation status of apparently unaffected individuals was allowed for in the linkage analysis by the use of a reduced penetrance function. A more conservative approach considers information on haplotype sharing in affected individuals only. The nonparametric-linkage statistic computed by GENEHUNTER is a nonparametric ap- Figure 2 Multipoint linkage maps obtained by the program VITESSE, with the most informative markers on 18q. The markers and their relative distance are shown on the x-axis. D18S858 was arbitrarily placed at 0 cm.

DeStefano et al.: Orthostatic Hypotensive Disorder Maps to 18q 1429 Figure 3 Haplotypes of affected individuals that define the putative disease-gene location for 18q. Blackened squares indicate regions of allele sharing among affected individuals; unblackened squares represent recombinant regions. proach that evaluates allele sharing among affected relative pairs. In the initial genome screen, evidence for linkage based on the maximum NPL statistic (NPL max ) was nearly identical for the three positive regions (3q, NPLmax 3.95 [ P.0078]; 13p, NPLmax 4.48 [ P.0048]; and 18q, NPLmax 4.17 [ P.0078]). The fewest inferred recombinants (unaffected individuals carrying the putative disease haplotype), however, were observed at the chromosome 18 location in the two linked families. Parametric LOD-score analysis with the more liberal penetrance assumption of 80% provided the strongest evidence of linkage to the chromosome 18q location in the two largest families. Quantitative-trait loci (QTLs) for BP have been mapped to human chromosomes 17q and 8p22 (Wu et al. 1996; Julier et al. 1997), among others. To our knowledge, the chromosomal regions identified in the current study have not been implicated by QTL linkage studies in human populations or in studies using animal models. There are several serpin (serine protease inhibitor) genes, including those for plasminogen-activator inhibitor-2 (PAI2), maspin, and bomapin, in the chromosome 18 candidate region (Schneider et al. 1995). Although none of these candidate genes have been implicated directly in BP regulation, it remains possible that they possess functions not yet described. Proteases are involved in the formation and degradation of various vasoactive peptides. The inhibition of proteases, through the use of ACE inhibitors, is the basis of one successful therapeutic approach to the control of BP. Therefore, serpins may be an important class of genes for BP regulation, and those located at 18q should be considered as candidates for orthostatic hypotensive disorder. The PAI2 gene was scanned for mutations by use of SSCP. Preliminary examination provided no evidence of mutation in the PAI2 gene in affected individuals in these families. The original report on these families ruled out known causes of orthostasis and established a common finding of hyperbradykininism, based on high levels of plasma bradykinin and low plasma bradykininase-i concentrations (Streeten et al. 1972). In the quarter century since that report, however, measurements of plasma bradykinin from these patients have given apparently conflicting results, which are actually consistent with the fact that plasma bradykininase concentration can be variable, as described (Streeten et al. 1972). The present study has found no evidence of linkage to regions containing hyperbradykininism-candidate genes, such as the bradykinin receptors B1 and B2 (14q32.1-q32.2) and kallikrein (19q13.2-q13.4). It is interesting to note that the kininogen gene (3q27) is located in the chromosome 3 region that yields a positive LOD score; however, evidence of linkage to this location is weak compared with evidence for linkage to chromosome 18. The possibility that a genetic mechanism for deficient bradykininase synthesis might be responsible for this syndrome is still a tenable hypothesis that remains to be excluded. Identification of the gene that causes familial orthostatic hypotension disorder will enable genetic testing and could potentially lead to improved treatment for individuals with this condition. Discovery of the mutations in these families, however, may impact more broadly by shedding light on the process of BP regulation. Hypertension, which affects 20% of the population and is associated with morbidity from stroke, heart attack, and renal disease, can be considered the mirror image of hypotension. This relationship has been proven in the identification of mutations in the epithelial sodium-channel gene, which result in Mendelian forms of both hypotension (pseudohypoaldosteronism type 1; Chang et al. 1996) and hypertension (Liddle syndrome; Hansson et al. 1995). Investigation of candidate genes on 18q may provide additional insights into the role of genetics in BP regulation. Acknowledgments We are grateful to the families for their participation in this study and thank Paula Beardsley, LPN, for facilitating communication with the family members. This work was supported by U.S. Public Health Service grant P50 HL55001. F.S. is supported by Basic Science Cardiovascular grant HL07224. Electronic-Database Information Accession number and URL for data in this article are as follows: Online Mendelian Inheritance in Man (OMIM), http://www.ncbi.nlm.nih.gov/omim (for familial orthostatic hypotensive syndrome [MIM 143850])

1430 Am. J. Hum. Genet. 63:1425 1430, 1998 References Chang SS, Grunder S, Hanukoglu A, Rosler A, Mathew PM, Hanukoglu I, Schild L, et al (1996) Mutations in subunits of the epihelial sodium channel cause salt wasting with hyperkalaemic acidosis, pseudohypoaldosteronism type 1. Nat Genet 12:248 253 Hansson JH, Nelson-Williams C, Suzuki H, Schild L, Shimkets RA, Lu Y, Canessa C, et al (1995) Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nat Genet 11:76 82 Julier C, Delepine M, Keavney B, Terwilliger J, Davis S, Weeks DE, Bui T, et al (1997) Genetic susceptibility for human familial essential hypertension in a region of homology with blood pressure linkage on rat chromosome 10. Hum Mol Genet 6:2077 2085 Kruglyak L, Daly MJ, Reeve-Daly MP, Lander E (1996) Parametric and nonparametric linkage analysis: a unified multipoint approach. Am J Hum Genet 58:1347 1363 O Connell JR, Weeks DE (1995) The VITESSE algorithm for rapid exact multilocus linkage analysis via genotype set-recoding and fuzzy inheritance. Nat Genet 11:402 408 Ott J (1991) Analysis of human genetic linkage. The Johns Hopkins University Press, Baltimore Robertson D, Mosqueda-Garcia R, Robertson RM, Biaggioni I (1992) Chronic hypotension: in the shadow of hypertension. Am J Hypertens 5:200S 205S Saiki R, Gelfand DH, Stoffel SJ, Hiquchi R, Horn G, Mullis K, Erlich H (1988) Primer-directed enzymatic amplification of DNA with thermostable DNA polymerase. Science 239: 487 491 Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY Schneider SS, Schick C, Fish KE, Miller E, Pena JC, Treter SD, Hui SM, et al (1995) A serine proteinase inhibitor locus at 18q21.3 contains a tandem duplication of the human squamous cell carcinoma antigen gene. Proc Natl Acad Sci USA 92:3147 3151 Sheffield V, Weber J, Buetow K, Murray J, Even D, Wiles K, Gastier J, et al (1995) A collection of tri-and tetranucleotide repeat markers used to generate high quality, high resolution human genome-wide linkage maps. Hum Mol Genet 4: 1837 1844 Sims KB, de la Chapelle A, Norio R, Sankila E-M, Hsu Y-PP, Rinehart WB, Corey TJ, et al (1989) Monoaminoxidase deficiency in males with an X chromosome deletion. Neuron 2:1069 1076 Streeten DHP, Kerr LP, Kerr CB, Prior JC, Dalakos TG (1972) Hyperbradykinism: a new orthostatic syndrome. Lancet 2: 1048 1053 Terwilliger JD, Ott J (1994) Handbook of human genetic linkage. The Johns Hopkins University Press, Baltimore Wu D, Bu X, Warden CH, Shen DDC, Jeng CY, Sheu WHH, Fuh MMT, et al (1996) Quantitative trait locus mapping of human blood pressure to a genetic region at or near the lipoprotein lipase gene locus on chromosome 8p22. J Clin Invest 97:2111 2118